WO2022209058A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2022209058A1
WO2022209058A1 PCT/JP2021/047212 JP2021047212W WO2022209058A1 WO 2022209058 A1 WO2022209058 A1 WO 2022209058A1 JP 2021047212 W JP2021047212 W JP 2021047212W WO 2022209058 A1 WO2022209058 A1 WO 2022209058A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
battery
positive electrode
lithium
solvent
Prior art date
Application number
PCT/JP2021/047212
Other languages
French (fr)
Japanese (ja)
Inventor
友章 島村
宗明 安藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022209058A1 publication Critical patent/WO2022209058A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to secondary batteries.
  • the secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution, and various studies have been made on the configuration of the secondary battery.
  • the electrolyte contains LiN(FSO 2 ) 2 together with the first ester compound and the second ester compound (see, for example, Patent Document 1).
  • the positive electrode contains LiFePO 4 and the electrolyte contains LiN(CF 3 SO 2 ) 2 together with a propionate compound (see, for example, Patent Document 2).
  • the positive electrode contains LiMPO 4 (where M is Fe, etc.), and the electrolyte contains LiN(FSO 2 ) 2 together with a carboxylic acid ester compound (see, for example, Patent Documents 3).
  • the positive electrode contains LiFePO4 and the electrolyte contains LiN( CF3SO2 ) 2 together with the propionate compound. (See Patent Document 4, for example).
  • a secondary battery includes a battery element including a positive electrode, a negative electrode, and an electrolytic solution, a storage member that stores the battery element therein, and operates according to an increase in pressure inside the storage member. and a current interrupting mechanism for interrupting current supply to the battery element.
  • the positive electrode contains a lithium iron phosphate compound represented by the following formula (1).
  • the electrolyte solution contains a solvent and an electrolyte salt, the solvent having a boiling point of 100° C.
  • the electrolyte salt having the following contains a lithium sulfonylimide salt represented by the formula (2) of
  • the working pressure of the current interrupting mechanism is 20 kgf/cm 2 or more.
  • LiFe x M 1-x PO 4 (1) (M is one or more transition metal elements (excluding Fe). x satisfies 0 ⁇ x ⁇ 1.)
  • the secondary battery includes battery elements (a positive electrode, a negative electrode, and an electrolytic solution), a storage member, and a current interrupting mechanism, and the positive electrode contains a lithium iron phosphate compound.
  • the solvent of the electrolyte contains a chain carboxylic acid ester having a boiling point of 100° C. or higher and a viscosity of 0.9 mPas or less at 25° C.
  • the electrolyte salt of the electrolyte is a lithium sulfonylimide salt and the operating pressure of the current interrupting mechanism is 20 kgf/cm 2 or more, so excellent high temperature operation characteristics and excellent high temperature storage characteristics can be obtained.
  • FIG. 2 is a cross-sectional view showing the configuration of the battery element shown in FIG. 1;
  • FIG. 3 is a block diagram showing the configuration of an application example of a secondary battery;
  • the secondary battery described here is a secondary battery in which battery capacity is obtained by utilizing the absorption and release of electrode reactants, and is equipped with a positive electrode, a negative electrode, and an electrolytic solution, which is a liquid electrolyte.
  • the type of electrode reactant is not particularly limited, but specifically light metals such as alkali metals and alkaline earth metals.
  • Alkali metals include lithium, sodium and potassium
  • alkaline earth metals include beryllium, magnesium and calcium.
  • lithium ion secondary battery A secondary battery whose battery capacity is obtained by utilizing the absorption and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is intercalated and deintercalated in an ionic state.
  • the charge capacity of the negative electrode is larger than the discharge capacity of the positive electrode. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent electrode reactants from depositing on the surface of the negative electrode during charging.
  • Configuration> 1 shows the cross-sectional structure of a secondary battery
  • FIG. 2 shows the cross-sectional structure of the battery element 20 shown in FIG. However, in FIG. 2, only part of the battery element 20 is shown.
  • the secondary battery mainly includes a battery can 10, a battery element 20, a pair of insulating plates 31 and 32, a positive electrode lead 41 and a negative electrode lead 42, and a current interrupting mechanism. 50.
  • the secondary battery described here is a cylindrical secondary battery in which a battery element 20 is housed inside a cylindrical battery can 10 .
  • the battery can 10 is a housing member that houses the battery element 20 and the like, and includes a battery can main body 11 and a battery lid 12 .
  • the battery can body 11 is a container-like member that accommodates the battery element 20 and the like inside. Since the battery can body 11 has a hollow structure with one end open and the other end closed, it has an opening 11K at one end. In addition, the battery can body 11 contains one or more of metal materials such as iron, aluminum, iron alloys, and aluminum alloys. The metal material may be plated.
  • the battery lid 12 is a plate-like member that shields the opening 11K of the battery can main body 11, as shown in FIG. Since the battery lid 12 is crimped to the vicinity of the opening 11K of the battery can body 11 via the gasket 60, the battery can body 11 is sealed by the battery lid 12. As shown in FIG.
  • the material for forming the battery lid 12 is the same as the material for forming the battery can main body 11 .
  • Gasket 60 contains an insulating material, and the insulating material contains one or more of polymer compounds such as polybutylene terephthalate. However, the surface of the gasket 60 may be coated with asphalt.
  • the battery element 20 is a power generation element including a positive electrode 21, a negative electrode 22, a separator 23, and an electrolytic solution (not shown).
  • This battery element 20 is a so-called wound electrode assembly. That is, in the battery element 20, the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween, and the positive electrode 21, the negative electrode 22 and the separator 23 are wound. Thus, the positive electrode 21 and the negative electrode 22 are wound while facing each other with the separator 23 interposed therebetween.
  • a center pin 80 is inserted in a winding space 20S provided at the center of winding of the battery element 20 . However, the center pin 80 may be omitted.
  • the positive electrode 21 includes a positive electrode current collector 21A and a positive electrode active material layer 21B, as shown in FIG.
  • the positive electrode current collector 21A has a pair of surfaces on which the positive electrode active material layer 21B is provided.
  • This positive electrode current collector 21A contains a conductive material such as a metal material, and the metal material is aluminum or the like.
  • the positive electrode active material layer 21B contains one or more of positive electrode active materials capable of intercalating and deintercalating lithium. However, the positive electrode active material layer 21B may further contain one or more of other materials such as a positive electrode binder and a positive electrode conductor.
  • the positive electrode active material layer 21B is provided on both sides of the positive electrode current collector 21A.
  • the positive electrode active material layer 21B may be provided only on one side of the positive electrode current collector 21A on the side where the positive electrode 21 faces the negative electrode 22 .
  • a method for forming the positive electrode active material layer 21B is not particularly limited, but specifically, one or more of coating methods and the like are used.
  • the positive electrode active material contains one or more of the lithium iron phosphate compounds represented by the following formula (1).
  • This lithium iron phosphate compound is a phosphate compound containing lithium (Li) and iron (Fe) as constituent elements, as shown in formula (1).
  • LiFe x M 1-x PO 4 (1) (M is one or more transition metal elements (excluding Fe). x satisfies 0 ⁇ x ⁇ 1.)
  • the positive electrode active material contains a lithium iron phosphate compound because the positive electrode active material (lithium iron phosphate compound), a solvent (chain carboxylic acid ester) described later, and an electrolyte salt (lithium sulfonylimide salt described later) ) and the condition regarding the operating pressure of the current interrupting mechanism 50 (the operating pressure is 20 kgf/cm 2 or more), which will be described later, make it easier for the current to converge when the secondary battery is overcharged. be. This improves the high-temperature operating characteristics of the current interrupting mechanism 50, thereby improving the safety of the secondary battery during overcharging.
  • the operating pressure is 20 kgf/cm 2 or more
  • the type of the transition metal element (M) is not particularly limited as long as it is one or more of the transition metal elements excluding iron.
  • the transition metal element is manganese (Mn ) and cobalt (Co). This is because the average voltage of the secondary battery becomes high while there is a steep voltage rise in the overcharge region of the secondary battery.
  • the lithium iron phosphate compound may contain the transition metal element (M) as a constituent element, or the transition metal element (M) may not be included as a constituent element.
  • a lithium iron phosphate compound that does not contain a transition metal element (M) as a constituent element is LiFePO4 .
  • Specific examples of the lithium iron phosphate compound containing a transition metal element ( M ) as a constituent element include LiFe0.5Mn0.5PO4 , LiFe0.7Mn0.3PO4 , LiFe0.3Mn0.7PO4 , and LiFe0.5Co0.5PO4 . , LiFe0.7Co0.3PO4 and LiFe0.3Co0.7PO4 . _
  • the positive electrode active material may contain one or more of other materials together with the lithium iron phosphate compound.
  • the type of other material is not particularly limited, but is specifically a lithium-containing compound. However, lithium iron phosphate compounds are excluded from the lithium-containing compounds described herein.
  • This lithium-containing compound is a compound containing lithium and one or more transition metal elements as constituent elements, and may further contain one or more other elements as constituent elements.
  • the type of the other element is not particularly limited as long as it is an element other than lithium and transition metal elements. Specifically, the other element is an element belonging to Groups 2 to 15 in the long period periodic table. be.
  • the type of lithium-containing compound is not particularly limited, but specific examples include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds.
  • oxides include LiNiO2 , LiCoO2 , LiCo0.98Al0.01Mg0.01O2 , LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 .
  • a specific example of the phosphoric acid compound is LiMnPO 4 and the like.
  • the positive electrode binder contains one or more of synthetic rubber and polymer compounds.
  • Synthetic rubbers include styrene-butadiene-based rubber, fluorine-based rubber, and ethylene propylene diene.
  • Polymer compounds include polyvinylidene fluoride, polyimide and carboxymethyl cellulose.
  • the positive electrode conductive agent contains one or more of conductive materials such as carbon materials, and the carbon materials include graphite, carbon black, acetylene black, and ketjen black.
  • the conductive material may be a metal material, a polymer compound, or the like.
  • the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B, as shown in FIG.
  • the negative electrode current collector 22A has a pair of surfaces on which the negative electrode active material layer 22B is provided.
  • This negative electrode current collector 22A contains a conductive material such as a metal material, and the metal material is copper or the like.
  • the negative electrode active material layer 22B contains one or more of negative electrode active materials capable of intercalating and deintercalating lithium. However, the negative electrode active material layer 22B may further contain one or more of other materials such as a negative electrode binder and a negative electrode conductor.
  • the negative electrode active material layer 22B is provided on both sides of the negative electrode current collector 22A.
  • the negative electrode active material layer 22B may be provided only on one side of the negative electrode current collector 22A on the side where the negative electrode 22 faces the positive electrode 21 .
  • the method of forming the negative electrode active material layer 22B is not particularly limited, but specifically, any one of a coating method, a vapor phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), or the like, or Two or more types.
  • the type of negative electrode active material is not particularly limited, but specifically, the negative electrode active material is one or both of a carbon material and a metal-based material. This is because a high energy density can be obtained.
  • Carbon materials include graphitizable carbon, non-graphitizable carbon and graphite (natural graphite and artificial graphite).
  • a metallic material is a material containing as constituent elements one or more of metallic elements and semi-metallic elements capable of forming an alloy with lithium. , one or both of silicon and tin, and the like. This metallic material may be a single substance, an alloy, a compound, a mixture of two or more of them, or a material containing two or more of these phases. Specific examples of metallic materials include TiSi 2 and SiO x (0 ⁇ x ⁇ 2, or 0.2 ⁇ x ⁇ 1.4).
  • each of the negative electrode binder and the negative electrode conductive agent is the same as those of the positive electrode binder and the positive electrode conductive agent.
  • the separator 23 is an insulating porous film interposed between the positive electrode 21 and the negative electrode 22, as shown in FIG. Allows lithium ions to pass through.
  • This separator 23 contains a polymer compound such as polyethylene.
  • the electrolyte is impregnated in each of the positive electrode 21, the negative electrode 22 and the separator 23 and contains a solvent and an electrolyte salt.
  • the solvent contains one or more of non-aqueous solvents (organic solvents), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution.
  • the solvent is a chain carboxylic acid ester having a boiling point of 100° C. or higher and a viscosity of 0.9 mPa ⁇ s or less at 25° C. (hereinafter simply referred to as “chain carboxylic acid ester”). contains any one or two or more of Below, the viscosity at 25°C is simply referred to as "viscosity”.
  • the type of the chain carboxylic acid ester is not particularly limited as long as it satisfies the conditions regarding the boiling point and viscosity described above, so the chain carboxylic acid ester may be a chain acetate or a chain propionate. However, it may be a chain butyric acid ester, or may be other than these.
  • chain carboxylic acid esters that do not satisfy the above boiling point and viscosity conditions are referred to as "other chain carboxylic acid esters.”
  • Other linear carboxylic acid esters include chain carboxylic acid esters having a boiling point of 100° C. or higher but not having a viscosity of 0.9 mPa ⁇ s or less at 25° C., and chain carboxylic acid esters having a boiling point of 100° C.
  • the solvent of the electrolytic solution contains the chain carboxylic acid ester is that the pressure inside the battery can 10 does not rise rapidly even when the secondary battery is used and stored, so that the current interrupting mechanism 50 does not work excessively. This is because it is inhibited from operating.
  • the operating pressure of the current interrupting mechanism 50 is set to a relatively high pressure (operating pressure is 20 kgf/cm 2 or more), so the pressure inside the battery can 10 rises, the pressure remains relatively high.
  • the lithium sulfonylimide salt and the chain carboxylic acid ester react with each other under the condition that the internal pressure of the battery can 10 is maintained at a relatively high level, so that the charge/discharge reaction in the battery element 20 is stable and smooth. Therefore, even if the secondary battery is stored in a high-temperature environment, the discharge capacity is less likely to decrease.
  • the solvent contains other chain carboxylic acid esters
  • the boiling point of the other chain carboxylic acid esters is too low. Acid ester becomes easy to volatilize.
  • the vapor pressure inside the battery can 10 tends to rise sharply, and the pressure inside the battery can 10 tends to rise sharply. easier to operate.
  • the current interrupting mechanism 50 excessively interrupts the energization of the battery element 20, making it difficult to stably and continuously use the secondary battery.
  • the tendency for the current interrupting mechanism 50 to operate excessively due to the tendency for the pressure inside the battery can 10 to rise rapidly in this way is particularly significant when the secondary battery is used and stored in a high-temperature environment. becomes conspicuous when
  • the viscosity of the other chain carboxylic acid esters is too high, so the viscosity of the electrolytic solution becomes excessively high.
  • the electrolytic solution is less likely to be injected into the battery can 10 in the manufacturing process of the secondary battery, that is, the positive electrode 21, the negative electrode 22, and the separator 23 are each less likely to be impregnated with the electrolytic solution.
  • the amount of electrolyte retained by 20 is reduced. This makes it difficult for the charge/discharge reaction to proceed stably and smoothly in the battery element 20, so that the discharge capacity tends to decrease when the secondary battery is stored.
  • the tendency for the discharge capacity to decrease due to the decrease in the amount of electrolyte retained by the battery element 20 becomes particularly pronounced when the secondary battery is stored in a high-temperature environment.
  • the solvent contains a chain carboxylic acid ester
  • the boiling point of the chain carboxylic acid ester is appropriately high. less likely to volatilize.
  • the current interrupting mechanism 50 does not excessively interrupt the energization of the battery element 20 when the secondary battery is used, so that the secondary battery can be stably and continuously used.
  • the tendency for the current interrupting mechanism 50 to be less likely to operate excessively even when the internal pressure of the battery can 10 rises in this manner can be obtained even when the secondary battery is used and stored in a high-temperature environment. be done.
  • the viscosity of the chain carboxylic acid ester is appropriately low, so the viscosity of the electrolytic solution is appropriately low.
  • the electrolytic solution is easily injected into the battery can 10 in the manufacturing process of the secondary battery.
  • the amount of electrolyte retained by 20 increases.
  • the charging and discharging reactions in the battery element 20 tend to proceed stably and smoothly, so that the discharge capacity is less likely to decrease even when the secondary battery is stored.
  • Such a tendency that the discharge capacity is less likely to decrease is similarly obtained particularly when the secondary battery is stored in a high-temperature environment.
  • the number of carbon atoms in the chain carboxylic acid ester is preferably 6 or less. This is because the viscosity of the chain carboxylic acid ester becomes sufficiently low, so that the positive electrode 21, the negative electrode 22, and the separator 23 are more easily impregnated with the electrolytic solution. As a result, the amount of electrolyte retained by the battery element 20 is further increased, so that the discharge capacity is less likely to decrease.
  • the chain carboxylic acid ester is preferably one or both of propyl acetate and propyl propionate. Since the boiling point is sufficiently high and the viscosity is sufficiently low, excessive operation of the current interrupting mechanism 50 is sufficiently suppressed, and the discharge capacity is less likely to decrease sufficiently even when the secondary battery is stored. Because it becomes
  • This solvent may contain only a chain carboxylic acid ester, but may also contain one or both of a cyclic carbonate and a chain carbonic acid ester together with the chain carboxylic acid ester. This is because, while the excessive operation of the current interrupting mechanism 50 is suppressed, it becomes difficult for the discharge capacity to decrease sufficiently even when the secondary battery is stored.
  • the number of cyclic carbonates may be one, or two or more.
  • the number of chain carbonate esters may be one, or two or more.
  • Specific examples of the cyclic carbonate include ethylene carbonate and propylene carbonate
  • specific examples of the chain carbonate include dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate.
  • the content of the chain carboxylic acid ester in the solvent is not particularly limited, it is preferably 10% by weight to 75% by weight. This is because the discharge capacity is less likely to decrease sufficiently even when the secondary battery is stored.
  • the solvent may further contain one or more of lactones and the like. Only one type of lactone may be used, or two or more types may be used. Specific examples of lactones include ⁇ -butyrolactone and ⁇ -valerolactone.
  • the solvent may contain one or more of the additives. This is because the chemical stability of the electrolytic solution is improved, so that the discharge capacity is less likely to decrease even when the secondary battery is stored.
  • the additives include unsaturated cyclic carbonates, fluorinated cyclic carbonates, sulfonic acid esters, acid anhydrides, nitrile compounds, isocyanate compounds and phosphate esters.
  • the content of the additive in the electrolytic solution is not particularly limited and can be set arbitrarily.
  • unsaturated cyclic carbonates include vinylene carbonate, vinylethylene carbonate and methyleneethylene carbonate.
  • fluorinated cyclic carbonates include ethylene fluorocarbonate and ethylene difluorocarbonate.
  • sulfonic acid esters include 1,3-propanesultone and 1-propene-1,3-sultone.
  • acid anhydrides include succinic anhydride, glutaric anhydride, 1,2-ethanedisulfonic anhydride, 1,3-propanedisulfonic anhydride and 2-sulfobenzoic anhydride.
  • nitrile compounds include succinonitrile, glutaronitrile and adiponitrile.
  • isocyanate compounds include hexamethylene diisocyanate.
  • phosphate esters include trimethyl phosphate and triethyl phosphate.
  • the additive is preferably a fluorinated cyclic carbonate. This is because a coating film derived from the fluorinated cyclic carbonate is formed on the surface of the negative electrode 22 during charging and discharging, so that the electrolytic solution is less likely to be decomposed on the surface of the negative electrode 22 . This makes it more difficult for the discharge capacity to decrease even when the secondary battery is stored.
  • the content of the fluorinated cyclic carbonate in the electrolytic solution is not particularly limited, but is preferably 0.05% by weight to 3.5% by weight. This is because the discharge capacity is less likely to decrease sufficiently even when the secondary battery is stored.
  • the content of the fluorinated cyclic carbonate in the electrolytic solution is more preferably 0.1% by weight to 3.0% by weight. This is because the discharge capacity is less likely to decrease while the excessive operation of the current interrupting mechanism 50 is further suppressed.
  • the electrolyte salt contains a lithium salt, more specifically, one or more of lithium sulfonylimide salts represented by the following formula (2).
  • This lithium sulfonylimide salt is a lithium imide salt having two fluorinated sulfonyl groups ((R1SO 2 )(R2SO 2 )) as shown in formula (2).
  • R1 and R2 is not particularly limited as long as it is either a fluorine group or a perfluoroalkyl group, as described above.
  • the type of R1 and the type of R2 may be the same or different. Since the number of carbon atoms in the perfluoroalkyl group is not particularly limited, the perfluoroalkyl group includes a trifluoromethyl group (--CF 3 ) and a pentafluoroethyl group (--C 2 F 5 ).
  • lithium sulfonylimide salts are lithium bis(fluorosulfonyl)imide (LiN(FSO2) 2 ), lithium bis(trifluoromethanesulfonyl)imide (LiN( CF3SO2 ) 2 ) and bis ( pentafluoroethanesulfonyl ) imidelithium (Li (C2F5SO2)2 ) .
  • the reason why the electrolyte salt contains a lithium sulfonylimide salt is that the safety of the secondary battery during overcharging is improved for the reason described above for the case where the positive electrode active material contains a lithium iron phosphate compound. is.
  • the lithium sulfonylimide salt is preferably one or both of bis(fluorosulfonyl)imidelithium and bis(trifluoromethanesulfonyl)imidelithium. This is because the secondary battery is less likely to generate heat sufficiently, and the safety of the secondary battery at the time of overcharging is sufficiently improved.
  • the content of the lithium sulfonylimide salt in the solvent is not particularly limited, it is preferably 0.8 mol/kg or more, more preferably 0.8 mol/kg to 2.0 mol/kg. This is because the safety of the secondary battery during overcharge is sufficiently improved while high ion conductivity is obtained.
  • the electrolyte salt may contain only the lithium sulfonylimide salt, or may contain one or more of other lithium salts together with the lithium sulfonylimide salt. This is because the battery capacity and the like are improved.
  • lithium salts include lithium hexafluorophosphate ( LiPF6 ), lithium tetrafluoroborate ( LiBF4 ), lithium tris(trifluoromethanesulfonyl)methide (LiC( CF3SO2 ) 3 ) , Lithium bis(oxalato)borate (LiB ( C2O4 ) 2 ), lithium monofluorophosphate ( Li2PFO3 ) and lithium difluorophosphate ( LiPF2O2 ).
  • LiPF6 lithium hexafluorophosphate
  • LiBF4 lithium tetrafluoroborate
  • LiC( CF3SO2 ) 3 lithium tris(trifluoromethanesulfonyl)methide
  • LiB ( C2O4 ) 2 Lithium bis(oxalato)borate
  • Li2PFO3 lithium monofluorophosphate
  • LiPF2O2 lithium difluorophosphate
  • each of the insulating plates 31 and 32 may be provided with an opening for partially exposing the center pin 80 .
  • the cathode lead 41 is connected to the cathode current collector 21A of the cathode 21, as shown in FIGS. 1 and 2, and contains one or more of conductive materials such as aluminum. there is This positive electrode lead 41 is electrically connected to the battery lid 12 via a current interrupting mechanism 50 .
  • the negative electrode lead 42 is connected to the negative electrode current collector 22A of the negative electrode 22, as shown in FIGS. 1 and 2, and contains one or more of conductive materials such as nickel. there is This negative electrode lead 42 is electrically connected to the battery can body 11 .
  • the current interrupting mechanism 50 is crimped through a gasket 60 together with the battery lid 12 and the thermal resistance element (PTC element) 70 to the vicinity of the opening 11K of the battery can body 11 . Thereby, the current interrupting mechanism 50 is fixed to the battery can 10 together with the PTC element 70 .
  • Each of the current interrupting mechanism 50 and the PTC element 70 is arranged inside the battery lid 12 , and the current interrupting mechanism 50 includes a disc plate 51 .
  • the current interrupting mechanism 50 is electrically connected to the positive electrode lead 41 via the disk plate 51 and electrically connected to the battery lid 12 via the PTC element 70 .
  • the electrical resistance of the PTC element 70 increases as the temperature rises.
  • the disk plate 51 has a thickness T and is bent so as to partially recess toward the battery element 20 . In this case, a portion of the disc plate 51 is folded back toward the side away from the center of the disc plate 51 (outside) and then folded back toward the side closer to the center of the disc plate 51 (inside). ing. As a result, the disc plate 51 has a portion (folded portion 51P) where the disc plate 51 is folded on itself in the middle.
  • the current cut-off mechanism 50 cuts off the energization of the battery element 20 by operating in response to an increase in pressure inside the battery can 10 . More specifically, when the pressure inside the battery can 10 rises and the pressure reaches a predetermined pressure, the disk plate 51 is reversed, so that the disk plate 51 is electrically separated from the positive electrode lead 41 . be done. In this case, the electrical connection between the battery cover 12 and the battery element 20 is cut off, so that the current flow through the battery element 20 is cut off. This prevents the secondary battery (battery element 20) from generating abnormal heat due to a large current.
  • the current interrupting mechanism 50 is partially cleaved in response to an increase in pressure inside the battery can 10, so that a pressure release gap (pressure release path) is formed in the current interrupting mechanism 50. be.
  • a pressure release gap pressure release path
  • the internal pressure of the battery can 10 is released, thereby preventing the secondary battery from bursting.
  • the current cut-off mechanism 50 functions not only to cut off the energization of the battery element 20 when the pressure inside the battery can 10 rises, but also as a safety valve to release the pressure inside the battery can 10 .
  • the current interrupting mechanism 50 operates when the pressure inside the battery can 10 reaches a predetermined pressure, more specifically, when the pressure reaches 20 kgf/cm 2 or more. That is, the pressure (operating pressure) at which the current interrupting mechanism 50 operates is 20 kgf/cm 2 or more. This is because the pressure inside the battery can 10 is maintained in a relatively high state, so that the current interrupting mechanism 50 is prevented from operating excessively. As a result, the secondary battery can be used stably and continuously.
  • the operating pressure can be adjusted to a desired value using one or more of known methods.
  • the working pressure may be adjusted by changing the material of the disk plate 51 and the connection strength of the disk plate 51 to the positive electrode lead 41 .
  • the working pressure may be adjusted by changing the thickness T of the disc plate 51, more specifically, the thickness T of the disc plate 51 at the folded portion 51P.
  • other methods not illustrated here may be used to adjust the actuation pressure.
  • the positive electrode 21 and the negative electrode 22 are prepared according to the procedure described below, and an electrolytic solution is prepared. Make a battery.
  • a mixture (positive electrode mixture) in which a positive electrode active material containing a lithium iron phosphate compound, a positive electrode binder, and a positive electrode conductive agent are mixed together is put into a solvent to obtain a pasty positive electrode mixture.
  • This solvent may be an aqueous solvent or an organic solvent.
  • the cathode active material layer 21B is formed by applying the cathode mixture slurry to both surfaces of the cathode current collector 21A.
  • the cathode active material layer 21B is compression-molded using a roll press or the like. In this case, the positive electrode active material layer 21B may be heated, or compression molding may be repeated multiple times. As a result, the cathode active material layers 21B are formed on both surfaces of the cathode current collector 21A, so that the cathode 21 is produced.
  • a negative electrode 22 is formed by the same procedure as that of the positive electrode 21 described above. Specifically, first, a paste-like negative electrode mixture slurry is prepared by putting a mixture (negative electrode mixture) in which a negative electrode active material, a negative electrode binder, and a negative electrode conductor are mixed together into a solvent. Subsequently, the anode active material layer 22B is formed by applying the anode mixture slurry to both surfaces of the anode current collector 22A. Finally, the negative electrode active material layer 22B is compression molded. As a result, the negative electrode 22 is manufactured because the negative electrode active material layers 22B are formed on both surfaces of the negative electrode current collector 22A.
  • An electrolyte salt containing a lithium sulfonylimide salt is added to a solvent containing a chain carboxylic acid ester. This disperses or dissolves the electrolyte salt in the solvent, thus preparing an electrolytic solution.
  • the positive electrode lead 41 is connected to the positive electrode current collector 21A of the positive electrode 21 by welding or the like, and the negative electrode lead 42 is connected to the negative electrode current collector 22A of the negative electrode 22 by welding or the like.
  • the positive electrode 21, the negative electrode 22 and the separator 23 are wound to form a wound body (not shown) having a winding space 20S.
  • This wound body has the same structure as the battery element 20 except that the positive electrode 21, the negative electrode 22 and the separator 23 are not impregnated with the electrolytic solution.
  • the center pin 80 is inserted into the winding space 20S of the wound body.
  • the wound body is housed inside the battery can main body 11 through the opening 11K together with the insulating plates 31 and 32.
  • the positive electrode lead 41 is connected to the current interrupting mechanism 50 (disk plate 51) using a welding method or the like
  • the negative electrode lead 42 is connected to the battery can body 11 using a welding method or the like.
  • the wound body is impregnated with the electrolytic solution.
  • each of the positive electrode 21, the negative electrode 22 and the separator 23 is impregnated with the electrolytic solution, so that the battery element 20 is produced.
  • the portion of the battery can body 11 near the opening 11K is inserted through the gasket 60. and crimp.
  • the battery lid 12, the current interrupting mechanism 50 and the PTC element 70 are fixed to the battery can body 11, and the battery can 10 including the battery can body 11 and the battery lid 12 is formed. Accordingly, since the battery element 20 is sealed inside the battery can 10, the secondary battery is assembled.
  • the current interrupting mechanism is adjusted so that the current is 20 kgf/cm 2 or more. 50 working pressure is set.
  • the secondary battery after assembly is charged and discharged.
  • Various conditions such as environmental temperature, number of charge/discharge times (number of cycles), and charge/discharge conditions can be arbitrarily set.
  • films are formed on the respective surfaces of the positive electrode 21 and the negative electrode 22, so that the state of the secondary battery is electrochemically stabilized.
  • a secondary battery is completed.
  • the secondary battery includes a battery can 10, a battery element 20 (a positive electrode 21, a negative electrode 22, and an electrolytic solution) and a current interrupting mechanism 50, and the positive electrode 21 contains a lithium iron phosphate compound.
  • a solvent of the electrolytic solution contains a chain carboxylic acid ester; an electrolytic salt of the electrolytic solution contains a lithium sulfonylimide salt; be.
  • the positive electrode active material lithium iron phosphate compound
  • the solvent chain carboxylic acid ester
  • the electrolyte salt lithium sulfonylimide salt
  • the current interrupting mechanism 50 the operating pressure is 20 kgf/cm 2 or more
  • the condition related to the operating pressure operating pressure is 20 kgf/cm 2 or more
  • the solvent of the electrolytic solution contains the chain carboxylic acid ester
  • the pressure inside the battery can 10 is less likely to rise sharply even when the secondary battery is used and stored, as described above. , the excessive operation of the current interrupting mechanism 50 is suppressed.
  • the chain carboxylic acid ester reacts with the lithium sulfonylimide salt under the condition that the internal pressure of the battery can 10 is kept relatively high, so that the charging/discharging reaction in the battery element 20 proceeds stably and smoothly. Therefore, even if the secondary battery is stored in a high-temperature environment, the discharge capacity is less likely to decrease.
  • the operating pressure of the current interrupting mechanism 50 is 20 kgf/cm 2 or more, that is, the operating pressure is set to be relatively high. increases, the pressure remains relatively high. As a result, the current interrupting mechanism 50 is prevented from operating excessively, that is, the current interrupting mechanism 50 does not excessively interrupt the energization of the battery element 20, so that the secondary battery can be stably and continuously used.
  • the linear carboxylic acid ester comprises one or both of propyl acetate and propyl propionate
  • the lithium sulfonylimide salt comprises lithium bis(fluorosulfonyl)imide and lithium bis(trifluoromethanesulfonyl)imide. If one or both of them are included, the excessive operation of the current interrupting mechanism 50 is sufficiently suppressed, the discharge capacity is less likely to decrease sufficiently even when the secondary battery is stored, and furthermore, the secondary battery during overcharging Since the safety of the secondary battery is sufficiently improved, a higher effect can be obtained.
  • transition metal element (M) is one or both of Mn and Co in the formula (1) regarding the lithium iron phosphate compound, an average Since the voltage is higher, a higher effect can be obtained.
  • the content of the lithium sulfonylimide salt is 0.8 mol/kg to 2.0 mol/kg with respect to the solvent, high ionic conductivity is obtained, and the safety of the secondary battery during overcharging is sufficient. , a higher effect can be obtained.
  • the discharge capacity will not sufficiently decrease even if the secondary battery is stored, so that a higher effect can be obtained. can be done.
  • the secondary battery when the electrolyte contains a fluorinated cyclic carbonate and the content of the fluorinated cyclic carbonate in the electrolyte is 0.1% by weight to 3.0% by weight, the secondary battery can be stored. However, the discharge capacity is not sufficiently reduced, and the excessive operation of the current interrupting mechanism 50 is further suppressed, so that a higher effect can be obtained. It is from.
  • the secondary battery is a lithium-ion secondary battery
  • a sufficient battery capacity can be stably obtained by utilizing the absorption and release of lithium, so a higher effect can be obtained.
  • a separator 23 which is a porous membrane, was used. However, although not specifically illustrated here, a laminated separator including a polymer compound layer may be used.
  • a laminated separator includes a porous membrane having a pair of surfaces and a polymer compound layer provided on one or both sides of the porous membrane. This is because the adhesiveness of the separator to each of the positive electrode 21 and the negative electrode 22 is improved, so that positional deviation (winding deviation) of the battery element 20 is suppressed. As a result, the secondary battery is less likely to swell even if a decomposition reaction or the like occurs in the electrolytic solution.
  • the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because polyvinylidene fluoride or the like has excellent physical strength and is electrochemically stable.
  • One or both of the porous film and the polymer compound layer may contain one or more of a plurality of insulating particles. This is because the plurality of insulating particles dissipate heat when the secondary battery generates heat, thereby improving the safety (heat resistance) of the secondary battery.
  • the insulating particles contain one or both of an inorganic material and a resin material. Specific examples of inorganic materials are aluminum oxide, aluminum nitride, boehmite, silicon oxide, titanium oxide, magnesium oxide and zirconium oxide. Specific examples of resin materials include acrylic resins and styrene resins.
  • the precursor solution is applied to one or both sides of the porous membrane.
  • a plurality of insulating particles may be added to the precursor solution.
  • the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 and the electrolyte layer interposed therebetween, and the positive electrode 21, the negative electrode 22, the separator 23 and the electrolyte layer are wound.
  • This electrolyte layer is interposed between the positive electrode 21 and the separator 23 and interposed between the negative electrode 22 and the separator 23 .
  • the electrolyte layer contains a polymer compound together with an electrolytic solution, and the electrolytic solution is held by the polymer compound. This is because leakage of the electrolytic solution is prevented.
  • the composition of the electrolytic solution is as described above.
  • Polymer compounds include polyvinylidene fluoride and the like.
  • a secondary battery used as a power source may be a main power source for electronic devices and electric vehicles, or may be an auxiliary power source.
  • a main power source is a power source that is preferentially used regardless of the presence or absence of other power sources.
  • An auxiliary power supply is a power supply that is used in place of the main power supply or that is switched from the main power supply.
  • Secondary battery applications are as follows. Electronic devices such as video cameras, digital still cameras, mobile phones, laptop computers, headphone stereos, portable radios and portable information terminals. Backup power and storage devices such as memory cards. Power tools such as power drills and power saws. It is a battery pack mounted on an electronic device. Medical electronic devices such as pacemakers and hearing aids. It is an electric vehicle such as an electric vehicle (including a hybrid vehicle). It is a power storage system such as a home or industrial battery system that stores power in preparation for emergencies. In these uses, one secondary battery may be used, or a plurality of secondary batteries may be used.
  • the battery pack may use a single cell or an assembled battery.
  • An electric vehicle is a vehicle that operates (runs) using a secondary battery as a drive power source, and may be a hybrid vehicle that also includes a drive source other than the secondary battery.
  • electric power stored in a secondary battery which is an electric power storage source, can be used to use electric appliances for home use.
  • Fig. 3 shows the block configuration of the battery pack.
  • the battery pack described here is a battery pack (a so-called soft pack) using one secondary battery, and is mounted in an electronic device such as a smart phone.
  • This battery pack includes a power source 91 and a circuit board 92, as shown in FIG.
  • the circuit board 92 is connected to the power supply 91 and includes a positive terminal 93 , a negative terminal 94 and a temperature detection terminal 95 .
  • the power supply 91 includes one secondary battery.
  • the positive lead is connected to the positive terminal 93 and the negative lead is connected to the negative terminal 94 .
  • the power supply 91 can be connected to the outside through a positive terminal 93 and a negative terminal 94, and can be charged and discharged.
  • the circuit board 92 includes a control section 96 , a switch 97 , a PTC element 98 and a temperature detection section 99 . However, the PTC element 98 may be omitted.
  • the control unit 96 includes a central processing unit (CPU), memory, etc., and controls the operation of the entire battery pack. This control unit 96 detects and controls the use state of the power supply 91 as necessary.
  • CPU central processing unit
  • memory etc.
  • the overcharge detection voltage is not particularly limited, but is specifically 4.2V ⁇ 0.05V, and the overdischarge detection voltage is not particularly limited, but is specifically 2.4V ⁇ 0.1V. is.
  • the switch 97 includes a charge control switch, a discharge control switch, a charge diode, a discharge diode, and the like, and switches connection/disconnection between the power supply 91 and an external device according to instructions from the control unit 96 .
  • the switch 97 includes a field effect transistor (MOSFET) using a metal oxide semiconductor, etc., and the charge/discharge current is detected based on the ON resistance of the switch 97 .
  • MOSFET field effect transistor
  • the temperature detection unit 99 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 91 using the temperature detection terminal 95 , and outputs the temperature measurement result to the control unit 96 .
  • the measurement result of the temperature measured by the temperature detection unit 99 is used when the control unit 96 performs charging/discharging control at the time of abnormal heat generation and when the control unit 96 performs correction processing when calculating the remaining capacity.
  • the cylindrical lithium-ion secondary battery shown in FIGS. 1 and 2 was produced by the following procedure.
  • a positive electrode active material LiFePO 4 which is a lithium iron phosphate compound
  • 3 parts by mass of a positive electrode binder polyvinylidene fluoride
  • 6 parts by mass of a positive electrode conductive agent carbon black
  • a positive electrode mixture was obtained by Subsequently, the positive electrode mixture was added to a solvent (N-methyl-2-pyrrolidone, which is an organic solvent), and the solvent was stirred to prepare a pasty positive electrode mixture slurry.
  • a solvent N-methyl-2-pyrrolidone, which is an organic solvent
  • the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A (a strip-shaped aluminum foil having a thickness of 12 ⁇ m) using a coating device, and then the positive electrode mixture slurry is dried to obtain a positive electrode active material.
  • a material layer 21B is formed.
  • the positive electrode active material layer 21B was compression-molded using a roll press. Thus, the positive electrode 21 was produced.
  • a negative electrode active material artificial graphite that is a carbon material
  • a negative electrode binder polyvinylidene fluoride
  • the negative electrode mixture was added to a solvent (N-methyl-2-pyrrolidone, which is an organic solvent), and the solvent was stirred to prepare a pasty negative electrode mixture slurry.
  • the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A (band-shaped copper foil having a thickness of 15 ⁇ m) using a coating device, and then the negative electrode mixture slurry is dried to obtain a negative electrode active material.
  • a material layer 22B is formed.
  • the negative electrode active material layer 22B was compression molded using a roll press. Thus, the negative electrode 22 was produced.
  • cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), and chain carboxylic acid esters such as propyl propionate (PrPr) and propyl acetate (PrAc) are used.
  • Lithium sulfonylimide salts bis(fluorosulfonyl)imide lithium (LiFSI) and bis(trifluoromethanesulfonyl)imide lithium (LiTFSI) were used as electrolyte salts.
  • FEC monofluoroethylene carbonate
  • This prepared the electrolyte The content (% by weight) representing the mixing ratio of the solvent, the content (mol/kg) of the electrolyte salt, and the content (% by weight) of the additive in the electrolytic solution are shown in Tables 1 to 3. Street.
  • Table 3 shows the content (% by weight) representing the mixing ratio of the solvent and the content (mol/kg) of the electrolyte salt.
  • An electrolytic solution was prepared in the same manner, except that chain carbonate was used as the solvent instead of chain carboxylate. Further, an electrolytic solution was prepared by the same procedure except that lithium hexafluorophosphate (LiPF 6 ), which is another lithium salt, was used instead of the lithium sulfonylimide salt as the electrolyte salt. In addition, an electrolytic solution was prepared in the same manner, except that a chain carbonate was used as the solvent instead of the chain carboxylate, and lithium hexafluorophosphate was used as the electrolyte salt instead of the lithium sulfonylimide salt. was prepared.
  • LiPF 6 lithium hexafluorophosphate
  • an electrolytic solution was prepared by the same procedure except that other chain carboxylic acid esters, methyl propionate (MePr) and ethyl propionate (EtPr), were used instead of the chain carboxylic acid ester as the solvent. did.
  • the positive electrode lead 41 made of aluminum was welded to the positive electrode current collector 21A of the positive electrode 21 and the negative electrode lead 42 made of copper was welded to the negative electrode current collector 22A of the negative electrode 22 .
  • the positive electrode 21 and the negative electrode 22 are laminated with each other with a separator 23 (a microporous polyethylene film having a thickness of 15 ⁇ m) interposed therebetween, and then the positive electrode 21, the negative electrode 22 and the separator 23 are wound to obtain a winding.
  • a wound body having a winding space 20S was produced.
  • the center pin 80 was inserted into the winding space 20S of the wound body.
  • the insulating plates 31 and 32 were accommodated together with the wound body inside the battery can main body 11 through the opening 11K.
  • the positive electrode lead 41 was welded to the disk plate 51 of the current interrupting mechanism 50 and the negative electrode lead 42 was welded to the battery can main body 11 .
  • an electrolytic solution was injected into the battery can main body 11 through the opening 11K. As a result, the wound body was impregnated with the electrolytic solution, and the battery element 20 was produced.
  • the battery can 10 including the battery can main body 11 and the battery lid 12 was formed, and the battery element 20 was sealed inside the battery can 10, so that the secondary battery was assembled.
  • the operating pressure (kgf/cm 2 ) of the current interrupting mechanism 50 can be changed. changed.
  • the charging conditions are as described above.
  • the charging/discharging conditions were the same as the charging/discharging conditions when the high-temperature operating characteristics were examined, and the same was applied hereinafter.
  • capacity retention rate (%) (discharge capacity after storage/discharge capacity before storage) x 100.
  • the operating state and capacity retention rate of the current interrupting mechanism 50 depend on the composition of the electrolyte and the current interrupting mechanism, respectively. 50 operating conditions.
  • the operating pressure is less than 20 kgf/cm 2 (Comparative Example 1). A high capacity retention rate was obtained, but the current interrupting mechanism 50 was excessively operated.
  • the electrolyte salt in the electrolyte contains a lithium sulfonylimide salt but the solvent does not contain a chain carboxylic acid ester (Comparative Example 2)
  • the solvent in the electrolyte contains a chain carboxylic acid ester.
  • the current interrupting mechanism 50 excessively operated independently of the operating pressure, and the capacity retention rate decreased.
  • the current interrupting mechanism 50 is excessive regardless of the operating pressure. worked. In this case, since the current interrupting mechanism 50 was activated immediately after storage of the secondary battery, the capacity retention rate could not be calculated.
  • the electrolytic solution contains a lithium sulfonylimide salt as the electrolyte salt but the solvent contains other chain carboxylic acid esters (Comparative Examples 5 and 6), a high capacity retention rate may be obtained in some cases. However, the current interrupting mechanism 50 was operated excessively.
  • the solvent contains a chain carboxylic acid ester
  • the electrolyte salt contains a lithium sulfonylimide salt
  • the operating pressure is 20 kgf/cm 2 or more (Examples 1 to 29). 2
  • the current interrupting mechanism 50 did not operate excessively, and a high capacity retention rate was obtained.
  • the secondary battery includes the battery can 10, the battery element 20 (the positive electrode 21, the negative electrode 22, and the electrolytic solution), and the current interrupting mechanism 50, and the positive electrode 21 is lithium iron phosphate.
  • the solvent of the electrolytic solution contains a chain carboxylic acid ester
  • the electrolyte salt of the electrolytic solution contains a lithium sulfonylimide salt
  • the operating pressure of the current interrupting mechanism 50 is 20 kgf/cm 2 .
  • the battery structure of the secondary battery is cylindrical has been described, but the type of battery structure is not particularly limited. Specifically, the battery structure may be rectangular, coin-shaped, button-shaped, or the like.
  • the type of the element structure is not particularly limited.
  • the device structure may be a stacked type in which electrodes (positive and negative electrodes) are stacked, a zigzag-fold type in which electrodes are folded in a zigzag pattern, or other configurations.
  • the electrode reactant is lithium has been described, but the type of the electrode reactant is not particularly limited.
  • the electrode reactants may be other alkali metals such as sodium and potassium, or alkaline earth metals such as beryllium, magnesium and calcium, as described above.
  • the electrode reactant may be other light metals such as aluminum.

Abstract

This secondary battery comprises a battery element that includes a positive electrode, a negative electrode, and an electrolyte, a storage member that stores said battery element in an interior thereof, and an electric current blocking mechanism that operates in accordance with an increase in pressure in the interior of said storage member and that blocks the energization of the battery element. The positive electrode includes a lithium iron phosphate compound represented by formula (1). The electrolyte includes a solvent and an electrolyte salt. The solvent has a boiling point of 100°C or greater, and includes a chain carboxylic acid ester having a viscosity of 0.9 mPa・s or less at 25°C. The electrolyte salt includes a lithium sulfonylimide salt represented by formula (2). The operation pressure of the electric current blocking mechanism is 20 kgf/cm2 or greater. Formula (1): LiFex M1-x PO4 (M is one or two or more transition metal elements (not including Fe); x satisfies the expression 0<x≤1.) Formula (2): LiN(R1SO2 )(R2SO2 ) (Each of R1 and R2 is one among a fluorine group and a perfluoroalkyl group.)

Description

二次電池secondary battery
 本技術は、二次電池に関する。 This technology relates to secondary batteries.
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度を有する電源として二次電池の開発が進められている。この二次電池は、正極および負極と共に電解液を備えており、その二次電池の構成に関しては、様々な検討がなされている。 Due to the widespread use of various electronic devices such as mobile phones, secondary batteries are being developed as power sources that are compact, lightweight, and have high energy density. The secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution, and various studies have been made on the configuration of the secondary battery.
 具体的には、良好なサイクル寿命を得るために、電解液が第1エステル系化合物および第2エステル系化合物と共にLiN(FSOを含んでいる(例えば、特許文献1参照。)。電池の膨れを改善するために、正極がLiFePOを含んでいると共に、電解液がプロピオネート系化合物と共にLiN(CFSOを含んでいる(例えば、特許文献2参照。)。高温でも良好なサイクル特性を得るために、正極がLiMPO(MはFeなど)を含んでいると共に、電解液がカルボン酸エステル化合物と共にLiN(FSOを含んでいる(例えば、特許文献3参照。)。電流遮断装置の作動に起因して電池の使用が中断されることを防止するために、正極がLiFePOを含んでいると共に、電解液がプロピオネート系化合物と共にLiN(CFSOを含んでいる(例えば、特許文献4参照。)。 Specifically, in order to obtain a good cycle life, the electrolyte contains LiN(FSO 2 ) 2 together with the first ester compound and the second ester compound (see, for example, Patent Document 1). In order to improve battery swelling, the positive electrode contains LiFePO 4 and the electrolyte contains LiN(CF 3 SO 2 ) 2 together with a propionate compound (see, for example, Patent Document 2). In order to obtain good cycle characteristics even at high temperatures, the positive electrode contains LiMPO 4 (where M is Fe, etc.), and the electrolyte contains LiN(FSO 2 ) 2 together with a carboxylic acid ester compound (see, for example, Patent Documents 3). In order to prevent interruption of battery use due to operation of the current interrupter, the positive electrode contains LiFePO4 and the electrolyte contains LiN( CF3SO2 ) 2 together with the propionate compound. (See Patent Document 4, for example).
特表2014-523096号公報Japanese translation of PCT publication No. 2014-523096 特表2011-508956号公報Japanese Patent Publication No. 2011-508956 国際公開第2019/150902号パンフレットInternational Publication No. 2019/150902 pamphlet 特開2014-225457号公報JP 2014-225457 A
 二次電池の構成に関する様々な検討がなされているが、その二次電池の高温動作特性および高温保存特性は未だ十分でないため、改善の余地がある。 Various studies have been made on the configuration of secondary batteries, but the high-temperature operation characteristics and high-temperature storage characteristics of the secondary batteries are still insufficient, so there is room for improvement.
 よって、優れた高温動作特性および優れた高温保存特性を得ることが可能である二次電池が望まれている。 Therefore, a secondary battery capable of obtaining excellent high-temperature operating characteristics and excellent high-temperature storage characteristics is desired.
 本技術の一実施形態の二次電池は、正極、負極および電解液を含む電池素子と、その電池素子を内部に収納する収納部材と、その収納部材の内部における圧力の上昇に応じて作動すると共に電池素子の通電を遮断する電流遮断機構とを備えたものである。正極は、下記の式(1)で表されるリチウム鉄リン酸化合物を含む。電解液は、溶媒および電解質塩を含み、その溶媒は、100℃以上の沸点を有すると共に25℃において0.9mPa・s以下の粘度を有する鎖状カルボン酸エステルを含み、その電解質塩は、下記の式(2)で表されるリチウムスルホニルイミド塩を含む。電流遮断機構の作動圧は、20kgf/cm以上である。 A secondary battery according to an embodiment of the present technology includes a battery element including a positive electrode, a negative electrode, and an electrolytic solution, a storage member that stores the battery element therein, and operates according to an increase in pressure inside the storage member. and a current interrupting mechanism for interrupting current supply to the battery element. The positive electrode contains a lithium iron phosphate compound represented by the following formula (1). The electrolyte solution contains a solvent and an electrolyte salt, the solvent having a boiling point of 100° C. or higher and a chain carboxylic acid ester having a viscosity of 0.9 mPa s or less at 25° C., and the electrolyte salt having the following contains a lithium sulfonylimide salt represented by the formula (2) of The working pressure of the current interrupting mechanism is 20 kgf/cm 2 or more.
 LiFe1-x PO ・・・(1)
(Mは、1種類または2種類以上の遷移金属元素(Feを除く。)である。xは、0<x≦1を満たす。)
LiFe x M 1-x PO 4 (1)
(M is one or more transition metal elements (excluding Fe). x satisfies 0<x≦1.)
 LiN(R1SO)(R2SO) ・・・(2)
(R1およびR2のそれぞれは、フッ素基およびパーフルオロアルキル基のうちのいずれかである。)
LiN(R1SO2)( R2SO2 ) ( 2 )
(Each of R1 and R2 is either a fluorine group or a perfluoroalkyl group.)
 本技術の一実施形態の二次電池によれば、その二次電池が電池素子(正極、負極および電解液)、収納部材および電流遮断機構を備えており、その正極がリチウム鉄リン酸化合物を含んでおり、その電解液の溶媒が100℃以上の沸点を有すると共に25℃において0.9mPas以下の粘度を有する鎖状カルボン酸エステルを含んでおり、その電解液の電解質塩がリチウムスルホニルイミド塩を含んでおり、電流遮断機構の作動圧が20kgf/cm以上であるので、優れた高温動作特性および優れた高温保存特性を得ることができる。 According to the secondary battery of one embodiment of the present technology, the secondary battery includes battery elements (a positive electrode, a negative electrode, and an electrolytic solution), a storage member, and a current interrupting mechanism, and the positive electrode contains a lithium iron phosphate compound. the solvent of the electrolyte contains a chain carboxylic acid ester having a boiling point of 100° C. or higher and a viscosity of 0.9 mPas or less at 25° C., and the electrolyte salt of the electrolyte is a lithium sulfonylimide salt and the operating pressure of the current interrupting mechanism is 20 kgf/cm 2 or more, so excellent high temperature operation characteristics and excellent high temperature storage characteristics can be obtained.
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。 It should be noted that the effects of the present technology are not necessarily limited to the effects described here, and may be any of a series of effects related to the present technology described below.
本技術の一実施形態における二次電池の構成を表す断面図である。It is a sectional view showing the composition of the rechargeable battery in one embodiment of this art. 図1に示した電池素子の構成を表す断面図である。FIG. 2 is a cross-sectional view showing the configuration of the battery element shown in FIG. 1; 二次電池の適用例の構成を表すブロック図である。FIG. 3 is a block diagram showing the configuration of an application example of a secondary battery;
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池
  1-1.構成
  1-2.動作
  1-3.製造方法
  1-4.作用および効果
 2.変形例
 3.二次電池の用途
Hereinafter, one embodiment of the present technology will be described in detail with reference to the drawings. The order of explanation is as follows.

1. Secondary Battery 1-1. Configuration 1-2. Operation 1-3. Manufacturing method 1-4. Action and effect 2 . Modification 3. Applications of secondary batteries
<1.二次電池>
 まず、本技術の一実施形態の二次電池に関して説明する。
<1. Secondary battery>
First, a secondary battery according to an embodiment of the present technology will be described.
 ここで説明する二次電池は、電極反応物質の吸蔵放出を利用して電池容量が得られる二次電池であり、正極および負極と共に、液状の電解質である電解液を備えている。 The secondary battery described here is a secondary battery in which battery capacity is obtained by utilizing the absorption and release of electrode reactants, and is equipped with a positive electrode, a negative electrode, and an electrolytic solution, which is a liquid electrolyte.
 電極反応物質の種類は、特に限定されないが、具体的には、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属は、ベリリウム、マグネシウムおよびカルシウムなどである。 The type of electrode reactant is not particularly limited, but specifically light metals such as alkali metals and alkaline earth metals. Alkali metals include lithium, sodium and potassium, and alkaline earth metals include beryllium, magnesium and calcium.
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵放出される。 In the following, the case where the electrode reactant is lithium will be taken as an example. A secondary battery whose battery capacity is obtained by utilizing the absorption and release of lithium is a so-called lithium ion secondary battery. In this lithium ion secondary battery, lithium is intercalated and deintercalated in an ionic state.
 ここでは、負極の充電容量が正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなるように設定されている。充電途中において負極の表面に電極反応物質が析出することを防止するためである。 Here, the charge capacity of the negative electrode is larger than the discharge capacity of the positive electrode. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent electrode reactants from depositing on the surface of the negative electrode during charging.
<1-1.構成>
 図1は、二次電池の断面構成を表していると共に、図2は、図1に示した電池素子20の断面構成を表している。ただし、図2では、電池素子20の一部だけを示している。
<1-1. Configuration>
1 shows the cross-sectional structure of a secondary battery, and FIG. 2 shows the cross-sectional structure of the battery element 20 shown in FIG. However, in FIG. 2, only part of the battery element 20 is shown.
 二次電池は、図1および図2に示したように、主に、電池缶10と、電池素子20と、一対の絶縁板31,32と、正極リード41および負極リード42と、電流遮断機構50とを備えている。ここで説明する二次電池は、円筒状の電池缶10の内部に電池素子20が収納されている円筒型の二次電池である。 1 and 2, the secondary battery mainly includes a battery can 10, a battery element 20, a pair of insulating plates 31 and 32, a positive electrode lead 41 and a negative electrode lead 42, and a current interrupting mechanism. 50. The secondary battery described here is a cylindrical secondary battery in which a battery element 20 is housed inside a cylindrical battery can 10 .
[電池缶]
 電池缶10は、図1に示したように、電池素子20などを内部に収納する収納部材であり、電池缶本体11および電池蓋12を含んでいる。
[Battery can]
The battery can 10 , as shown in FIG. 1 , is a housing member that houses the battery element 20 and the like, and includes a battery can main body 11 and a battery lid 12 .
 電池缶本体11は、電池素子20などを内部に収納する器状の部材である。この電池缶本体11は、一端において開放されていると共に他端において閉塞されている中空の構造を有しているため、その一端に開口部11Kを有している。また、電池缶本体11は、鉄、アルミニウム、鉄合金およびアルミニウム合金などの金属材料のうちのいずれか1種類または2種類以上を含んでおり、その電池缶本体11の表面には、ニッケルなどの金属材料が鍍金されていてもよい。 The battery can body 11 is a container-like member that accommodates the battery element 20 and the like inside. Since the battery can body 11 has a hollow structure with one end open and the other end closed, it has an opening 11K at one end. In addition, the battery can body 11 contains one or more of metal materials such as iron, aluminum, iron alloys, and aluminum alloys. The metal material may be plated.
 電池蓋12は、図1に示したように、電池缶本体11の開口部11Kを遮蔽する板状の部材である。この電池蓋12は、電池缶本体11のうちの開口部11Kの近傍部分にガスケット60を介して加締められているため、その電池缶本体11は、電池蓋12により密閉されている。電池蓋12の形成材料は、電池缶本体11の形成材料と同様である。なお、ガスケット60は、絶縁性材料を含んでおり、その絶縁性材料は、ポリブチレンテレフタレートなどの高分子化合物のうちのいずれか1種類または2種類以上を含んでいる。ただし、ガスケット60の表面には、アスファルトが塗布されていてもよい。 The battery lid 12 is a plate-like member that shields the opening 11K of the battery can main body 11, as shown in FIG. Since the battery lid 12 is crimped to the vicinity of the opening 11K of the battery can body 11 via the gasket 60, the battery can body 11 is sealed by the battery lid 12. As shown in FIG. The material for forming the battery lid 12 is the same as the material for forming the battery can main body 11 . Gasket 60 contains an insulating material, and the insulating material contains one or more of polymer compounds such as polybutylene terephthalate. However, the surface of the gasket 60 may be coated with asphalt.
[電池素子]
 電池素子20は、図1および図2に示したように、正極21と、負極22と、セパレータ23と、電解液(図示せず)とを含む発電素子である。
[Battery element]
The battery element 20, as shown in FIGS. 1 and 2, is a power generation element including a positive electrode 21, a negative electrode 22, a separator 23, and an electrolytic solution (not shown).
 この電池素子20は、いわゆる巻回電極体である。すなわち、電池素子20では、正極21および負極22がセパレータ23を介して互いに積層されていると共に、その正極21、負極22およびセパレータ23が巻回されている。これにより、正極21および負極22は、セパレータ23を介して互いに対向しながら巻回されている。電池素子20の巻回中心に設けられている巻回空間20Sには、センターピン80が挿入されている。ただし、センターピン80は省略されてもよい。 This battery element 20 is a so-called wound electrode assembly. That is, in the battery element 20, the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween, and the positive electrode 21, the negative electrode 22 and the separator 23 are wound. Thus, the positive electrode 21 and the negative electrode 22 are wound while facing each other with the separator 23 interposed therebetween. A center pin 80 is inserted in a winding space 20S provided at the center of winding of the battery element 20 . However, the center pin 80 may be omitted.
(正極)
 正極21は、図2に示したように、正極集電体21Aおよび正極活物質層21Bを含んでいる。
(positive electrode)
The positive electrode 21 includes a positive electrode current collector 21A and a positive electrode active material layer 21B, as shown in FIG.
 正極集電体21Aは、正極活物質層21Bが設けられる一対の面を有している。この正極集電体21Aは、金属材料などの導電性材料を含んでおり、その金属材料は、アルミニウムなどである。 The positive electrode current collector 21A has a pair of surfaces on which the positive electrode active material layer 21B is provided. This positive electrode current collector 21A contains a conductive material such as a metal material, and the metal material is aluminum or the like.
 正極活物質層21Bは、リチウムを吸蔵放出可能である正極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The positive electrode active material layer 21B contains one or more of positive electrode active materials capable of intercalating and deintercalating lithium. However, the positive electrode active material layer 21B may further contain one or more of other materials such as a positive electrode binder and a positive electrode conductor.
 ここでは、正極活物質層21Bは、正極集電体21Aの両面に設けられている。ただし、正極活物質層21Bは、正極21が負極22に対向する側において正極集電体21Aの片面だけに設けられていてもよい。正極活物質層21Bの形成方法は、特に限定されないが、具体的には、塗布法などのうちのいずれか1種類または2種類以上である。 Here, the positive electrode active material layer 21B is provided on both sides of the positive electrode current collector 21A. However, the positive electrode active material layer 21B may be provided only on one side of the positive electrode current collector 21A on the side where the positive electrode 21 faces the negative electrode 22 . A method for forming the positive electrode active material layer 21B is not particularly limited, but specifically, one or more of coating methods and the like are used.
 正極活物質は、下記の式(1)で表されるリチウム鉄リン酸化合物のうちのいずれか1種類または2種類以上を含んでいる。このリチウム鉄リン酸化合物は、式(1)に示したように、リチウム(Li)と共に鉄(Fe)を構成元素として含むリン酸化合物である。 The positive electrode active material contains one or more of the lithium iron phosphate compounds represented by the following formula (1). This lithium iron phosphate compound is a phosphate compound containing lithium (Li) and iron (Fe) as constituent elements, as shown in formula (1).
 LiFe1-x PO ・・・(1)
(Mは、1種類または2種類以上の遷移金属元素(Feを除く。)である。xは、0<x≦1を満たす。)
LiFe x M 1-x PO 4 (1)
(M is one or more transition metal elements (excluding Fe). x satisfies 0<x≦1.)
 正極活物質がリチウム鉄リン酸化合物を含んでいるのは、その正極活物質(リチウム鉄リン酸化合物)と、後述する溶媒(鎖状カルボン酸エステル)と、後述する電解質塩(リチウムスルホニルイミド塩)と、後述する電流遮断機構50の作動圧に関する条件(作動圧は20kgf/cm以上)とが互いに組み合わされることにより、二次電池が過充電された際に電流が収束しやすくなるからである。これにより、電流遮断機構50の高温動作特性が向上するため、過充電時における二次電池の安全性が向上する。 The positive electrode active material contains a lithium iron phosphate compound because the positive electrode active material (lithium iron phosphate compound), a solvent (chain carboxylic acid ester) described later, and an electrolyte salt (lithium sulfonylimide salt described later) ) and the condition regarding the operating pressure of the current interrupting mechanism 50 (the operating pressure is 20 kgf/cm 2 or more), which will be described later, make it easier for the current to converge when the secondary battery is overcharged. be. This improves the high-temperature operating characteristics of the current interrupting mechanism 50, thereby improving the safety of the secondary battery during overcharging.
 遷移金属元素(M)の種類は、鉄を除いた遷移金属元素のうちのいずれか1種類または2種類以上であれば、特に限定されないが、具体的には、遷移金属元素は、マンガン(Mn)およびコバルト(Co)のうちの一方または双方である。二次電池の過充電領域における急峻な電圧上昇が存在しながら、その二次電池の平均電圧が高くなるからである。 The type of the transition metal element (M) is not particularly limited as long as it is one or more of the transition metal elements excluding iron. Specifically, the transition metal element is manganese (Mn ) and cobalt (Co). This is because the average voltage of the secondary battery becomes high while there is a steep voltage rise in the overcharge region of the secondary battery.
 xの値が取り得る範囲(0<x≦1)から明らかなように、リチウム鉄リン酸化合物は、遷移金属元素(M)を構成元素として含んでいてもよいし、遷移金属元素(M)を構成元素として含んでいなくてもよい。 As is clear from the possible range of the value of x (0<x≦1), the lithium iron phosphate compound may contain the transition metal element (M) as a constituent element, or the transition metal element (M) may not be included as a constituent element.
 遷移金属元素(M)を構成元素として含んでいないリチウム鉄リン酸化合物は、LiFePOである。遷移金属元素(M)を構成元素として含んでいるリチウム鉄リン酸化合物の具体例は、LiFe0.5 Mn0.5 PO、LiFe0.7 Mn0.3 PO、LiFe0.3 Mn0.7 PO、LiFe0.5 Co0.5 PO、LiFe0.7 Co0.3 POおよびLiFe0.3 Co0.7 POなどである。 A lithium iron phosphate compound that does not contain a transition metal element (M) as a constituent element is LiFePO4 . Specific examples of the lithium iron phosphate compound containing a transition metal element ( M ) as a constituent element include LiFe0.5Mn0.5PO4 , LiFe0.7Mn0.3PO4 , LiFe0.3Mn0.7PO4 , and LiFe0.5Co0.5PO4 . , LiFe0.7Co0.3PO4 and LiFe0.3Co0.7PO4 . _
 なお、正極活物質は、リチウム鉄リン酸化合物と共に、他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。他の材料の種類は、特に限定されないが、具体的には、リチウム含有化合物である。ただし、リチウム鉄リン酸化合物は、ここで説明するリチウム含有化合物から除かれる。 Note that the positive electrode active material may contain one or more of other materials together with the lithium iron phosphate compound. The type of other material is not particularly limited, but is specifically a lithium-containing compound. However, lithium iron phosphate compounds are excluded from the lithium-containing compounds described herein.
 このリチウム含有化合物は、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む化合物であり、さらに、1種類または2種類以上の他元素を構成元素として含んでいてもよい。他元素の種類は、リチウムおよび遷移金属元素のそれぞれ以外の元素であれば、特に限定されないが、具体的には、他元素は、長周期型周期表中の2族~15族に属する元素である。リチウム含有化合物の種類は、特に限定されないが、具体的には、酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。 This lithium-containing compound is a compound containing lithium and one or more transition metal elements as constituent elements, and may further contain one or more other elements as constituent elements. The type of the other element is not particularly limited as long as it is an element other than lithium and transition metal elements. Specifically, the other element is an element belonging to Groups 2 to 15 in the long period periodic table. be. The type of lithium-containing compound is not particularly limited, but specific examples include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds.
 酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 およびLiMnなどである。リン酸化合物の具体例は、LiMnPOなどである。 Specific examples of oxides include LiNiO2 , LiCoO2 , LiCo0.98Al0.01Mg0.01O2 , LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 . A specific example of the phosphoric acid compound is LiMnPO 4 and the like.
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、ポリフッ化ビニリデン、ポリイミドおよびカルボキシメチルセルロースなどである。 The positive electrode binder contains one or more of synthetic rubber and polymer compounds. Synthetic rubbers include styrene-butadiene-based rubber, fluorine-based rubber, and ethylene propylene diene. Polymer compounds include polyvinylidene fluoride, polyimide and carboxymethyl cellulose.
 正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その炭素材料は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、導電性材料は、金属材料および高分子化合物などでもよい。 The positive electrode conductive agent contains one or more of conductive materials such as carbon materials, and the carbon materials include graphite, carbon black, acetylene black, and ketjen black. However, the conductive material may be a metal material, a polymer compound, or the like.
(負極)
 負極22は、図2に示したように、負極集電体22Aおよび負極活物質層22Bを含んでいる。
(negative electrode)
The negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B, as shown in FIG.
 負極集電体22Aは、負極活物質層22Bが設けられる一対の面を有している。この負極集電体22Aは、金属材料などの導電性材料を含んでおり、その金属材料は、銅などである。 The negative electrode current collector 22A has a pair of surfaces on which the negative electrode active material layer 22B is provided. This negative electrode current collector 22A contains a conductive material such as a metal material, and the metal material is copper or the like.
 負極活物質層22Bは、リチウムを吸蔵放出可能である負極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層22Bは、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。 The negative electrode active material layer 22B contains one or more of negative electrode active materials capable of intercalating and deintercalating lithium. However, the negative electrode active material layer 22B may further contain one or more of other materials such as a negative electrode binder and a negative electrode conductor.
 ここでは、負極活物質層22Bは、負極集電体22Aの両面に設けられている。ただし、負極活物質層22Bは、負極22が正極21に対向する側において負極集電体22Aの片面だけに設けられていてもよい。負極活物質層22Bの形成方法は、特に限定されないが、具体的には、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上である。 Here, the negative electrode active material layer 22B is provided on both sides of the negative electrode current collector 22A. However, the negative electrode active material layer 22B may be provided only on one side of the negative electrode current collector 22A on the side where the negative electrode 22 faces the positive electrode 21 . The method of forming the negative electrode active material layer 22B is not particularly limited, but specifically, any one of a coating method, a vapor phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), or the like, or Two or more types.
 負極活物質の種類は、特に限定されないが、具体的には、負極活物質は、炭素材料および金属系材料のうちの一方または双方などである。高いエネルギー密度が得られるからである。炭素材料は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛(天然黒鉛および人造黒鉛)などである。金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料であり、その金属元素および半金属元素の具体例は、ケイ素およびスズのうちの一方または双方などである。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの2種類以上の相を含む材料でもよい。金属系材料の具体例は、TiSiおよびSiO(0<x≦2、または0.2<x<1.4)などである。 The type of negative electrode active material is not particularly limited, but specifically, the negative electrode active material is one or both of a carbon material and a metal-based material. This is because a high energy density can be obtained. Carbon materials include graphitizable carbon, non-graphitizable carbon and graphite (natural graphite and artificial graphite). A metallic material is a material containing as constituent elements one or more of metallic elements and semi-metallic elements capable of forming an alloy with lithium. , one or both of silicon and tin, and the like. This metallic material may be a single substance, an alloy, a compound, a mixture of two or more of them, or a material containing two or more of these phases. Specific examples of metallic materials include TiSi 2 and SiO x (0<x≦2, or 0.2<x<1.4).
 負極結着剤および負極導電剤のそれぞれに関する詳細は、正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。 The details of each of the negative electrode binder and the negative electrode conductive agent are the same as those of the positive electrode binder and the positive electrode conductive agent.
(セパレータ)
 セパレータ23は、図2に示したように、正極21と負極22との間に介在している絶縁性の多孔質膜であり、その正極21と負極22との接触(短絡)を防止しながらリチウムイオンを通過させる。このセパレータ23は、ポリエチレンなどの高分子化合物を含んでいる。
(separator)
The separator 23 is an insulating porous film interposed between the positive electrode 21 and the negative electrode 22, as shown in FIG. Allows lithium ions to pass through. This separator 23 contains a polymer compound such as polyethylene.
(電解液)
 電解液は、正極21、負極22およびセパレータ23のそれぞれに含浸されており、溶媒および電解質塩を含んでいる。
(Electrolyte)
The electrolyte is impregnated in each of the positive electrode 21, the negative electrode 22 and the separator 23 and contains a solvent and an electrolyte salt.
(溶媒)
 溶媒は、非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。
(solvent)
The solvent contains one or more of non-aqueous solvents (organic solvents), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution.
 具体的には、溶媒は、100℃以上の沸点を有すると共に25℃において0.9mPa・s以下の粘度を有する鎖状カルボン酸エステル(以下、単に「鎖状カルボン酸エステル」と呼称する。)のうちのいずれか1種類または2種類以上を含んでいる。以下では、25℃における粘度を単に「粘度」と呼称する。 Specifically, the solvent is a chain carboxylic acid ester having a boiling point of 100° C. or higher and a viscosity of 0.9 mPa·s or less at 25° C. (hereinafter simply referred to as “chain carboxylic acid ester”). contains any one or two or more of Below, the viscosity at 25°C is simply referred to as "viscosity".
 鎖状カルボン酸エステルの種類は、上記した沸点および粘度に関する条件を満たしていれば、特に限定されないため、その鎖状カルボン酸エステルは、鎖状酢酸エステルでもよいし、鎖状プロピオン酸エステルでもよいし、鎖状酪酸エステルでもよいし、それら以外でもよい。 The type of the chain carboxylic acid ester is not particularly limited as long as it satisfies the conditions regarding the boiling point and viscosity described above, so the chain carboxylic acid ester may be a chain acetate or a chain propionate. However, it may be a chain butyric acid ester, or may be other than these.
 以下では、上記した沸点および粘度に関する条件を満たしていない鎖状カルボン酸エステルを「他の鎖状カルボン酸エステル」と呼称する。この他の鎖状カルボン酸エステルは、100℃以上の沸点を有しているが25℃において0.9mPa・s以下の粘度を有していない鎖状カルボン酸エステルと、100℃以上の沸点を有していないが25℃において0.9mPa・s以下の粘度を有している鎖状カルボン酸エステルと、100℃以上の沸点を有していないと共に25℃において0.9mPa・s以下の粘度を有していない鎖状カルボン酸エステルとである。 Below, chain carboxylic acid esters that do not satisfy the above boiling point and viscosity conditions are referred to as "other chain carboxylic acid esters." Other linear carboxylic acid esters include chain carboxylic acid esters having a boiling point of 100° C. or higher but not having a viscosity of 0.9 mPa·s or less at 25° C., and chain carboxylic acid esters having a boiling point of 100° C. or higher linear carboxylic acid esters that do not have a viscosity of 0.9 mPa·s or less at 25°C, and chain carboxylic acid esters that do not have a boiling point of 100°C or more and have a viscosity of 0.9 mPa·s or less at 25°C and a chain carboxylic acid ester that does not have
 鎖状カルボン酸エステルの具体例は、酢酸プロピル(沸点=101℃,粘度=0.64mPa・s,炭素数=5)、酢酸ブチル(沸点=126℃,粘度=0.73mPa・s,炭素数=6)、プロピオン酸プロピル(沸点=122℃,粘度=0.72mPa・s,炭素数=6)、プロピオン酸ブチル(沸点=144℃,粘度=0.76mPa・s,炭素数=7)、酪酸メチル(沸点=102℃,粘度=0.52mPa・s,炭素数=5)、酪酸エチル(沸点=119℃,粘度=0.61mPa・s,炭素数=6)および酪酸プロピル(沸点=143℃,粘度=0.83mPa・s,炭素数=7)などである。 Specific examples of chain carboxylic acid esters include propyl acetate (boiling point = 101°C, viscosity = 0.64 mPa s, carbon number = 5), butyl acetate (boiling point = 126°C, viscosity = 0.73 mPa s, carbon number = 6), propyl propionate (boiling point = 122°C, viscosity = 0.72 mPa s, carbon number = 6), butyl propionate (boiling point = 144°C, viscosity = 0.76 mPa s, carbon number = 7), Methyl butyrate (boiling point = 102°C, viscosity = 0.52 mPa s, carbon number = 5), ethyl butyrate (boiling point = 119°C, viscosity = 0.61 mPa s, carbon number = 6) and propyl butyrate (boiling point = 143 °C, viscosity = 0.83 mPa·s, carbon number = 7), and so on.
 なお、参考までに説明すると、他の鎖状カルボン酸エステルの具体例は、酢酸メチル(沸点=58℃,粘度=0.35mPa・s,炭素数=3)、酢酸エチル(沸点=77℃,粘度=0.41mPa・s,炭素数=4)、プロピオン酸メチル(沸点=79℃,粘度=0.51mPa・s,炭素数=4)およびプロピオン酸エチル(沸点=99℃,粘度=0.50mPa・s,炭素数=6)などである。 For reference, specific examples of other chain carboxylic acid esters are methyl acetate (boiling point = 58°C, viscosity = 0.35 mPa·s, carbon number = 3), ethyl acetate (boiling point = 77°C, viscosity = 0.41 mPa·s, number of carbon atoms = 4), methyl propionate (boiling point = 79°C, viscosity = 0.51 mPa·s, number of carbon atoms = 4) and ethyl propionate (boiling point = 99°C, viscosity = 0.5°C). 50 mPa·s, carbon number=6), and the like.
 ここで説明した沸点および粘度のそれぞれの値は、Gill, A. H., and F. P. Dexter etal., Ind. Eng. Chem., 26, 881 (1934).に掲載されている沸点および粘度のそれぞれの
値に準拠することとする。
The boiling point and viscosity values given here are based on the boiling point and viscosity values published in Gill, A. H., and F. P. Dexter et al., Ind. Eng. Chem., 26, 881 (1934). shall be compliant.
 電解液の溶媒が鎖状カルボン酸エステルを含んでいるのは、二次電池が使用および保存されても電池缶10の内部の圧力が急激に上昇しにくくなるため、電流遮断機構50が過剰に作動することは抑制されるからである。この二次電池では、後述するように、電流遮断機構50の作動圧が比較的高い圧力(作動圧は20kgf/cm以上)となるように設定されているため、電池缶10の内部の圧力が上昇した際に、その圧力が比較的高い状態で維持される。また、電池缶10の内部の圧力が比較的高い状態で維持された条件下においてリチウムスルホニルイミド塩と鎖状カルボン酸エステルとが互いに反応することにより、電池素子20において充放電反応が安定かつ円滑に進行しやすくなるため、二次電池が高温環境中において保存されても放電容量が減少しにくくなる。 The reason why the solvent of the electrolytic solution contains the chain carboxylic acid ester is that the pressure inside the battery can 10 does not rise rapidly even when the secondary battery is used and stored, so that the current interrupting mechanism 50 does not work excessively. This is because it is inhibited from operating. In this secondary battery, as will be described later, the operating pressure of the current interrupting mechanism 50 is set to a relatively high pressure (operating pressure is 20 kgf/cm 2 or more), so the pressure inside the battery can 10 rises, the pressure remains relatively high. In addition, the lithium sulfonylimide salt and the chain carboxylic acid ester react with each other under the condition that the internal pressure of the battery can 10 is maintained at a relatively high level, so that the charge/discharge reaction in the battery element 20 is stable and smooth. Therefore, even if the secondary battery is stored in a high-temperature environment, the discharge capacity is less likely to decrease.
 詳細には、溶媒が他の鎖状カルボン酸エステルを含んでいる場合には、その他の鎖状カルボン酸エステルの沸点が低すぎるため、二次電池の使用時および保存時において他の鎖状カルボン酸エステルが揮発しやすくなる。この場合には、電池缶10の内部において蒸気圧が急激に上昇しやすくなることに起因して、その電池缶10の内部の圧力が急激に上昇しやすくなるため、電流遮断機構50が過剰に作動しやすくなる。これにより、二次電池の使用時において電流遮断機構50が電池素子20の通電を遮断しすぎるため、二次電池を安定して継続的に使用することが困難になる。このように電池缶10の内部の圧力が急激に上昇しやすくなることに起因して電流遮断機構50が過剰に作動しやすくなる傾向は、特に、二次電池が高温環境中において使用および保存された場合において顕著になる。 Specifically, when the solvent contains other chain carboxylic acid esters, the boiling point of the other chain carboxylic acid esters is too low. Acid ester becomes easy to volatilize. In this case, the vapor pressure inside the battery can 10 tends to rise sharply, and the pressure inside the battery can 10 tends to rise sharply. easier to operate. As a result, when the secondary battery is in use, the current interrupting mechanism 50 excessively interrupts the energization of the battery element 20, making it difficult to stably and continuously use the secondary battery. The tendency for the current interrupting mechanism 50 to operate excessively due to the tendency for the pressure inside the battery can 10 to rise rapidly in this way is particularly significant when the secondary battery is used and stored in a high-temperature environment. becomes conspicuous when
 また、溶媒が他の鎖状カルボン酸エステルを含んでいる場合には、その他の鎖状カルボン酸エステルの粘度が高すぎるため、電解液の粘度が過剰に高くなる。この場合には、二次電池の製造工程において電池缶10の内部に電解液が注液されにくくなり、すなわち正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されにくくなるため、電池素子20による電解液の保持量が減少する。これにより、電池素子20において充放電反応が安定かつ円滑に進行しにくくなるため、二次電池が保存されると放電容量が減少しやすくなる。このように電池素子20による電解液の保持量が減少することに起因して放電容量が減少しやすくなる傾向は、特に、二次電池が高温環境中において保存された場合において顕著になる。 Also, when the solvent contains other chain carboxylic acid esters, the viscosity of the other chain carboxylic acid esters is too high, so the viscosity of the electrolytic solution becomes excessively high. In this case, the electrolytic solution is less likely to be injected into the battery can 10 in the manufacturing process of the secondary battery, that is, the positive electrode 21, the negative electrode 22, and the separator 23 are each less likely to be impregnated with the electrolytic solution. The amount of electrolyte retained by 20 is reduced. This makes it difficult for the charge/discharge reaction to proceed stably and smoothly in the battery element 20, so that the discharge capacity tends to decrease when the secondary battery is stored. The tendency for the discharge capacity to decrease due to the decrease in the amount of electrolyte retained by the battery element 20 becomes particularly pronounced when the secondary battery is stored in a high-temperature environment.
 これに対して、溶媒が鎖状カルボン酸エステルを含んでいる場合には、その鎖状カルボン酸エステルの沸点が適正に高いため、二次電池の使用時および保存時において鎖状カルボン酸エステルが揮発しにくくなる。この場合には、電池缶10の内部において蒸気圧が急激に上昇しにくくなることにより、その電池缶10の内部の圧力が急激に上昇しにくくなるため、電流遮断機構50が過剰に作動しにくくなる。これにより、二次電池の使用時において電流遮断機構50が電池素子20の通電を遮断しすぎないため、二次電池を安定して継続的に使用することが可能になる。このように電池缶10の内部の圧力が上昇しても電流遮断機構50が過剰に作動しにくくなる傾向は、特に、二次電池が高温環境中において使用および保存された場合においても同様に得られる。 On the other hand, when the solvent contains a chain carboxylic acid ester, the boiling point of the chain carboxylic acid ester is appropriately high. less likely to volatilize. In this case, it is difficult for the vapor pressure inside the battery can 10 to rise rapidly, and the pressure inside the battery can 10 does not rise sharply. Become. As a result, the current interrupting mechanism 50 does not excessively interrupt the energization of the battery element 20 when the secondary battery is used, so that the secondary battery can be stably and continuously used. The tendency for the current interrupting mechanism 50 to be less likely to operate excessively even when the internal pressure of the battery can 10 rises in this manner can be obtained even when the secondary battery is used and stored in a high-temperature environment. be done.
 また、溶媒が鎖状カルボン酸エステルを含んでいる場合には、その鎖状カルボン酸エステルの粘度が適正に低いため、電解液の粘度が適正に低くなる。この場合には、二次電池の製造工程において電池缶10の内部に電解液が注液されやすくなり、すなわち正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されやすくなるため、電池素子20による電解液の保持量が増加する。これにより、電池素子20において充放電反応が安定かつ円滑に進行しやすくなるため、二次電池が保存されても放電容量が減少しにくくなる。このように放電容量が減少しにくくなる傾向は、特に、二次電池が高温環境中において保存された場合においても同様に得られる。 Also, when the solvent contains a chain carboxylic acid ester, the viscosity of the chain carboxylic acid ester is appropriately low, so the viscosity of the electrolytic solution is appropriately low. In this case, the electrolytic solution is easily injected into the battery can 10 in the manufacturing process of the secondary battery. The amount of electrolyte retained by 20 increases. As a result, the charging and discharging reactions in the battery element 20 tend to proceed stably and smoothly, so that the discharge capacity is less likely to decrease even when the secondary battery is stored. Such a tendency that the discharge capacity is less likely to decrease is similarly obtained particularly when the secondary battery is stored in a high-temperature environment.
 なお、鎖状カルボン酸エステルの炭素数は、6以下であることが好ましい。鎖状カルボン酸エステルの粘度が十分に低くなるため、正極21、負極22およびセパレータ23のそれぞれに電解液がより含浸されやすくなるからである。これにより、電池素子20による電解液の保持量がより増加するため、放電容量がより減少しにくくなる。 The number of carbon atoms in the chain carboxylic acid ester is preferably 6 or less. This is because the viscosity of the chain carboxylic acid ester becomes sufficiently low, so that the positive electrode 21, the negative electrode 22, and the separator 23 are more easily impregnated with the electrolytic solution. As a result, the amount of electrolyte retained by the battery element 20 is further increased, so that the discharge capacity is less likely to decrease.
 中でも、鎖状カルボン酸エステルは、酢酸プロピルおよびプロピオン酸プロピルのうちの一方または双方であることが好ましい。沸点が十分に高くなると共に、粘度が十分に低くなるため、電流遮断機構50が過剰に作動することは十分に抑制されると共に、二次電池が保存されても放電容量が十分に減少しにくくなるからである。 Among them, the chain carboxylic acid ester is preferably one or both of propyl acetate and propyl propionate. Since the boiling point is sufficiently high and the viscosity is sufficiently low, excessive operation of the current interrupting mechanism 50 is sufficiently suppressed, and the discharge capacity is less likely to decrease sufficiently even when the secondary battery is stored. Because it becomes
 この溶媒は、鎖状カルボン酸エステルだけを含んでいてもよいが、その鎖状カルボン酸エステルと共に環状炭酸エステルおよび鎖状炭酸エステルのうちの一方または双方を含んでいてもよい。電流遮断機構50が過剰に作動しすぎることは抑制されながら、二次電池が保存されても放電容量が十分に減少しにくくなるからである。環状炭酸エステルの種類は、1種類だけでもよいし、2種類以上でもよい。同様に、鎖状炭酸エステルの種類は、1種類だけでもよいし、2種類以上でもよい。環状炭酸エステルの具体例は、炭酸エチレンおよび炭酸プロピレンなどであると共に、鎖状炭酸エステルの具体例は、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどである。 This solvent may contain only a chain carboxylic acid ester, but may also contain one or both of a cyclic carbonate and a chain carbonic acid ester together with the chain carboxylic acid ester. This is because, while the excessive operation of the current interrupting mechanism 50 is suppressed, it becomes difficult for the discharge capacity to decrease sufficiently even when the secondary battery is stored. The number of cyclic carbonates may be one, or two or more. Similarly, the number of chain carbonate esters may be one, or two or more. Specific examples of the cyclic carbonate include ethylene carbonate and propylene carbonate, and specific examples of the chain carbonate include dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate.
 溶媒中における鎖状カルボン酸エステルの含有量は、特に限定されないが、中でも、10重量%~75重量%であることが好ましい。二次電池が保存されても放電容量が十分に減少しにくくなるからである。 Although the content of the chain carboxylic acid ester in the solvent is not particularly limited, it is preferably 10% by weight to 75% by weight. This is because the discharge capacity is less likely to decrease sufficiently even when the secondary battery is stored.
 なお、溶媒は、さらに、ラクトンなどのうちのいずれか1種類または2種類以上を含んでいてもよい。ラクトンの種類は、1種類だけでもよいし、2種類以上でもよい。ラクトンの具体例は、γ-ブチロラクトンおよびγ-バレロラクトンなどである。 The solvent may further contain one or more of lactones and the like. Only one type of lactone may be used, or two or more types may be used. Specific examples of lactones include γ-butyrolactone and γ-valerolactone.
 この他、溶媒は、添加剤のうちのいずれか1種類または2種類以上を含んでいてもよい。電解液の化学的安定性が向上するため、二次電池が保存されても放電容量が減少しにくくなるからである。 In addition, the solvent may contain one or more of the additives. This is because the chemical stability of the electrolytic solution is improved, so that the discharge capacity is less likely to decrease even when the secondary battery is stored.
 この添加剤は、不飽和環状炭酸エステル、フッ素化環状炭酸エステル、スルホン酸エステル、酸無水物、ニトリル化合物、イソシアネート化合物およびリン酸エステルなどである。電解液中における添加剤の含有量は、特に限定されないため、任意に設定可能である。 The additives include unsaturated cyclic carbonates, fluorinated cyclic carbonates, sulfonic acid esters, acid anhydrides, nitrile compounds, isocyanate compounds and phosphate esters. The content of the additive in the electrolytic solution is not particularly limited and can be set arbitrarily.
 不飽和環状炭酸エステルの具体例は、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。フッ素化環状炭酸エステルの具体例は、フルオロ炭酸エチレンおよびジフルオロ炭酸エチレンなどである。スルホン酸エステルの具体例は、1,3-プロパンスルトンおよび1-プロペン-1,3-スルトンなどである。酸無水物の具体例は、コハク酸無水物、グルタル酸無水物、1,2-エタンジスルホン酸無水物、1,3-プロパンジスルホン酸無水物および2-スルホ安息香酸無水物などである。ニトリル化合物の具体例は、スクシノニトリル、グルタロニトリルおよびアジポニトリルなどである。イソシアネート化合物の具体例は、ヘキサメチレンジイソシアネートなどである。リン酸エステルの具体例は、リン酸トリメチルおよびリン酸トリエチルなどである。 Specific examples of unsaturated cyclic carbonates include vinylene carbonate, vinylethylene carbonate and methyleneethylene carbonate. Specific examples of fluorinated cyclic carbonates include ethylene fluorocarbonate and ethylene difluorocarbonate. Specific examples of sulfonic acid esters include 1,3-propanesultone and 1-propene-1,3-sultone. Specific examples of acid anhydrides include succinic anhydride, glutaric anhydride, 1,2-ethanedisulfonic anhydride, 1,3-propanedisulfonic anhydride and 2-sulfobenzoic anhydride. Specific examples of nitrile compounds include succinonitrile, glutaronitrile and adiponitrile. Specific examples of isocyanate compounds include hexamethylene diisocyanate. Specific examples of phosphate esters include trimethyl phosphate and triethyl phosphate.
 中でも、添加剤は、フッ素化環状炭酸エステルであることが好ましい。充放電時においてフッ素化環状炭酸エステルに由来する被膜が負極22の表面に形成されるため、その負極22の表面において電解液が分解されにくくなるからである。これにより、二次電池が保存されても放電容量がより減少しにくくなる。 Among them, the additive is preferably a fluorinated cyclic carbonate. This is because a coating film derived from the fluorinated cyclic carbonate is formed on the surface of the negative electrode 22 during charging and discharging, so that the electrolytic solution is less likely to be decomposed on the surface of the negative electrode 22 . This makes it more difficult for the discharge capacity to decrease even when the secondary battery is stored.
 電解液中におけるフッ素化環状炭酸エステルの含有量は、特に限定されないが、中でも、0.05重量%~3.5重量%であることが好ましい。二次電池が保存されても放電容量が十分に減少しにくくなるからである。特に、電解液中におけるフッ素化環状炭酸エステルの含有量は、0.1重量%~3.0重量%であることがより好ましい。電流遮断機構50が過剰に作動することはより抑制されながら、放電容量がより減少しにくくなるからである。 The content of the fluorinated cyclic carbonate in the electrolytic solution is not particularly limited, but is preferably 0.05% by weight to 3.5% by weight. This is because the discharge capacity is less likely to decrease sufficiently even when the secondary battery is stored. In particular, the content of the fluorinated cyclic carbonate in the electrolytic solution is more preferably 0.1% by weight to 3.0% by weight. This is because the discharge capacity is less likely to decrease while the excessive operation of the current interrupting mechanism 50 is further suppressed.
(電解質塩)
 電解質塩は、リチウム塩を含んでより、より具体的には、下記の式(2)で表されるリチウムスルホニルイミド塩のうちのいずれか1種類または2種類以上を含んでいる。このリチウムスルホニルイミド塩は、式(2)に示したように、2つのフッ素化スルホニル基((R1SO)(R2SO))を有するリチウムイミド塩である。
(electrolyte salt)
The electrolyte salt contains a lithium salt, more specifically, one or more of lithium sulfonylimide salts represented by the following formula (2). This lithium sulfonylimide salt is a lithium imide salt having two fluorinated sulfonyl groups ((R1SO 2 )(R2SO 2 )) as shown in formula (2).
 LiN(R1SO)(R2SO) ・・・(2)
(R1およびR2のそれぞれは、フッ素基およびパーフルオロアルキル基のうちのいずれかである。)
LiN(R1SO2)( R2SO2 ) ( 2 )
(Each of R1 and R2 is either a fluorine group or a perfluoroalkyl group.)
 R1およびR2のそれぞれは、上記したように、フッ素基およびパーフルオロアルキル基のうちのいずれかであれば、特に限定されない。R1の種類とR2の種類とは、互いに同じでもよいし、互いに異なってもよい。パーフルオロアルキル基の炭素数は、特に限定されないため、そのパーフルオロアルキル基は、トリフルオロメチル基(-CF)およびペンタフルオロエチル基(-C)などである。 Each of R1 and R2 is not particularly limited as long as it is either a fluorine group or a perfluoroalkyl group, as described above. The type of R1 and the type of R2 may be the same or different. Since the number of carbon atoms in the perfluoroalkyl group is not particularly limited, the perfluoroalkyl group includes a trifluoromethyl group (--CF 3 ) and a pentafluoroethyl group (--C 2 F 5 ).
 リチウムスルホニルイミド塩の具体例は、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)およびビス(ペンタフルオロエタンスルホニル)イミドリチウム(Li(CSO)などである。 Specific examples of lithium sulfonylimide salts are lithium bis(fluorosulfonyl)imide (LiN(FSO2) 2 ), lithium bis(trifluoromethanesulfonyl)imide (LiN( CF3SO2 ) 2 ) and bis ( pentafluoroethanesulfonyl ) imidelithium (Li (C2F5SO2)2 ) .
 電解質塩がリチウムスルホニルイミド塩を含んでいるのは、上記した正極活物質がリチウム鉄リン酸化合物を含んでいる場合に関して説明した理由により、過充電時における二次電池の安全性が向上するからである。 The reason why the electrolyte salt contains a lithium sulfonylimide salt is that the safety of the secondary battery during overcharging is improved for the reason described above for the case where the positive electrode active material contains a lithium iron phosphate compound. is.
 中でも、リチウムスルホニルイミド塩は、ビス(フルオロスルホニル)イミドリチウムおよびビス(トリフルオロメタンスルホニル)イミドリチウムのうちの一方または双方であることが好ましい。二次電池が十分に発熱しにくくなるため、過充電時における二次電池の安全性が十分に向上するからである。 Among them, the lithium sulfonylimide salt is preferably one or both of bis(fluorosulfonyl)imidelithium and bis(trifluoromethanesulfonyl)imidelithium. This is because the secondary battery is less likely to generate heat sufficiently, and the safety of the secondary battery at the time of overcharging is sufficiently improved.
 溶媒に対するリチウムスルホニルイミド塩の含有量は、特に限定されないが、中でも、0.8mol/kg以上であることが好ましく、0.8mol/kg~2.0mol/kgであることがより好ましい。高いイオン伝導性が得られながら、過充電時における二次電池の安全性が十分に向上するからである。 Although the content of the lithium sulfonylimide salt in the solvent is not particularly limited, it is preferably 0.8 mol/kg or more, more preferably 0.8 mol/kg to 2.0 mol/kg. This is because the safety of the secondary battery during overcharge is sufficiently improved while high ion conductivity is obtained.
 この電解質塩は、リチウムスルホニルイミド塩だけを含んでいてもよいが、そのリチウムスルホニルイミド塩と共に他のリチウム塩のうちのいずれか1種類または2種類以上を含んでいてもよい。電池容量などが向上するからである。 The electrolyte salt may contain only the lithium sulfonylimide salt, or may contain one or more of other lithium salts together with the lithium sulfonylimide salt. This is because the battery capacity and the like are improved.
 他のリチウム塩の具体例は、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CFSO)、ビス(オキサラト)ホウ酸リチウム(LiB(C)、モノフルオロリン酸リチウム(LiPFO)およびジフルオロリン酸リチウム(LiPF)などである。 Specific examples of other lithium salts include lithium hexafluorophosphate ( LiPF6 ), lithium tetrafluoroborate ( LiBF4 ), lithium tris(trifluoromethanesulfonyl)methide (LiC( CF3SO2 ) 3 ) , Lithium bis(oxalato)borate (LiB ( C2O4 ) 2 ), lithium monofluorophosphate ( Li2PFO3 ) and lithium difluorophosphate ( LiPF2O2 ).
[一対の絶縁板]
 絶縁板31,32は、電池素子20を介して互いに対向するように配置されているため、その電池素子20は、絶縁板31,32により挟まれている。これにより、電池素子20は、絶縁板31,31により挟まれた状態において電池缶10の内部に収納されている。なお、絶縁板31,32のそれぞれには、センターピン80を部分的に露出させるための開口部が設けられていてもよい。
[Pair of insulating plates]
Since the insulating plates 31 and 32 are arranged to face each other with the battery element 20 interposed therebetween, the battery element 20 is sandwiched between the insulating plates 31 and 32 . As a result, the battery element 20 is accommodated inside the battery can 10 while being sandwiched between the insulating plates 31 , 31 . Note that each of the insulating plates 31 and 32 may be provided with an opening for partially exposing the center pin 80 .
[正極リードおよび負極リード]
 正極リード41は、図1および図2に示したように、正極21の正極集電体21Aに接続されており、アルミニウムなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この正極リード41は、電流遮断機構50を介して電池蓋12と電気的に接続されている。
[Positive lead and negative lead]
The cathode lead 41 is connected to the cathode current collector 21A of the cathode 21, as shown in FIGS. 1 and 2, and contains one or more of conductive materials such as aluminum. there is This positive electrode lead 41 is electrically connected to the battery lid 12 via a current interrupting mechanism 50 .
 負極リード42は、図1および図2に示したように、負極22の負極集電体22Aに接続されており、ニッケルなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この負極リード42は、電池缶本体11と電気的に接続されている。 The negative electrode lead 42 is connected to the negative electrode current collector 22A of the negative electrode 22, as shown in FIGS. 1 and 2, and contains one or more of conductive materials such as nickel. there is This negative electrode lead 42 is electrically connected to the battery can body 11 .
[電流遮断機構]
 電流遮断機構50は、電池缶本体11のうちの開口部11Kの近傍部分に電池蓋12および熱感抵抗素子(PTC素子)70と共にガスケット60を介して加締められている。これにより、電流遮断機構50は、PTC素子70と共に電池缶10に固定されている。
[Current interrupting mechanism]
The current interrupting mechanism 50 is crimped through a gasket 60 together with the battery lid 12 and the thermal resistance element (PTC element) 70 to the vicinity of the opening 11K of the battery can body 11 . Thereby, the current interrupting mechanism 50 is fixed to the battery can 10 together with the PTC element 70 .
 電流遮断機構50およびPTC素子70のそれぞれは、電池蓋12の内側に配置されており、その電流遮断機構50は、ディスク板51を含んでいる。これにより、電流遮断機構50は、ディスク板51を介して正極リード41と電気的に接続されていると共に、PTC素子70を介して電池蓋12と電気的に接続されている。PTC素子70の電気抵抗は、温度の上昇に応じて増加するようになっている。 Each of the current interrupting mechanism 50 and the PTC element 70 is arranged inside the battery lid 12 , and the current interrupting mechanism 50 includes a disc plate 51 . Thus, the current interrupting mechanism 50 is electrically connected to the positive electrode lead 41 via the disk plate 51 and electrically connected to the battery lid 12 via the PTC element 70 . The electrical resistance of the PTC element 70 increases as the temperature rises.
 ディスク板51は、厚さTを有しており、電池素子20に向かって部分的に窪むように屈曲している。この場合において、ディスク板51の一部は、そのディスク板51の中心から離れる側(外側)に向かって折り返されたのち、そのディスク板51の中心に近づく側(内側)に向かって再び折り返されている。これにより、ディスク板51は、そのディスク板51が途中で互いに折り重ねられている部分(折り重ね部51P)を有している。 The disk plate 51 has a thickness T and is bent so as to partially recess toward the battery element 20 . In this case, a portion of the disc plate 51 is folded back toward the side away from the center of the disc plate 51 (outside) and then folded back toward the side closer to the center of the disc plate 51 (inside). ing. As a result, the disc plate 51 has a portion (folded portion 51P) where the disc plate 51 is folded on itself in the middle.
 この電流遮断機構50は、電池缶10の内部における圧力の上昇に応じて作動することにより、電池素子20の通電を遮断する。より具体的には、電池缶10の内部において圧力が上昇した際に、その圧力が所定の圧力に到達すると、ディスク板51が反転するため、そのディスク板51が正極リード41から電気的に分離される。この場合には、電池蓋12と電池素子20との電気的接続が切断されるため、その電池素子20に電流が流れることは遮断される。これにより、大電流に起因する二次電池(電池素子20)の異常な発熱が防止される。 The current cut-off mechanism 50 cuts off the energization of the battery element 20 by operating in response to an increase in pressure inside the battery can 10 . More specifically, when the pressure inside the battery can 10 rises and the pressure reaches a predetermined pressure, the disk plate 51 is reversed, so that the disk plate 51 is electrically separated from the positive electrode lead 41 . be done. In this case, the electrical connection between the battery cover 12 and the battery element 20 is cut off, so that the current flow through the battery element 20 is cut off. This prevents the secondary battery (battery element 20) from generating abnormal heat due to a large current.
 この場合には、電池缶10の内部における圧力の上昇に応じて電流遮断機構50が部分的に開裂するため、その電流遮断機構50に圧力の開放用の隙間(圧力の開放路)が形成される。これにより、電池缶10の内部の圧力が開放されるため、二次電池の破裂が防止される。すなわち、電流遮断機構50は、電池缶10の内部における圧力の上昇時において、電池素子20の通電を遮断する機能と共に、電池缶10の内部の圧力を開放する安全弁としても機能を果たす。 In this case, the current interrupting mechanism 50 is partially cleaved in response to an increase in pressure inside the battery can 10, so that a pressure release gap (pressure release path) is formed in the current interrupting mechanism 50. be. As a result, the internal pressure of the battery can 10 is released, thereby preventing the secondary battery from bursting. In other words, the current cut-off mechanism 50 functions not only to cut off the energization of the battery element 20 when the pressure inside the battery can 10 rises, but also as a safety valve to release the pressure inside the battery can 10 .
 ここで、電流遮断機構50は、電池缶10の内部における圧力が所定の圧力に到達した際に作動し、より具体的には、その圧力が20kgf/cm以上に到達した際に作動する。すなわち、電流遮断機構50が作動する圧力(作動圧)は、20kgf/cm以上である。電池缶10の内部の圧力が比較的高い状態で維持されるため、電流遮断機構50が過剰に作動することは抑制されるからである。これにより、二次電池が安定して継続的に使用可能になる。 Here, the current interrupting mechanism 50 operates when the pressure inside the battery can 10 reaches a predetermined pressure, more specifically, when the pressure reaches 20 kgf/cm 2 or more. That is, the pressure (operating pressure) at which the current interrupting mechanism 50 operates is 20 kgf/cm 2 or more. This is because the pressure inside the battery can 10 is maintained in a relatively high state, so that the current interrupting mechanism 50 is prevented from operating excessively. As a result, the secondary battery can be used stably and continuously.
 電流遮断機構50の作動圧を調べるためには、電池缶10の内部の圧力(MPa)を上昇させながら電流遮断機構50の作動状態を調べることにより、その電流遮断機構50が作動した際の圧力を特定したのち、その圧力を作動圧(kgf/cm)に換算する。この場合には、油圧を利用して電池缶10の内部の圧力を上昇させる。また、電池缶10の内部の圧力を上昇させながら二次電池の電圧を測定することにより、その電圧の変化に基づいて電流遮断機構50の作動の有無を判断する。なお、圧力を作動圧に換算する場合には、1kgf/cm=約0.098MPaとする。 In order to investigate the operating pressure of the current interrupting mechanism 50, the operating state of the current interrupting mechanism 50 is examined while increasing the internal pressure (MPa) of the battery can 10, thereby obtaining the pressure when the current interrupting mechanism 50 is operated. is specified, the pressure is converted to working pressure (kgf/cm 2 ). In this case, hydraulic pressure is used to increase the pressure inside the battery can 10 . Further, by measuring the voltage of the secondary battery while increasing the pressure inside the battery can 10, it is determined whether or not the current interrupting mechanism 50 is activated based on the change in the voltage. When converting the pressure into working pressure, 1 kgf/cm 2 =about 0.098 MPa.
 この電流遮断機構50の作動圧の調整方法は、特に限定されないため、その作動圧は、公知の方法のうちのいずれか1種類または2種類以上を用いて所望の値となるように調整可能である。一例を挙げると、ディスク板51の材質および正極リード41に対するディスク板51の接続強度などを変更することにより、作動圧を調整してもよい。また、ディスク板51の厚さT、より具体的には折り重ね部51Pにおけるディスク板51の厚さTを変更することにより、作動圧を調整してもよい。もちろん、ここでは例示していない他の方法を用いて作動圧を調整してもよい。 Since the method of adjusting the operating pressure of the current interrupting mechanism 50 is not particularly limited, the operating pressure can be adjusted to a desired value using one or more of known methods. be. For example, the working pressure may be adjusted by changing the material of the disk plate 51 and the connection strength of the disk plate 51 to the positive electrode lead 41 . Further, the working pressure may be adjusted by changing the thickness T of the disc plate 51, more specifically, the thickness T of the disc plate 51 at the folded portion 51P. Of course, other methods not illustrated here may be used to adjust the actuation pressure.
<1-2.動作>
 二次電池の充電時には、電池素子20において、正極21からリチウムが放出されると共に、そのリチウムが電解液を介して負極22に吸蔵される。一方、二次電池の放電時には、電池素子20において、負極22からリチウムが放出されると共に、そのリチウムが電解液を介して正極21に吸蔵される。これらの充電時および放電時には、リチウムがイオン状態で吸蔵および放出される。
<1-2. Operation>
During charging of the secondary battery, in the battery element 20, lithium is released from the positive electrode 21 and absorbed into the negative electrode 22 via the electrolyte. On the other hand, when the secondary battery is discharged, in the battery element 20, lithium is released from the negative electrode 22 and absorbed into the positive electrode 21 through the electrolyte. Lithium is intercalated and deintercalated in an ionic state during charging and discharging.
<1-3.製造方法>
 二次電池を製造する場合には、以下で説明する手順により、正極21および負極22のそれぞれを作製すると共に、電解液を調製したのち、その正極21、負極22および電解液を用いて二次電池を作製する。
<1-3. Manufacturing method>
In the case of manufacturing a secondary battery, the positive electrode 21 and the negative electrode 22 are prepared according to the procedure described below, and an electrolytic solution is prepared. Make a battery.
[正極の作製]
 最初に、リチウム鉄リン酸化合物を含む正極活物質と、正極結着剤と、正極導電剤とが互いに混合された混合物(正極合剤)を溶媒に投入することにより、ペースト状の正極合剤スラリーを調製する。この溶媒は、水性溶媒でもよいし、有機溶剤でもよい。続いて、正極集電体21Aの両面に正極合剤スラリーを塗布することにより、正極活物質層21Bを形成する。最後に、ロールプレス機などを用いて正極活物質層21Bを圧縮成型する。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。これにより、正極集電体21Aの両面に正極活物質層21Bが形成されるため、正極21が作製される。
[Preparation of positive electrode]
First, a mixture (positive electrode mixture) in which a positive electrode active material containing a lithium iron phosphate compound, a positive electrode binder, and a positive electrode conductive agent are mixed together is put into a solvent to obtain a pasty positive electrode mixture. Prepare slurry. This solvent may be an aqueous solvent or an organic solvent. Subsequently, the cathode active material layer 21B is formed by applying the cathode mixture slurry to both surfaces of the cathode current collector 21A. Finally, the cathode active material layer 21B is compression-molded using a roll press or the like. In this case, the positive electrode active material layer 21B may be heated, or compression molding may be repeated multiple times. As a result, the cathode active material layers 21B are formed on both surfaces of the cathode current collector 21A, so that the cathode 21 is produced.
[負極の作製]
 上記した正極21の作製手順と同様の手順により、負極22を形成する。具体的には、最初に、負極活物質、負極結着剤および負極導電剤が互いに混合された混合物(負極合剤)を溶媒に投入することにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布することにより、負極活物質層22Bを形成する。最後に、負極活物質層22Bを圧縮成型する。これにより、負極集電体22Aの両面に負極活物質層22Bが形成されるため、負極22が作製される。
[Preparation of negative electrode]
A negative electrode 22 is formed by the same procedure as that of the positive electrode 21 described above. Specifically, first, a paste-like negative electrode mixture slurry is prepared by putting a mixture (negative electrode mixture) in which a negative electrode active material, a negative electrode binder, and a negative electrode conductor are mixed together into a solvent. Subsequently, the anode active material layer 22B is formed by applying the anode mixture slurry to both surfaces of the anode current collector 22A. Finally, the negative electrode active material layer 22B is compression molded. As a result, the negative electrode 22 is manufactured because the negative electrode active material layers 22B are formed on both surfaces of the negative electrode current collector 22A.
[電解液の調製]
 鎖状カルボン酸エステルを含む溶媒に、リチウムスルホニルイミド塩を含む電解質塩を投入する。これにより、溶媒中において電解質塩が分散または溶解されるため、電解液が調製される。
[Preparation of electrolytic solution]
An electrolyte salt containing a lithium sulfonylimide salt is added to a solvent containing a chain carboxylic acid ester. This disperses or dissolves the electrolyte salt in the solvent, thus preparing an electrolytic solution.
[二次電池の組み立て]
 最初に、溶接法などを用いて正極21の正極集電体21Aに正極リード41を接続させると共に、溶接法などを用いて負極22の負極集電体22Aに負極リード42を接続させる。
[Assembly of secondary battery]
First, the positive electrode lead 41 is connected to the positive electrode current collector 21A of the positive electrode 21 by welding or the like, and the negative electrode lead 42 is connected to the negative electrode current collector 22A of the negative electrode 22 by welding or the like.
 続いて、セパレータ23を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回空間20Sを有する巻回体(図示せず)を形成する。この巻回体は、正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されていないことを除いて、電池素子20の構成と同様の構成を有している。続いて、巻回体の巻回空間20Sにセンターピン80を挿入する。 Subsequently, after the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween, the positive electrode 21, the negative electrode 22 and the separator 23 are wound to form a wound body (not shown) having a winding space 20S. to form This wound body has the same structure as the battery element 20 except that the positive electrode 21, the negative electrode 22 and the separator 23 are not impregnated with the electrolytic solution. Subsequently, the center pin 80 is inserted into the winding space 20S of the wound body.
 続いて、絶縁板31,32により巻回体が挟まれた状態において、開口部11Kから電池缶本体11の内部に巻回体を絶縁板31,32と共に収納する。この場合には、溶接法などを用いて正極リード41を電流遮断機構50(ディスク板51)に接続させると共に、溶接法などを用いて負極リード42を電池缶本体11に接続させる。続いて、電池缶本体11の内部に電解液を注入することにより、その電解液を巻回体に含浸させる。これにより、正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されるため、電池素子20が作製される。 Then, with the wound body sandwiched between the insulating plates 31 and 32, the wound body is housed inside the battery can main body 11 through the opening 11K together with the insulating plates 31 and 32. In this case, the positive electrode lead 41 is connected to the current interrupting mechanism 50 (disk plate 51) using a welding method or the like, and the negative electrode lead 42 is connected to the battery can body 11 using a welding method or the like. Subsequently, by injecting an electrolytic solution into the inside of the battery can main body 11, the wound body is impregnated with the electrolytic solution. As a result, each of the positive electrode 21, the negative electrode 22 and the separator 23 is impregnated with the electrolytic solution, so that the battery element 20 is produced.
 最後に、開口部11Kから電池缶本体11の内部に電池蓋12、電流遮断機構50およびPTC素子70を収納したのち、その電池缶本体11のうちの開口部11Kの近傍部分をガスケット60を介して加締める。これにより、電池缶本体11に電池蓋12、電流遮断機構50およびPTC素子70が固定されると共に、その電池缶本体11および電池蓋12を含む電池缶10が形成される。よって、電池缶10の内部に電池素子20が封入されるため、二次電池が組み立てられる。 Finally, after housing the battery lid 12, the current interrupting mechanism 50, and the PTC element 70 inside the battery can body 11 through the opening 11K, the portion of the battery can body 11 near the opening 11K is inserted through the gasket 60. and crimp. Thereby, the battery lid 12, the current interrupting mechanism 50 and the PTC element 70 are fixed to the battery can body 11, and the battery can 10 including the battery can body 11 and the battery lid 12 is formed. Accordingly, since the battery element 20 is sealed inside the battery can 10, the secondary battery is assembled.
 この二次電池を組み立てる場合には、上記したように、ディスク板51の材質および正極リード41に対するディスク板51の接続強度などを調整することにより、20kgf/cm以上となるように電流遮断機構50の作動圧を設定する。 When assembling this secondary battery, as described above, by adjusting the material of the disk plate 51 and the connection strength of the disk plate 51 to the positive electrode lead 41, the current interrupting mechanism is adjusted so that the current is 20 kgf/cm 2 or more. 50 working pressure is set.
[二次電池の安定化]
 組み立て後の二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの各種条件は、任意に設定可能である。これにより、正極21および負極22のそれぞれの表面に被膜が形成されるため、二次電池の状態が電気化学的に安定化する。よって、二次電池が完成する。
[Stabilization of secondary battery]
The secondary battery after assembly is charged and discharged. Various conditions such as environmental temperature, number of charge/discharge times (number of cycles), and charge/discharge conditions can be arbitrarily set. As a result, films are formed on the respective surfaces of the positive electrode 21 and the negative electrode 22, so that the state of the secondary battery is electrochemically stabilized. Thus, a secondary battery is completed.
<1-4.作用および効果>
 この二次電池によれば、その二次電池が電池缶10、電池素子20(正極21、負極22および電解液)および電流遮断機構50を備えており、その正極21がリチウム鉄リン酸化合物を含んでおり、その電解液の溶媒が鎖状カルボン酸エステルを含んでおり、その電解液の電解質塩がリチウムスルホニルイミド塩を含んでおり、電流遮断機構50の作動圧が20kgf/cm以上である。
<1-4. Action and effect>
According to this secondary battery, the secondary battery includes a battery can 10, a battery element 20 (a positive electrode 21, a negative electrode 22, and an electrolytic solution) and a current interrupting mechanism 50, and the positive electrode 21 contains a lithium iron phosphate compound. a solvent of the electrolytic solution contains a chain carboxylic acid ester; an electrolytic salt of the electrolytic solution contains a lithium sulfonylimide salt; be.
 この場合には、第1に、上記したように、正極活物質(リチウム鉄リン酸化合物)と、溶媒(鎖状カルボン酸エステル)と、電解質塩(リチウムスルホニルイミド塩)と、電流遮断機構50の作動圧に関する条件(作動圧は20kgf/cm以上)とが互いに組み合わされることにより、二次電池が過充電された際に電流が収束しやすくなる。 In this case, first, as described above, the positive electrode active material (lithium iron phosphate compound), the solvent (chain carboxylic acid ester), the electrolyte salt (lithium sulfonylimide salt), and the current interrupting mechanism 50 (the operating pressure is 20 kgf/cm 2 or more) and the condition related to the operating pressure (operating pressure is 20 kgf/cm 2 or more), the current tends to converge when the secondary battery is overcharged.
 第2に、電解液の溶媒が鎖状カルボン酸エステルを含んでいるため、上記したように、二次電池が使用および保存されても電池缶10の内部の圧力が急激に上昇しにくくなるため、電流遮断機構50が過剰に作動することは抑制される。また、電池缶10の内部の圧力が比較的高い状態で維持された条件下において鎖状カルボン酸エステルがリチウムスルホニルイミド塩と反応することにより、電池素子20において充放電反応が安定かつ円滑に進行しやすくなるため、二次電池が高温環境中において保存されても放電容量が減少しにくくなる。 Secondly, since the solvent of the electrolytic solution contains the chain carboxylic acid ester, the pressure inside the battery can 10 is less likely to rise sharply even when the secondary battery is used and stored, as described above. , the excessive operation of the current interrupting mechanism 50 is suppressed. In addition, the chain carboxylic acid ester reacts with the lithium sulfonylimide salt under the condition that the internal pressure of the battery can 10 is kept relatively high, so that the charging/discharging reaction in the battery element 20 proceeds stably and smoothly. Therefore, even if the secondary battery is stored in a high-temperature environment, the discharge capacity is less likely to decrease.
 第3に、電流遮断機構50の作動圧が20kgf/cm以上であり、すなわち作動圧が比較的高い圧力となるように設定されているため、上記したように、電池缶10の内部の圧力が増加しても、その圧力が比較的高い状態で維持される。これにより、電流遮断機構50が過剰に作動することは抑制され、すなわち電流遮断機構50が電池素子20の通電を遮断しすぎないため、二次電池が安定して継続的に使用可能になる。 Third, the operating pressure of the current interrupting mechanism 50 is 20 kgf/cm 2 or more, that is, the operating pressure is set to be relatively high. increases, the pressure remains relatively high. As a result, the current interrupting mechanism 50 is prevented from operating excessively, that is, the current interrupting mechanism 50 does not excessively interrupt the energization of the battery element 20, so that the secondary battery can be stably and continuously used.
 これらのことから、過充電時における二次電池の安全性が担保されながら、電流遮断機構50が過剰に作動しすぎることは抑制されると共に、二次電池が保存されても放電容量が減少しにくくなるため、優れた高温動作特性および優れた高温保存特性を得ることができる。 For these reasons, while ensuring the safety of the secondary battery during overcharging, excessive operation of the current interrupting mechanism 50 is suppressed, and the discharge capacity decreases even when the secondary battery is stored. Therefore, excellent high temperature operation characteristics and excellent high temperature storage characteristics can be obtained.
 特に、鎖状カルボン酸エステルが酢酸プロピルおよびプロピオン酸プロピルのうちの一方または双方を含んでいると共に、リチウムスルホニルイミド塩がビス(フルオロスルホニル)イミドリチウムおよびビス(トリフルオロメタンスルホニル)イミドリチウムのうちの一方または双方を含んでいれば、電流遮断機構50が過剰に作動することは十分に抑制されると共に二次電池が保存されても放電容量が十分に減少しにくくなり、さらに過充電時における二次電池の安全性が十分に向上するため、より高い効果を得ることができる。 In particular, the linear carboxylic acid ester comprises one or both of propyl acetate and propyl propionate, and the lithium sulfonylimide salt comprises lithium bis(fluorosulfonyl)imide and lithium bis(trifluoromethanesulfonyl)imide. If one or both of them are included, the excessive operation of the current interrupting mechanism 50 is sufficiently suppressed, the discharge capacity is less likely to decrease sufficiently even when the secondary battery is stored, and furthermore, the secondary battery during overcharging Since the safety of the secondary battery is sufficiently improved, a higher effect can be obtained.
 また、リチウム鉄リン酸化合物に関する式(1)において遷移金属元素(M)がMnおよびCoのうちの一方または双方であれば、二次電池の過充電領域において急峻な電圧上昇が存在しながら平均電圧が高くなるため、より高い効果を得ることができる。 Further, if the transition metal element (M) is one or both of Mn and Co in the formula (1) regarding the lithium iron phosphate compound, an average Since the voltage is higher, a higher effect can be obtained.
 また、リチウムスルホニルイミド塩の含有量が溶媒に対して0.8mol/kg~2.0mol/kgであれば、高いイオン伝導性が得られながら、過充電時における二次電池の安全性が十分に向上するため、より高い効果を得ることができる。 Further, when the content of the lithium sulfonylimide salt is 0.8 mol/kg to 2.0 mol/kg with respect to the solvent, high ionic conductivity is obtained, and the safety of the secondary battery during overcharging is sufficient. , a higher effect can be obtained.
 また、溶媒中における鎖状カルボン酸エステルの含有量が10重量%~75重量%であれば、二次電池が保存されても放電容量が十分に減少しにくくなるため、より高い効果を得ることができる。 In addition, if the content of the chain carboxylic acid ester in the solvent is 10% by weight to 75% by weight, the discharge capacity will not sufficiently decrease even if the secondary battery is stored, so that a higher effect can be obtained. can be done.
 また、電解液がフッ素化環状炭酸エステルを含んでおり、その電解液中におけるフッ素化環状炭酸エステルの含有量が0.1重量%~3.0重量%であれば、二次電池が保存されても放電容量が十分に減少しにくくなると共に、電流遮断機構50が過剰に作動することはより抑制されるため、より高い効果を得ることができる。
からである。
Further, when the electrolyte contains a fluorinated cyclic carbonate and the content of the fluorinated cyclic carbonate in the electrolyte is 0.1% by weight to 3.0% by weight, the secondary battery can be stored. However, the discharge capacity is not sufficiently reduced, and the excessive operation of the current interrupting mechanism 50 is further suppressed, so that a higher effect can be obtained.
It is from.
 また、二次電池がリチウムイオン二次電池であれば、リチウムの吸蔵放出を利用して十分な電池容量が安定に得られるため、より高い効果を得ることができる。 Also, if the secondary battery is a lithium-ion secondary battery, a sufficient battery capacity can be stably obtained by utilizing the absorption and release of lithium, so a higher effect can be obtained.
<2.変形例>
 上記した二次電池の構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例は、互いに組み合わされてもよい。
<2. Variation>
The configuration of the secondary battery described above can be changed as appropriate, as described below. However, the series of variants described below may be combined with each other.
[変形例1]
 多孔質膜であるセパレータ23を用いた。しかしながら、ここでは具体的に図示しないが、高分子化合物層を含む積層型のセパレータを用いてもよい。
[Modification 1]
A separator 23, which is a porous membrane, was used. However, although not specifically illustrated here, a laminated separator including a polymer compound layer may be used.
 具体的には、積層型のセパレータは、一対の面を有する多孔質膜と、その多孔質膜の片面または両面に設けられた高分子化合物層とを含んでいる。正極21および負極22のそれぞれに対するセパレータの密着性が向上するため、電池素子20の位置ずれ(巻きずれ)が抑制されるからである。これにより、電解液の分解反応などが発生しても、二次電池が膨れにくくなる。高分子化合物層は、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。ポリフッ化ビニリデンなどは、物理的強度に優れていると共に、電気化学的に安定だからである。 Specifically, a laminated separator includes a porous membrane having a pair of surfaces and a polymer compound layer provided on one or both sides of the porous membrane. This is because the adhesiveness of the separator to each of the positive electrode 21 and the negative electrode 22 is improved, so that positional deviation (winding deviation) of the battery element 20 is suppressed. As a result, the secondary battery is less likely to swell even if a decomposition reaction or the like occurs in the electrolytic solution. The polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because polyvinylidene fluoride or the like has excellent physical strength and is electrochemically stable.
 なお、多孔質膜および高分子化合物層のうちの一方または双方は、複数の絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。二次電池の発熱時において複数の絶縁性粒子が放熱するため、その二次電池の安全性(耐熱性)が向上するからである。絶縁性粒子は、無機材料および樹脂材料のうちの一方または双方を含んでいる。無機材料の具体例は、酸化アルミニウム、窒化アルミニウム、ベーマイト、酸化ケイ素、酸化チタン、酸化マグネシウムおよび酸化ジルコニウムなどである。樹脂材料の具体例は、アクリル樹脂およびスチレン樹脂などである。 One or both of the porous film and the polymer compound layer may contain one or more of a plurality of insulating particles. This is because the plurality of insulating particles dissipate heat when the secondary battery generates heat, thereby improving the safety (heat resistance) of the secondary battery. The insulating particles contain one or both of an inorganic material and a resin material. Specific examples of inorganic materials are aluminum oxide, aluminum nitride, boehmite, silicon oxide, titanium oxide, magnesium oxide and zirconium oxide. Specific examples of resin materials include acrylic resins and styrene resins.
 積層型のセパレータを作製する場合には、高分子化合物および溶媒などを含む前駆溶液を調製したのち、多孔質膜の片面または両面に前駆溶液を塗布する。この場合には、必要に応じて、前駆溶液に複数の絶縁性粒子を添加してもよい。 When manufacturing a laminated separator, after preparing a precursor solution containing a polymer compound, a solvent, etc., the precursor solution is applied to one or both sides of the porous membrane. In this case, if necessary, a plurality of insulating particles may be added to the precursor solution.
 この積層型のセパレータを用いた場合においても、正極21と負極22との間においてリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、二次電池の安全性が向上するため、より高い効果を得ることができる。 Even when this laminated separator is used, the same effect can be obtained because lithium ions can move between the positive electrode 21 and the negative electrode 22 . In this case, particularly, as described above, the safety of the secondary battery is improved, so that a higher effect can be obtained.
[変形例2]
 液状の電解質である電解液を用いた。しかしながら、ここでは具体的に図示しないが、ゲル状の電解質である電解質層を用いてもよい。
[Modification 2]
An electrolytic solution, which is a liquid electrolyte, was used. However, although not specifically illustrated here, an electrolyte layer that is a gel electrolyte may be used.
 電解質層を用いた電池素子20では、セパレータ23および電解質層を介して正極21および負極22が互いに積層されていると共に、その正極21、負極22、セパレータ23および電解質層が巻回されている。この電解質層は、正極21とセパレータ23との間に介在していると共に、負極22とセパレータ23との間に介在している。 In the battery element 20 using the electrolyte layer, the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 and the electrolyte layer interposed therebetween, and the positive electrode 21, the negative electrode 22, the separator 23 and the electrolyte layer are wound. This electrolyte layer is interposed between the positive electrode 21 and the separator 23 and interposed between the negative electrode 22 and the separator 23 .
 具体的には、電解質層は、電解液と共に高分子化合物を含んでおり、その電解液は、高分子化合物により保持されている。電解液の漏液が防止されるからである。電解液の構成は、上記した通りである。高分子化合物は、ポリフッ化ビニリデンなどを含んでいる。電解質層を形成する場合には、電解液、高分子化合物および溶媒などを含む前駆溶液を調製したのち、正極21および負極22のそれぞれの片面または両面に前駆溶液を塗布する。 Specifically, the electrolyte layer contains a polymer compound together with an electrolytic solution, and the electrolytic solution is held by the polymer compound. This is because leakage of the electrolytic solution is prevented. The composition of the electrolytic solution is as described above. Polymer compounds include polyvinylidene fluoride and the like. When forming the electrolyte layer, after preparing a precursor solution containing an electrolytic solution, a polymer compound, a solvent, and the like, the precursor solution is applied to one side or both sides of each of the positive electrode 21 and the negative electrode 22 .
 この電解質層を用いた場合においても、正極21と負極22との間において電解質層を介してリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、電解液の漏液が防止されるため、より高い効果を得ることができる。 Even when this electrolyte layer is used, lithium ions can move between the positive electrode 21 and the negative electrode 22 through the electrolyte layer, so a similar effect can be obtained. In this case, especially, as described above, leakage of the electrolytic solution is prevented, so that a higher effect can be obtained.
<3.二次電池の用途>
 二次電池の用途(適用例)は、特に限定されない。電源として用いられる二次電池は、電子機器および電動車両などの主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、主電源の代わりに用いられる電源、または主電源から切り替えられる電源である。
<3. Use of secondary battery>
The use (application example) of the secondary battery is not particularly limited. A secondary battery used as a power source may be a main power source for electronic devices and electric vehicles, or may be an auxiliary power source. A main power source is a power source that is preferentially used regardless of the presence or absence of other power sources. An auxiliary power supply is a power supply that is used in place of the main power supply or that is switched from the main power supply.
 二次電池の用途の具体例は、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、ヘッドホンステレオ、携帯用ラジオおよび携帯用情報端末などの電子機器である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。電子機器などに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用または産業用のバッテリシステムなどの電力貯蔵システムである。これらの用途では、1個の二次電池が用いられてもよいし、複数個の二次電池が用いられてもよい。 Specific examples of secondary battery applications are as follows. Electronic devices such as video cameras, digital still cameras, mobile phones, laptop computers, headphone stereos, portable radios and portable information terminals. Backup power and storage devices such as memory cards. Power tools such as power drills and power saws. It is a battery pack mounted on an electronic device. Medical electronic devices such as pacemakers and hearing aids. It is an electric vehicle such as an electric vehicle (including a hybrid vehicle). It is a power storage system such as a home or industrial battery system that stores power in preparation for emergencies. In these uses, one secondary battery may be used, or a plurality of secondary batteries may be used.
 電池パックは、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、駆動用電源として二次電池を用いて作動(走行)する車両であり、その二次電池以外の他の駆動源を併せて備えたハイブリッド自動車でもよい。家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に蓄積された電力を利用して、家庭用の電気製品などを使用可能である。 The battery pack may use a single cell or an assembled battery. An electric vehicle is a vehicle that operates (runs) using a secondary battery as a drive power source, and may be a hybrid vehicle that also includes a drive source other than the secondary battery. In a household electric power storage system, electric power stored in a secondary battery, which is an electric power storage source, can be used to use electric appliances for home use.
 ここで、二次電池の適用例の一例に関して具体的に説明する。以下で説明する適用例の構成は、あくまで一例であるため、適宜、変更可能である。 Here, an example of application of the secondary battery will be specifically described. The configuration of the application example described below is merely an example, and can be changed as appropriate.
 図3は、電池パックのブロック構成を表している。ここで説明する電池パックは、1個の二次電池を用いた電池パック(いわゆるソフトパック)であり、スマートフォンに代表される電子機器などに搭載される。 Fig. 3 shows the block configuration of the battery pack. The battery pack described here is a battery pack (a so-called soft pack) using one secondary battery, and is mounted in an electronic device such as a smart phone.
 この電池パックは、図3に示したように、電源91と、回路基板92とを備えている。この回路基板92は、電源91に接続されていると共に、正極端子93、負極端子94および温度検出端子95を含んでいる。 This battery pack includes a power source 91 and a circuit board 92, as shown in FIG. The circuit board 92 is connected to the power supply 91 and includes a positive terminal 93 , a negative terminal 94 and a temperature detection terminal 95 .
 電源91は、1個の二次電池を含んでいる。この二次電池では、正極リードが正極端子93に接続されていると共に、負極リードが負極端子94に接続されている。この電源91は、正極端子93および負極端子94を介して外部と接続可能であるため、充放電可能である。回路基板92は、制御部96と、スイッチ97と、PTC素子98と、温度検出部99とを含んでいる。ただし、PTC素子98は省略されてもよい。 The power supply 91 includes one secondary battery. In this secondary battery, the positive lead is connected to the positive terminal 93 and the negative lead is connected to the negative terminal 94 . The power supply 91 can be connected to the outside through a positive terminal 93 and a negative terminal 94, and can be charged and discharged. The circuit board 92 includes a control section 96 , a switch 97 , a PTC element 98 and a temperature detection section 99 . However, the PTC element 98 may be omitted.
 制御部96は、中央演算処理装置(CPU)およびメモリなどを含んでおり、電池パック全体の動作を制御する。この制御部96は、必要に応じて電源91の使用状態の検出および制御を行う。 The control unit 96 includes a central processing unit (CPU), memory, etc., and controls the operation of the entire battery pack. This control unit 96 detects and controls the use state of the power supply 91 as necessary.
 なお、制御部96は、電源91(二次電池)の電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ97を切断することにより、電源91の電流経路に充電電流が流れないようにする。過充電検出電圧は、特に限定されないが、具体的には、4.2V±0.05Vであると共に、過放電検出電圧は、特に限定されないが、具体的には、2.4V±0.1Vである。 When the voltage of the power supply 91 (secondary battery) reaches the overcharge detection voltage or the overdischarge detection voltage, the control unit 96 cuts off the switch 97 so that the charging current does not flow through the current path of the power supply 91. to The overcharge detection voltage is not particularly limited, but is specifically 4.2V±0.05V, and the overdischarge detection voltage is not particularly limited, but is specifically 2.4V±0.1V. is.
 スイッチ97は、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでおり、制御部96の指示に応じて電源91と外部機器との接続の有無を切り換える。このスイッチ97は、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などを含んでおり、充放電電流は、スイッチ97のON抵抗に基づいて検出される。 The switch 97 includes a charge control switch, a discharge control switch, a charge diode, a discharge diode, and the like, and switches connection/disconnection between the power supply 91 and an external device according to instructions from the control unit 96 . The switch 97 includes a field effect transistor (MOSFET) using a metal oxide semiconductor, etc., and the charge/discharge current is detected based on the ON resistance of the switch 97 .
 温度検出部99は、サーミスタなどの温度検出素子を含んでおり、温度検出端子95を用いて電源91の温度を測定すると共に、その温度の測定結果を制御部96に出力する。温度検出部99により測定される温度の測定結果は、異常発熱時において制御部96が充放電制御を行う場合および残容量の算出時において制御部96が補正処理を行う場合などに用いられる。 The temperature detection unit 99 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 91 using the temperature detection terminal 95 , and outputs the temperature measurement result to the control unit 96 . The measurement result of the temperature measured by the temperature detection unit 99 is used when the control unit 96 performs charging/discharging control at the time of abnormal heat generation and when the control unit 96 performs correction processing when calculating the remaining capacity.
 本技術の実施例に関して説明する。 An example of this technology will be explained.
<実験例1~29および比較例1~6>
 以下で説明するように、二次電池を作製したのち、その二次電池の電池特性を評価した。
<Experimental Examples 1 to 29 and Comparative Examples 1 to 6>
As described below, after the secondary battery was produced, the battery characteristics of the secondary battery were evaluated.
[二次電池の作製]
 以下の手順により、図1および図2に示した円筒型のリチウムイオン二次電池を作製した。
[Production of secondary battery]
The cylindrical lithium-ion secondary battery shown in FIGS. 1 and 2 was produced by the following procedure.
(正極の作製)
 最初に、正極活物質(リチウム鉄リン酸化合物であるLiFePO)91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(カーボンブラック)6質量部とを互いに混合させることにより、正極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に正極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体21A(厚さ=12μmである帯状のアルミニウム箔)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成した。最後に、ロールプレス機を用いて正極活物質層21Bを圧縮成型した。これにより、正極21が作製された。
(Preparation of positive electrode)
First, 91 parts by mass of a positive electrode active material (LiFePO 4 which is a lithium iron phosphate compound), 3 parts by mass of a positive electrode binder (polyvinylidene fluoride), and 6 parts by mass of a positive electrode conductive agent (carbon black) are mixed together. A positive electrode mixture was obtained by Subsequently, the positive electrode mixture was added to a solvent (N-methyl-2-pyrrolidone, which is an organic solvent), and the solvent was stirred to prepare a pasty positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A (a strip-shaped aluminum foil having a thickness of 12 μm) using a coating device, and then the positive electrode mixture slurry is dried to obtain a positive electrode active material. A material layer 21B is formed. Finally, the positive electrode active material layer 21B was compression-molded using a roll press. Thus, the positive electrode 21 was produced.
(負極の作製)
 最初に、負極活物質(炭素材料である人造黒鉛)93質量部と、負極結着剤(ポリフッ化ビニリデン)7質量部とを互いに混合させることにより、負極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に負極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体22A(厚さ=15μmである帯状の銅箔)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層22Bを形成した。最後に、ロールプレス機を用いて負極活物質層22Bを圧縮成型した。これにより、負極22が作製された。
(Preparation of negative electrode)
First, 93 parts by mass of a negative electrode active material (artificial graphite that is a carbon material) and 7 parts by mass of a negative electrode binder (polyvinylidene fluoride) were mixed together to obtain a negative electrode mixture. Subsequently, the negative electrode mixture was added to a solvent (N-methyl-2-pyrrolidone, which is an organic solvent), and the solvent was stirred to prepare a pasty negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A (band-shaped copper foil having a thickness of 15 μm) using a coating device, and then the negative electrode mixture slurry is dried to obtain a negative electrode active material. A material layer 22B is formed. Finally, the negative electrode active material layer 22B was compression molded using a roll press. Thus, the negative electrode 22 was produced.
(電解液の調製)
 溶媒に電解質塩を添加することにより、その溶媒を撹拌したのち、必要に応じて溶媒に添加剤を加えることにより、その溶媒を撹拌した。
(Preparation of electrolytic solution)
The solvent was stirred by adding the electrolyte salt to the solvent and then by adding additives to the solvent as required.
 溶媒としては、環状炭酸エステルである炭酸エチレン(EC)および炭酸プロピレン(PC)と、鎖状カルボン酸エステルであるプロピオン酸プロピル(PrPr)および酢酸プロピル(PrAc)とを用いると共に、必要に応じて鎖状炭酸エステルである炭酸ジメチル(DMC)、炭酸エチルメチル(EMC)および炭酸ジエチル(DEC)を用いた。 As solvents, cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), and chain carboxylic acid esters such as propyl propionate (PrPr) and propyl acetate (PrAc) are used. Dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC), which are chain carbonates, were used.
 電解質塩としては、リチウムスルホニルイミド塩であるビス(フルオロスルホニル)イミドリチウム(LiFSI)およびビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI)を用いた。 Lithium sulfonylimide salts bis(fluorosulfonyl)imide lithium (LiFSI) and bis(trifluoromethanesulfonyl)imide lithium (LiTFSI) were used as electrolyte salts.
 添加剤としては、フッ素化環状炭酸エステルであるモノフルオロ炭酸エチレン(FEC)を用いた。 As an additive, monofluoroethylene carbonate (FEC), which is a fluorinated cyclic carbonate, was used.
 これにより、電解液が調製された。溶媒の混合比を表す含有量(重量%)と、電解質塩の含有量(mol/kg)と、電解液中における添加剤の含有量(重量%)とは、表1~表3に示した通りである。 This prepared the electrolyte. The content (% by weight) representing the mixing ratio of the solvent, the content (mol/kg) of the electrolyte salt, and the content (% by weight) of the additive in the electrolytic solution are shown in Tables 1 to 3. Street.
 なお、比較のために、以下の電解液も調製した。溶媒の混合比を表す含有量(重量%)と、電解質塩の含有量(mol/kg)とは、表3に示した通りである。 For comparison, the following electrolytic solution was also prepared. Table 3 shows the content (% by weight) representing the mixing ratio of the solvent and the content (mol/kg) of the electrolyte salt.
 溶媒として鎖状カルボン酸エステルの代わりに鎖状炭酸エステルを用いたことを除いて同様の手順により、電解液を調製した。また、電解質塩としてリチウムスルホニルイミド塩の代わりに他のリチウム塩である六フッ化リン酸リチウム(LiPF)を用いたことを除いて同様の手順により、電解液を調製した。また、溶媒として鎖状カルボン酸エステルの代わりに鎖状炭酸エステルを用いたと共に電解質塩としてリチウムスルホニルイミド塩の代わりに六フッ化リン酸リチウムを用いたことを除いて同様の手順により、電解液を調製した。さらに、溶媒として鎖状カルボン酸エステルの代わりに他の鎖状カルボン酸エステルであるプロピオン酸メチル(MePr)およびプロピオン酸エチル(EtPr)を用いたことを除いて同様の手順により、電解液を調製した。 An electrolytic solution was prepared in the same manner, except that chain carbonate was used as the solvent instead of chain carboxylate. Further, an electrolytic solution was prepared by the same procedure except that lithium hexafluorophosphate (LiPF 6 ), which is another lithium salt, was used instead of the lithium sulfonylimide salt as the electrolyte salt. In addition, an electrolytic solution was prepared in the same manner, except that a chain carbonate was used as the solvent instead of the chain carboxylate, and lithium hexafluorophosphate was used as the electrolyte salt instead of the lithium sulfonylimide salt. was prepared. Furthermore, an electrolytic solution was prepared by the same procedure except that other chain carboxylic acid esters, methyl propionate (MePr) and ethyl propionate (EtPr), were used instead of the chain carboxylic acid ester as the solvent. did.
(二次電池の組み立て)
 最初に、正極21の正極集電体21Aにアルミニウム製の正極リード41を溶接したと共に、負極22の負極集電体22Aに銅製の負極リード42を溶接した。
(Assembly of secondary battery)
First, the positive electrode lead 41 made of aluminum was welded to the positive electrode current collector 21A of the positive electrode 21 and the negative electrode lead 42 made of copper was welded to the negative electrode current collector 22A of the negative electrode 22 .
 続いて、セパレータ23(厚さ=15μmである微多孔性ポリエチレンフィルム)を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回空間20Sを有する巻回体を作製した。続いて、巻回体の巻回空間20Sにセンターピン80を挿入した。 Subsequently, the positive electrode 21 and the negative electrode 22 are laminated with each other with a separator 23 (a microporous polyethylene film having a thickness of 15 μm) interposed therebetween, and then the positive electrode 21, the negative electrode 22 and the separator 23 are wound to obtain a winding. A wound body having a winding space 20S was produced. Subsequently, the center pin 80 was inserted into the winding space 20S of the wound body.
 続いて、開口部11Kから電池缶本体11の内部に巻回体と共に絶縁板31,32を収納した。この場合には、電流遮断機構50のディスク板51に正極リード41を溶接したと共に、電池缶本体11に負極リード42を溶接した。続いて、開口部11Kから電池缶本体11の内部に電解液を注入した。これにより、巻回体に電解液が含浸されたため、電池素子20が作製された。 Subsequently, the insulating plates 31 and 32 were accommodated together with the wound body inside the battery can main body 11 through the opening 11K. In this case, the positive electrode lead 41 was welded to the disk plate 51 of the current interrupting mechanism 50 and the negative electrode lead 42 was welded to the battery can main body 11 . Subsequently, an electrolytic solution was injected into the battery can main body 11 through the opening 11K. As a result, the wound body was impregnated with the electrolytic solution, and the battery element 20 was produced.
 最後に、開口部11Kから電池缶本体11の内部に電池蓋12、電流遮断機構50およびPTC素子70を収納したのち、その電池缶本体11のうちの開口部11Kの近傍部分をガスケット60(ポリブチレンテレフタレート)を介して加締めた。これにより、電池缶本体11および電池蓋12を含む電池缶10が形成されたと共に、その電池缶10の内部に電池素子20が封入されたため、二次電池が組み立てられた。 Finally, after housing the battery lid 12, the current interrupting mechanism 50 and the PTC element 70 inside the battery can main body 11 through the opening 11K, the portion of the battery can main body 11 near the opening 11K is covered with a gasket 60 (polyethylene). butylene terephthalate). As a result, the battery can 10 including the battery can main body 11 and the battery lid 12 was formed, and the battery element 20 was sealed inside the battery can 10, so that the secondary battery was assembled.
 この場合には、ディスク板51のうちの折り重ね部51Pの厚さTを変更することにより、表1~表3に示したように、電流遮断機構50の作動圧(kgf/cm)を変化させた。 In this case, by changing the thickness T of the folded portion 51P of the disk plate 51, as shown in Tables 1 to 3, the operating pressure (kgf/cm 2 ) of the current interrupting mechanism 50 can be changed. changed.
(二次電池の安定化)
 常温環境中(温度=23℃)において、組み立て後の二次電池を1サイクル充放電させた。充電時には、0.1Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、その4.2Vの電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電圧が3.0Vに到達するまで定電流放電した。0.1Cとは、電池容量(理論容量)を10時間で放電しきる電流値であると共に、0.05Cとは、電池容量を20時間で放電しきる電流値である。これにより、二次電池が完成した。
(Stabilization of secondary battery)
In a normal temperature environment (temperature=23° C.), the assembled secondary battery was charged and discharged for one cycle. During charging, constant-current charging was performed at a current of 0.1C until the voltage reached 4.2V, and then constant-voltage charging was performed at the voltage of 4.2V until the current reached 0.05C. During discharge, constant current discharge was performed at a current of 0.1C until the voltage reached 3.0V. 0.1C is a current value that can fully discharge the battery capacity (theoretical capacity) in 10 hours, and 0.05C is a current value that fully discharges the battery capacity in 20 hours. This completes the secondary battery.
[電池特性の評価]
 二次電池の電池特性(高温動作特性および高温保存特性)を評価したところ、表1~表3に示した結果が得られた。
[Evaluation of battery characteristics]
Evaluation of battery characteristics (high-temperature operating characteristics and high-temperature storage characteristics) of the secondary batteries yielded the results shown in Tables 1 to 3.
(高温動作特性)
 最初に、常温環境中(温度=23℃)において二次電池を充放電させた。充電時には、1Cの電流で電圧が3.6Vに到達するまで定電流充電したのち、その3.6Vの電圧で電流が5mAに到達するまで定電圧充電した。1Cとは、電池容量を1時間で放電しきる電流値である。
(High temperature operating characteristics)
First, the secondary battery was charged and discharged in a normal temperature environment (temperature = 23°C). During charging, constant current charging was performed at a current of 1 C until the voltage reached 3.6 V, and then constant voltage charging was performed at the voltage of 3.6 V until the current reached 5 mA. 1C is a current value that can discharge the battery capacity in 1 hour.
 続いて、同環境中において二次電池を充電させたのち、その充電状態の二次電池を恒温槽中(温度=105℃)中に投入した。充電条件は、上記した通りである。 Subsequently, after charging the secondary battery in the same environment, the secondary battery in the charged state was placed in a constant temperature bath (temperature = 105°C). The charging conditions are as described above.
 最後に、二次電池の電圧を測定しながら、恒温槽中において充電状態の二次電池を保存することにより、その二次電池の電圧に基づいて、高温動作特性を評価するための指標である電流遮断機構50の作動状態を調べた。 Finally, while measuring the voltage of the secondary battery, by storing the secondary battery in a charged state in a thermostat, it is an index for evaluating the high-temperature operating characteristics based on the voltage of the secondary battery. The operating state of the current interrupting mechanism 50 was investigated.
 具体的には、二次電池の保存中において電圧が2.5V以上降下しなかった場合(電圧降下量<2.5V)には、電流遮断機構50が作動しなかったと判断した。一方、二次電池の保存中において電圧が2.5V以上降下した場合(電圧降下量≧2.5V)には、電流遮断機構50が作動したと判断した。 Specifically, when the voltage did not drop by 2.5 V or more during storage of the secondary battery (voltage drop <2.5 V), it was determined that the current interrupting mechanism 50 did not operate. On the other hand, when the voltage dropped by 2.5 V or more during storage of the secondary battery (amount of voltage drop≧2.5 V), it was determined that the current interrupting mechanism 50 was activated.
 ここでは、保存期間が1ヶ月に到達するまで電流遮断機構50の作動状態を調べた(作動状態1)。 Here, the operating state of the current interrupting mechanism 50 was examined until the storage period reached one month (operating state 1).
 また、保存期間が1ヶ月に到達しても電流遮断機構50が作動しなかった場合には、引き続き、総保存期間が3ヶ月に到達するまで電流遮断機構50の作動状態を調べた(作動状態2)。この場合において、電流遮断機構50が途中で作動した場合には、その電流遮断機構50が作動するまでの総保存期間を調べた。表2および表3に示した1.1M、1.5Mおよび2Mは、それぞれ1.1ヶ月、1.5ヶ月および2ヶ月を意味している。 In addition, when the current interrupting mechanism 50 did not operate even after the storage period reached 1 month, the operating state of the current interrupting mechanism 50 was continuously investigated until the total storage period reached 3 months (operating state 2). In this case, when the current interrupting mechanism 50 was activated in the middle, the total storage period until the current interrupting mechanism 50 was activated was investigated. 1.1M, 1.5M and 2M shown in Tables 2 and 3 mean 1.1 months, 1.5 months and 2 months, respectively.
(高温保存特性)
 最初に、常温環境中(温度=23℃)において二次電池を充放電させることにより、放電容量(保存前の放電容量)を測定した。充放電条件は、高温動作特性を調べた場合の充放電条件と同様にしたと共に、以降においても同様とした。
(High temperature storage characteristics)
First, the discharge capacity (discharge capacity before storage) was measured by charging and discharging the secondary battery in a normal temperature environment (temperature = 23°C). The charging/discharging conditions were the same as the charging/discharging conditions when the high-temperature operating characteristics were examined, and the same was applied hereinafter.
 続いて、高温環境(温度=90℃である恒温槽)中において二次電池を保存(保存期間=30日間)したのち、同環境中において二次電池を充放電させることにより、再び放電容量(保存後の放電容量)を測定した。 Subsequently, after storing the secondary battery in a high-temperature environment (temperature = 90 ° C. constant temperature bath) (storage period = 30 days), by charging and discharging the secondary battery in the same environment, the discharge capacity ( discharge capacity after storage) was measured.
 最後に、容量維持率(%)=(保存後の放電容量/保存前の放電容量)×100という計算式に基づいて、高温保存特性を評価するための指標である容量維持率を算出した。 Finally, the capacity retention rate, which is an index for evaluating high-temperature storage characteristics, was calculated based on the formula: capacity retention rate (%) = (discharge capacity after storage/discharge capacity before storage) x 100.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[考察]
 表1~表3に示したように、正極21がリチウム鉄リン酸化合物を含んでいる二次電池では、電流遮断機構50の作動状態および容量維持率のそれぞれが電解液の組成および電流遮断機構50の作動条件に応じて変動した。
[Discussion]
As shown in Tables 1 to 3, in the secondary battery in which the positive electrode 21 contains a lithium iron phosphate compound, the operating state and capacity retention rate of the current interrupting mechanism 50 depend on the composition of the electrolyte and the current interrupting mechanism, respectively. 50 operating conditions.
 具体的には、電解液において溶媒が鎖状カルボン酸エステルを含んでいると共に電解質塩がリチウムスルホニルイミド塩を含んでいても、作動圧が20kgf/cm未満である場合(比較例1)には、高い容量維持率は得られたが、電流遮断機構50が過剰に作動した。 Specifically, even when the solvent in the electrolytic solution contains a chain carboxylic acid ester and the electrolyte salt contains a lithium sulfonylimide salt, the operating pressure is less than 20 kgf/cm 2 (Comparative Example 1). A high capacity retention rate was obtained, but the current interrupting mechanism 50 was excessively operated.
 また、電解液において電解質塩はリチウムスルホニルイミド塩を含んでいるが溶媒は鎖状カルボン酸エステルを含んでいない場合(比較例2)と、電解液において溶媒は鎖状カルボン酸エステルを含んでいるが電解質塩はリチウムスルホニルイミド塩を含んでいない場合(比較例3)とでは、作動圧に依存せずに電流遮断機構50が過剰に作動したと共に、容量維持率が減少した。 In addition, when the electrolyte salt in the electrolyte contains a lithium sulfonylimide salt but the solvent does not contain a chain carboxylic acid ester (Comparative Example 2), the solvent in the electrolyte contains a chain carboxylic acid ester. However, in the case where the electrolyte salt did not contain a lithium sulfonylimide salt (Comparative Example 3), the current interrupting mechanism 50 excessively operated independently of the operating pressure, and the capacity retention rate decreased.
 さらに、電解液において溶媒が鎖状カルボン酸エステルを含んでいないと共に電解質塩がリチウムスルホニルイミド塩を含んでいない場合(比較例4)には、作動圧に依存せずに電流遮断機構50が過剰に作動した。この場合には、二次電池の保存直後に電流遮断機構50が作動したため、容量維持率を算出できなかった。 Furthermore, when the solvent in the electrolytic solution does not contain a chain carboxylic acid ester and the electrolyte salt does not contain a lithium sulfonylimide salt (Comparative Example 4), the current interrupting mechanism 50 is excessive regardless of the operating pressure. worked. In this case, since the current interrupting mechanism 50 was activated immediately after storage of the secondary battery, the capacity retention rate could not be calculated.
 なお、電解液において電解質塩はリチウムスルホニルイミド塩を含んでいるが溶媒は他の鎖状カルボン酸エステルを含んでいる場合(比較例5,6)には、場合によっては高い容量維持率は得られたが、電流遮断機構50が過剰に作動した。 In addition, when the electrolytic solution contains a lithium sulfonylimide salt as the electrolyte salt but the solvent contains other chain carboxylic acid esters (Comparative Examples 5 and 6), a high capacity retention rate may be obtained in some cases. However, the current interrupting mechanism 50 was operated excessively.
 これに対して、電解液において溶媒が鎖状カルボン酸エステルを含んでいると共に電解質塩がリチウムスルホニルイミド塩を含んでおり、作動圧が20kgf/cm以上である場合(実施例1~29)には、電流遮断機構50が過剰に作動しなかったと共に、高い容量維持率が得られた。 On the other hand, in the electrolyte solution, the solvent contains a chain carboxylic acid ester, the electrolyte salt contains a lithium sulfonylimide salt, and the operating pressure is 20 kgf/cm 2 or more (Examples 1 to 29). 2, the current interrupting mechanism 50 did not operate excessively, and a high capacity retention rate was obtained.
 この場合には、特に、以下で説明する一連の傾向が得られた。第1に、溶媒中における鎖状カルボン酸エステルの含有量が10重量%~75重量%であると、電流遮断機構50がより過剰に作動しなくなり、または容量維持率がより増加した。 In this case, in particular, we obtained a series of trends that will be explained below. First, when the content of the chain carboxylic acid ester in the solvent was 10% by weight to 75% by weight, the current interrupting mechanism 50 did not operate excessively, or the capacity retention rate increased.
 第2に、リチウムスルホニルイミド塩の含有量が溶媒に対して0.8mol/kg~2.0mol/kgであると、十分な容量維持率が得られた。 Second, a sufficient capacity retention rate was obtained when the content of the lithium sulfonylimide salt was 0.8 mol/kg to 2.0 mol/kg with respect to the solvent.
 第3に、溶媒がフッ素化環状炭酸エステルを含んでおり、電解液中におけるフッ素化環状炭酸エステルの含有量が0.1重量%~3.0重量%であると、電流遮断機構50がより過剰に作動しにくくなると共に、容量維持率がより増加した。 Third, when the solvent contains a fluorinated cyclic carbonate and the content of the fluorinated cyclic carbonate in the electrolytic solution is 0.1% by weight to 3.0% by weight, the current interrupting mechanism 50 is more effective. It became difficult to operate excessively, and the capacity retention rate increased more.
[まとめ]
 表1~表3に示した結果から、二次電池が電池缶10、電池素子20(正極21、負極22および電解液)および電流遮断機構50を備えており、その正極21がリチウム鉄リン酸化合物を含んでおり、その電解液の溶媒が鎖状カルボン酸エステルを含んでおり、その電解液の電解質塩がリチウムスルホニルイミド塩を含んでおり、電流遮断機構50の作動圧が20kgf/cm以上であると、電流遮断機構50が過剰に作動することは抑制されながら、高い容量維持率が得られた。よって、二次電池において優れた高温動作特性および優れた高温保存特性を得ることができた。
[summary]
From the results shown in Tables 1 to 3, the secondary battery includes the battery can 10, the battery element 20 (the positive electrode 21, the negative electrode 22, and the electrolytic solution), and the current interrupting mechanism 50, and the positive electrode 21 is lithium iron phosphate. The solvent of the electrolytic solution contains a chain carboxylic acid ester, the electrolyte salt of the electrolytic solution contains a lithium sulfonylimide salt, and the operating pressure of the current interrupting mechanism 50 is 20 kgf/cm 2 . With the above, a high capacity retention rate was obtained while the excessive operation of the current interrupting mechanism 50 was suppressed. Therefore, it was possible to obtain excellent high-temperature operating characteristics and excellent high-temperature storage characteristics in the secondary battery.
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。 Although the present technology has been described above while citing one embodiment and example, the configuration of this technology is not limited to the configuration described in the one embodiment and example, and can be variously modified.
 具体的には、二次電池の電池構造が円筒型である場合に関して説明したが、その電池構造の種類は、特に限定されない。具体的には、電池構造は、角型、コイン型およびボタン型などでもよい。 Specifically, the case where the battery structure of the secondary battery is cylindrical has been described, but the type of battery structure is not particularly limited. Specifically, the battery structure may be rectangular, coin-shaped, button-shaped, or the like.
 また、電池素子の素子構造が巻回型である場合に関して説明したが、その素子構造の種類は、特に限定されない。具体的には、素子構造は、電極(正極および負極)が積層された積層型でもよいし、電極がジグザグに折り畳まれた九十九折り型でもよいし、それ以外でもよい。 Also, the case where the element structure of the battery element is the wound type has been described, but the type of the element structure is not particularly limited. Specifically, the device structure may be a stacked type in which electrodes (positive and negative electrodes) are stacked, a zigzag-fold type in which electrodes are folded in a zigzag pattern, or other configurations.
 さらに、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質の種類は、特に限定されない。具体的には、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。 Furthermore, the case where the electrode reactant is lithium has been described, but the type of the electrode reactant is not particularly limited. Specifically, the electrode reactants may be other alkali metals such as sodium and potassium, or alkaline earth metals such as beryllium, magnesium and calcium, as described above. Alternatively, the electrode reactant may be other light metals such as aluminum.
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。 Since the effects described in this specification are merely examples, the effects of the present technology are not limited to the effects described in this specification. Accordingly, other advantages may be obtained with respect to the present technology.

Claims (7)

  1.  正極、負極および電解液を含む電池素子と、
     前記電池素子を内部に収納する収納部材と、
     前記収納部材の内部における圧力の上昇に応じて作動すると共に、前記電池素子の通電を遮断する電流遮断機構と
     を備え、
     前記正極は、下記の式(1)で表されるリチウム鉄リン酸化合物を含み、
     前記電解液は、溶媒および電解質塩を含み、
     前記溶媒は、100℃以上の沸点を有すると共に25℃において0.9mPa・s以下の粘度を有する鎖状カルボン酸エステルを含み、
     前記電解質塩は、下記の式(2)で表されるリチウムスルホニルイミド塩を含み、
     前記電流遮断機構の作動圧は、20kgf/cm以上である、
     二次電池。
     LiFe1-x PO ・・・(1)
    (Mは、1種類または2種類以上の遷移金属元素(Feを除く。)である。xは、0<x≦1を満たす。)
     LiN(R1SO)(R2SO) ・・・(2)
    (R1およびR2のそれぞれは、フッ素基およびパーフルオロアルキル基のうちのいずれかである。)
    a battery element comprising a positive electrode, a negative electrode and an electrolyte;
    a housing member for housing the battery element therein;
    a current interrupting mechanism that operates in response to an increase in pressure inside the storage member and interrupts current flow to the battery element,
    The positive electrode contains a lithium iron phosphate compound represented by the following formula (1),
    The electrolyte contains a solvent and an electrolyte salt,
    The solvent contains a linear carboxylic acid ester having a boiling point of 100° C. or higher and a viscosity of 0.9 mPa s or lower at 25° C.,
    The electrolyte salt includes a lithium sulfonylimide salt represented by the following formula (2),
    The operating pressure of the current interrupting mechanism is 20 kgf/cm 2 or more.
    secondary battery.
    LiFe x M 1-x PO 4 (1)
    (M is one or more transition metal elements (excluding Fe). x satisfies 0<x≦1.)
    LiN(R1SO2)( R2SO2 ) ( 2 )
    (Each of R1 and R2 is either a fluorine group or a perfluoroalkyl group.)
  2.  前記鎖状カルボン酸エステルは、酢酸プロピルおよびプロピオン酸プロピルのうちの少なくとも一方を含み、
     前記リチウムスルホニルイミド塩は、ビス(フルオロスルホニル)イミドリチウムおよびビス(トリフルオロメタンスルホニル)イミドリチウムのうちの少なくとも一方を含む、
     請求項1記載の二次電池。
    The chain carboxylic acid ester contains at least one of propyl acetate and propyl propionate,
    The lithium sulfonylimide salt comprises at least one of bis(fluorosulfonyl)imidelithium and bis(trifluoromethanesulfonyl)imidelithium,
    The secondary battery according to claim 1.
  3.  前記遷移金属元素は、MnおよびCoのうちの一方または双方を含む、
     請求項1または請求項2記載の二次電池。
    the transition metal element includes one or both of Mn and Co;
    The secondary battery according to claim 1 or 2.
  4.  前記リチウムスルホニルイミド塩の含有量は、前記溶媒に対して0.8mol/kg以上2.0mol/kg以下である、
     請求項1ないし請求項3のいずれか1項に記載の二次電池。
    The content of the lithium sulfonylimide salt is 0.8 mol/kg or more and 2.0 mol/kg or less with respect to the solvent.
    The secondary battery according to any one of claims 1 to 3.
  5.  前記溶媒中における前記鎖状カルボン酸エステルの含有量は、10重量%以上75重量%以下である、
     請求項1ないし請求項4のいずれか1項に記載の二次電池。
    The content of the chain carboxylic acid ester in the solvent is 10% by weight or more and 75% by weight or less.
    The secondary battery according to any one of claims 1 to 4.
  6.  前記電解液は、さらに、フッ素化環状炭酸エステルを含み、
     前記電解液中における前記フッ素化環状炭酸エステルの含有量は、0.1重量%以上3.0重量%以下である、
     請求項1ないし請求項5のいずれか1項に記載の二次電池。
    The electrolytic solution further contains a fluorinated cyclic carbonate,
    The content of the fluorinated cyclic carbonate in the electrolytic solution is 0.1% by weight or more and 3.0% by weight or less.
    The secondary battery according to any one of claims 1 to 5.
  7.  リチウムイオン二次電池である、
     請求項1ないし請求項6のいずれか1項に記載の二次電池。
    A lithium ion secondary battery,
    The secondary battery according to any one of claims 1 to 6.
PCT/JP2021/047212 2021-03-31 2021-12-21 Secondary battery WO2022209058A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-060137 2021-03-31
JP2021060137 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209058A1 true WO2022209058A1 (en) 2022-10-06

Family

ID=83455761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047212 WO2022209058A1 (en) 2021-03-31 2021-12-21 Secondary battery

Country Status (1)

Country Link
WO (1) WO2022209058A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339793A (en) * 1995-04-11 1996-12-24 Mitsubishi Cable Ind Ltd Safety device for sealed battery
JPH10270011A (en) * 1997-03-27 1998-10-09 Toshiba Corp Non-aqueous electrolytic solution battery
JPH11260345A (en) * 1998-01-15 1999-09-24 Texas Instr Inc <Ti> Circuit breaker for electrochemical battery
JP2015118859A (en) * 2013-12-19 2015-06-25 旭化成株式会社 Nonaqueous electrolyte secondary battery
JP2017224631A (en) * 2017-08-31 2017-12-21 株式会社村田製作所 Battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
JP2018045965A (en) * 2016-09-16 2018-03-22 株式会社東芝 Nonaqueous electrolyte battery, battery pack and vehicle
JP2018163855A (en) * 2017-03-27 2018-10-18 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339793A (en) * 1995-04-11 1996-12-24 Mitsubishi Cable Ind Ltd Safety device for sealed battery
JPH10270011A (en) * 1997-03-27 1998-10-09 Toshiba Corp Non-aqueous electrolytic solution battery
JPH11260345A (en) * 1998-01-15 1999-09-24 Texas Instr Inc <Ti> Circuit breaker for electrochemical battery
JP2015118859A (en) * 2013-12-19 2015-06-25 旭化成株式会社 Nonaqueous electrolyte secondary battery
JP2018045965A (en) * 2016-09-16 2018-03-22 株式会社東芝 Nonaqueous electrolyte battery, battery pack and vehicle
JP2018163855A (en) * 2017-03-27 2018-10-18 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2017224631A (en) * 2017-08-31 2017-12-21 株式会社村田製作所 Battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system

Similar Documents

Publication Publication Date Title
JP4975617B2 (en) 4.35V or higher lithium secondary battery
JP4012174B2 (en) Lithium battery with efficient performance
JP4992923B2 (en) Nonaqueous electrolyte secondary battery
KR20200082557A (en) An Electrolyte for a lithium ion secondary battery and a lithium ion secondary battery comprising the same
JP5141582B2 (en) Nonaqueous electrolyte secondary battery
WO2003021707A1 (en) Nonaqueous electrolyte
JP2009048815A (en) Nonaqueous electrolyte solution secondary battery
WO2022209058A1 (en) Secondary battery
WO2023162518A1 (en) Secondary battery
KR20090054939A (en) Additive for non-aqueous electrolyte and secondary battery using the same
WO2022255018A1 (en) Secondary battery electrolyte solution and secondary battery
WO2022196238A1 (en) Electrolyte solution for secondary battery, and secondary battery
WO2022163138A1 (en) Electrolyte for secondary battery, and secondary battery
WO2023119945A1 (en) Secondary battery electrolyte solution and secondary battery
WO2023119946A1 (en) Secondary battery electrolyte solution and secondary battery
WO2023017685A1 (en) Secondary battery electrolyte solution and secondary battery
WO2024070821A1 (en) Secondary battery electrolytic solution and secondary battery
WO2023162429A1 (en) Secondary battery electrolyte and secondary battery
WO2023120688A1 (en) Secondary battery
WO2023162428A1 (en) Secondary battery
WO2023162431A1 (en) Secondary battery electrolyte and secondary battery
JP7462142B2 (en) Secondary battery
JP3963611B2 (en) Non-aqueous electrolyte and secondary battery using the same
WO2023119948A1 (en) Secondary battery
WO2022196266A1 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935207

Country of ref document: EP

Kind code of ref document: A1