KR100852364B1 - 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법 - Google Patents

광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법 Download PDF

Info

Publication number
KR100852364B1
KR100852364B1 KR1020070050832A KR20070050832A KR100852364B1 KR 100852364 B1 KR100852364 B1 KR 100852364B1 KR 1020070050832 A KR1020070050832 A KR 1020070050832A KR 20070050832 A KR20070050832 A KR 20070050832A KR 100852364 B1 KR100852364 B1 KR 100852364B1
Authority
KR
South Korea
Prior art keywords
formula
compound
norfluoxetine
optically active
fluoxetine
Prior art date
Application number
KR1020070050832A
Other languages
English (en)
Inventor
이기인
이도민
고수영
강수미
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020070050832A priority Critical patent/KR100852364B1/ko
Application granted granted Critical
Publication of KR100852364B1 publication Critical patent/KR100852364B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/06Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
    • C07C217/14Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/06Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted
    • C07C217/12Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is not further substituted the oxygen atom of the etherified hydroxy group being further bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/26Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one etherified hydroxy group and one amino group bound to the carbon skeleton, which is further substituted by halogen atoms or by nitro or nitroso groups

Abstract

본 발명은 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법에 관한 것으로서, 본 발명에 따르면 매우 높은 광학순도를 나타내고 NaCN, NaN3, 아민 등의 친핵체와 쉽게 반응하는 이탈기를 가지는 중간체 화합물을 이용함으로써 보다 쉽게 광학활성 플루옥세틴 또는 노르플루옥세틴을 제조할 수 있다.

Description

광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법{METHOD OF PREPARING FLUOXETINE OR NORFLUOXETINE HAVING OPTICAL ACTIVITY}
본 발명은 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법에 관한 것이다.
광학활성을 갖는 3-아미노-1-페닐프로판올 유도체는 다양한 농,의약품 중간체, 정밀화학제품 또는 빌딩 블럭(building block)으로 사용되고 있다.
Figure 112007038305617-pat00001
상기 식에서, R1은 수소; 또는 ortho-Me, OMe 또는 para-CF3기를 갖는 페닐기이고,
R2는 수소이고,
R3는 수소 또는 메틸이다.
이러한 3-아미노-1-페닐프로판올 유도체는 다양한 중간체를 이용한 다양한 합성방법이 공지되어 있다.
미국특허 제5,708,0353호는 3-아미노-1-페닐프로판올 유도체 중의 하나인 플루옥세틴(fluoxetine)에 대한 합성방법을 개시하고 있는데, 구체적으로는 i) 시나밀 알콜(cinnamyl alcohol)에서 샤프리스 에폭시화 반응(sharpless epoxidation)을 거쳐 에폭시시나밀 알콜(epoxycinnamyl alcohol)을 만드는 방법(Gao et al., J. Org. Chem., 53, 4081-4084, 1988) 및 ⅱ) 3-클로로-1-페닐프로판-1-온으로부터 Ipc2BCl로 환원하는 방법으로 합성된 중간체를 이용하는 방법이 공지되어 있다.
Figure 112007038305617-pat00002
그러나, 샤프리스 에폭시화 반응이나 Ipc2BCl로 환원하는 방법은 촉매의 제조공정이나 무수의 반응조건 등 대량화 공정에 적용하기에는 매우 까다로운 공정이 다.
또한, ⅲ) 대한민국 특허공개 제2004-93501호에는 리파제를 이용한 효소적 방법으로 광학활성 알코올 화합물 및 이의 에스테르를 제조하여 이를 이용하는 방법이 기술되어 있으나, 전환율이 낮은 단점이 있다.
이 밖에도, iv) 3-하이드록시-3-페닐프로파니트릴로부터 빵 효모 환원효소(Bakers' yeast reductase)를 이용하여 비대칭환원 후, 3-아미노-1-페닐프로판올 유도체인 플루옥세틴, 아토모세틴(atomoxetine)(토모세틴, tomoxetine) 및 니소세틴(nisoxetine)을 합성하는 방법(Hammond et al., Tetrahderon Lett. 48, 1217-1219, 2007);
Figure 112007038305617-pat00004
ⅴ) 3-하이드록시-3-페닐프로파니트릴로부터 리파제, 및 아실공여체로서 비닐아세테이트를 사용하여 알코올을 생성시킨 뒤, 이를 분할하여 3-아미노-1-페닐프로판올 유도체인 플루옥세틴, 토모세틴, 니소세틴 및 노르플루옥세 틴(norfluoxetine)을 합성하는 방법(Kamal et al., Tetrahedron : Asymmetry, 13, 2039-2051, 2002);
Figure 112007038305617-pat00005
ⅵ) 3-하이드록시-3-페닐프로파니트릴로부터 고분자 물질로 지지된 키랄 설폰아마이드(polymer-supported chiral sulfonamide)를 사용하여 1,3-아미노알콜을 만든 후, 이로부터 3-아미노-1-페닐프로판올 유도체인 플루옥세틴 및 둘록세틴(duloxetine)을 합성하는 방법(WANG et al., Tetrahedron : Asymmetry, 16, 1873-1879, 2005);
Figure 112007038305617-pat00006
ⅶ) 3-하이드록시-3-페닐프로파니트릴로부터 비대칭 수소화 전이반응(asymmetric transfer hydrogenation)을 이용하여 플루옥세틴을 합성하는 방법(Watanabe et al ., J. Org . Chem ., 67, 1712-1715, 2002);
Figure 112007038305617-pat00007
ⅷ) 스티렌(styrene)으로부터 샤프리스 비대칭 이수산화 반응(sharpless asymmetric dihydroxylation)을 통해 1,2-디올을 제조하고, 이로부터 노르플루옥세틴 및 플루옥세틴을 합성하는 방법(Pandey et al., Tetrahedron Lett., 43, 4425-4426, 2002);
Figure 112007038305617-pat00008
및 ⅸ) Pd-촉매를 이용한 벤질 알콜의 속도론적 분할(kinetic resolution)을 통하여 토모세틴 및 플루옥세틴을 합성하는 방법(Ali et al., Tetrahedron Lett., 43, 5435-5436, 2002)이 공지되어 있다.
Figure 112007038305617-pat00009
그러나, 리파제를 이용하는 방법이나 속도론적 분할에 의한 방법들은 이론적 으로 50%의 수율을 넘지 못하는 한계가 있으며, 또한 혼합 생성물을 분리 정제하여야하는 단점이 있다.
한편, 상기 ⅰ), ⅷ) 및 ⅸ)의 방법들은 1,2-디올 또는 1,3-디올에서 1차 알코올이 이탈기(leaving group)로서, NaCN, NaN3, 아민 등의 친핵체와 쉽게 반응하는 설포닐옥시(sulfonyloxy) 기라는 공통점이 있으며, 이로 인하여 용이하게 광학활성을 갖는 3-아미노-1-페닐프로판올 유도체로 전환될 수 있는 장점을 갖는다.
본 발명의 목적은 NaCN, NaN3, 아민 등의 친핵체와 쉽게 반응하는 이탈기를 가지며 높은 광학순도를 갖는 중간체를 효과적으로 제조하고, 이를 이용하여 높은 광학활성을 가진 3-아미노-1-페닐프로판올 유도체를 제조하는 방법을 제공하는 것이다.
상기 목적에 따라, 본 발명은
1) 하기 화학식 2의 화합물을 촉매 및 수소공여체의 존재 하에 비대칭 수소화 전이반응(asymmetric transfer hydrogenation)을 통해 환원시켜 하기 화학식 3a 또는 3b의 화합물을 제조하는 단계;
2) 상기 화학식 3a 또는 3b의 화합물을 니트릴 화합물과 반응시켜 하기 화학 식 4a 또는 4b의 화합물을 제조하는 단계;
3) 상기 화학식 4a 또는 4b의 화합물을 BH3 존재 하에 환원반응시켜 화학식 5a 또는 5b의 화합물을 제조하는 단계; 및
4) 상기 화학식 5a 또는 5b의 화합물을 염기 존재 하에서 치환된 벤조트리플루오라이드 화합물과 반응시키는 단계
를 포함하는, 하기 화학식 1a 또는 1b의 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법을 제공한다.
Figure 112007038305617-pat00010
Figure 112007038305617-pat00011
Figure 112007038305617-pat00012
Figure 112007038305617-pat00013
Figure 112007038305617-pat00014
Figure 112007038305617-pat00015
Figure 112007038305617-pat00016
Figure 112007038305617-pat00017
Figure 112007038305617-pat00018
상기 식에서, R은 수소 또는 메틸이고,
X는 이탈기로서 토실옥시(OTs) 또는 메실옥시(OMs)이다.
이하, 본 발명을 더욱 상세히 설명한다.
본 발명에 따라 제조되는 플루옥세틴 및 노르플루옥세틴은 각각의 거울상 이성질체를 포함한다.
상기 화학식 1a 또는 1b에서 R이 메틸인 플루옥세틴의 경우는, 화학식 5a 또는 5b의 화합물을 치환된 벤조트리플루오라이드 화합물과 반응시키는 단계를 수행하기 전에, 화학식 5a 또는 5b의 화합물의 아민기에 에틸 클로로포르메이트를 부가하여 아민기를 보호한 후, 다시 리튬 알루미늄 하이드라이드와 같은 환원제와 반응시켜 하기 화학식 6a 또는 6b의 화합물을 제조하는 단계를 더 포함한다.
Figure 112007038305617-pat00019
Figure 112007038305617-pat00020
본 발명에서, 상기 화학식 2의 화합물, 즉 α-설포닐옥시 아세토페논 화합물 은 티아졸(thiazole), 옥사졸(oxazole), 이미다졸(imidazole), 피라졸(pyrazole), 벤조퓨란(benzofuran) 등의 헤테로고리 화합물을 만드는 전구체로서 그 합성방법은 이미 잘 알려져 있다. 예를 들어, 상기 화학식 2의 화합물 중 X가 토실옥시인 경우, 즉 α-토실옥시 아세토페논 화합물은 일반적으로 아세토페논을 [하이드록시(토실옥시)이오도]벤젠(코서 시약(Koser's reagent))과 반응시켜 합성한다(Koser et al., J. Org. Chem., 47, 2487, 1982). 또한, 상기 화학식 2의 화합물 중 X가 메실옥시인 경우, 즉 α-메실옥시 아세토페논 화합물은 일반적으로 아세토페논을 [하이드록시(메실옥시)아이오도]벤젠과 반응시켜 합성한다.
상기 α-토실옥시 아세토페논 및 α-메실옥시 아세토페논 화합물의 합성방법을 하기 반응식 1에 표시하였다.
Figure 112007038305617-pat00021
상기 식에서, X는 토실옥시(OTs) 또는 메실옥시(OMs)이다.
본 발명에서, 중간체로 사용되는 상기 화학식 3a 또는 3b의 화합물은 높은 수준의 광학활성도를 갖는 (S)-알코올 및 (R)-알코올로서, 상기 화학식 2의 화합물을 촉매 존재 하에 비대칭 수소화 전이반응을 통해 환원시켜 제조할 수 있다.
본 발명에서는, α위치가 각각 Cl, N3, CN, NO2 등으로 치환된 기존에 알려진 아세토페논 화합물을 사용하는 경우에 비하여, 상기 화학식 2의 화합물을 사용하여 특정한 촉매 하에 비대칭 수소화 전이반응을 시킴으로써 월등히 높은 수율로 매우 높은 광학활성도를 가지는 상기 화학식 3a 또는 화학식 3b의 중간체 화합물을 제조할 수 있다.
상기 촉매는 펜타메틸시클로펜타디에닐(pentamethylcyclopentadienyl; C5Me5, Cp*) 기를 갖는 로듐(rhodium) 화합물과 광학활성 1,2-디페닐에틸렌-N-(p-톨루엔설포닐)디아민(diphenylethylene-N-(p-toluenesulfonyl)diamine)을 조합시켜 제조할 수 있다. 구체적으로, 본 발명에서는 (펜타메틸시클로펜타디에닐) 로듐(Ⅲ) 클로라이드 다이머 [Rh(C5Me5)Cl2]2에 2 당량의 광학활성 1,2-디페닐에틸렌-N-(p-톨루엔설포닐)디아민(TsDPEN)을 반응시켜 얻어지는 촉매(TsDPEN-RhCl-Cp*)를 사용하였다. 상기 촉매는 종래 문헌에서 보고된 바 있다(Mashima et al., Chem. Letters, 1199-1201, 1998). 본 발명에서는 화학식 3a의 화합물을 제조하는 경우에는 [R,R]-TsDPEN-RhCl-Cp를 사용하고, 화학식 3b의 화합물을 제조하는 경우에는 [S,S]-TsDPEN-RhCl-Cp를 사용한다.
상기 촉매를 사용하여 상기 화학식 2의 화합물을 환원시켜 화학식 3a 또는 화학식 3b의 화합물을 제조하는 과정을 하기 반응식 2에 표시하였다:
Figure 112007038305617-pat00022
상기 반응에서, 촉매에 대한 기질, 즉 화학식 2의 화합물은 통상적으로 금속화합물에 대한 기질의 몰비(S/C)로서 100 내지 100,000의 양으로 사용하고, 바람직하게는 1,000 내지 10,000의 양으로 사용한다.
또한, 상기 반응에서, 수소공여체는 열적 작용 또는 촉매 작용에 따라서 수소를 공여하는 것이면 제한없이 사용할 수 있으며, 바람직하게는 포름산 및 그 금속염; 암모늄 포름산염(ammoniun formate); 포름산과 아민의 공비화합물 등을 예시할 수 있다. 이때, 포름산 및 포름산과 아민의 공비화합물을 수소공여체로 이용하는 경우에는 용매를 이용하지 않아도 좋고, 용매를 이용하는 경우에는 에틸 아세테이트, 톨루엔, 디클로로메탄, 디메틸포름아마이드(DMF), 디메틸설폭사이드(DMSO), 테트라하이드로퓨란(THF), 아세토니트릴, 이소프로판올 등을 사용할 수 있다.
또한, 상기 반응은 질소 분위기의 상온 조건에서, 3시간 내지 5시간동안 수행되는 것이 바람직하다.
상기 화학식 1a 또는 1b에서 R이 메틸 또는 H인 경우, 즉 각각 플루옥세틴 또는 노르플루옥세틴의 제조방법을 하기 반응식 3a 및 3b에 표시하였다.
Figure 112007038305617-pat00023
Figure 112007038305617-pat00024
상기 반응식에서, (S)-3 및 (R)-3으로부터 본 발명에 따른 (R)-8 및 (S)-8을 제조하는 방법 및 (R)-10 및 (S)-10을 제조하는 방법은 공지되어 있다(참고문헌[Hammond et al., Tetrahedron Letters 48, 1217-1217, 2007; Pandey et al., Tetrahedron Letters 43, 4425-4426. 2002; Ali et al., Tetrahedron Letters 43, 5435-5436, 2002; W. Hilborn et al., Tetrahedron Letters 42, 8919-8921, 2001; Kamal et al., Tetrahedron: Asymmetry 13, 2039-2051, 2002; Wang et al., Tetrahedron: Asymmetry, 1873-1879, 2005; 및 Kumar et al., Tetrahedron: Asymmetry, 15, 3955-3959, 2004] 참조).
상기 반응식 3a 및 3b에 나타낸 바와 같이, 본 발명의 제조방법에 따르면 상기 화학식 2의 화합물을 촉매 및 수소 공여체의 존재 하에 비대칭 수소화 전이반응(asymmetric transfer hydrogenation)을 통해 환원시켜 상기 화학식 3a 또는 3b의 화합물을 제조하고, 얻어진 화합물을 NaCN, KCN 등과 같은 니트릴 화합물과 반 응시켜 상기 화학식 4a 또는 4b의 화합물을 제조한 후, 얻어진 화합물을 BH3 존재 하에 환원반응시켜 상기 화학식 5a 또는 5b의 화합물을 제조한 다음, 얻어진 화합물을 염기 존재 하에서 치환된 벤조트리플루오라이드 화합물과 반응시켜 상기 화학식 1a 또는 1b의 플루옥세틴 또는 노르플루옥세틴을 제조할 수 있다.
이때, 상기 치환된 벤조트리플루오라이드 화합물로는 4-클로로벤조트리플루오라이드, 4-플루오로벤조트리플루오라이드, 4-브로모벤조트리플루오라이드, 4-아이오도벤조트리플루오라이드, 4-메탄설포닐옥시벤조트리플루오라이드 또는 4-토실설포닐옥시벤조트리플루오라이드를 사용할 수 있으며, 상기 염기로는 NaH, KH, KOBu t , NaOBu t 또는 NaNH2 등을 사용할 수 있다.
또한, 상기 반응식 3a에서 알 수 있듯이, 상기 화학식 1a 또는 1b에서 R이 메틸인 플루옥세틴의 경우는 상기 화학식 5a 또는 5b의 화합물을 치환된 벤조트리플루오라이드와 반응시키는 단계를 수행하기 전에, 화학식 5a 또는 5b의 화합물의 아민기에 에틸 클로로포르메이트를 부가하여 아민기를 보호한 후, 다시 리튬 알루미늄 하이드라이드와 같은 환원제와 반응시켜 상기 화학식 6a 또는 6b의 화합물을 제조하는 단계를 더 포함한다.
이하, 본 발명을 실시예에 의하여 더욱 상세하게 설명한다.
단, 하기 실시예들은 본 발명을 예시하는 것으로 본 발명의 내용이 실시예에 의해 한정되는 것은 아니다.
본 발명에서는 적외선 분광법, 핵자기 공명 스펙트럼, 질량 분광법, 액체 크로마토그래피법, 선광도 측정법 또는 대표적인 화합물의 원소분석 계산치와 실측치의 비교에 의해 화합물들의 분자구조를 확인하였다.
또한, 합성된 화합물의 광학순도는 광학이성체 분리용 컬럼인 키랄셀(Chiralcel) OD-H, DB-H 및 OJ-H가 장착된 고성능 액체 크로마토그래피(HPLC; Daicel사)를 이용하여 측정하고, 결과를 ee(enantiomeric excess) 값으로 나타내었다.
[실시예 1] ( S )-2-토실옥시-1-페닐에탄올(화학식 3의 화합물, ( S )-3)의 제조
Figure 112007038305617-pat00025
1-페닐-2-(p-토실설포닐옥시)에탄온(2.9 g, 10 mmol) 및 [R,R]-TsDPEN-RhCl -Cp·HCl·Et3N (8 mg, 0.001 당량)을 에틸 아세테이트에 완전히 녹인 후, 여기에 HCO2H와 Et3N 의 혼합용액(5:2) 2 ㎖를 첨가하였다. 이들을 질소 분위기의 상온 조건에서 반응시키면서 얇은 막 크로마토그래피(TLC)로 확인하여 1-페닐-2-(p-토실설포닐옥시)에탄올의 스팟(spot)이 모두 사라질 때까지 약 4시간 동안 반응시킨 후 반응을 종결하였다. 반응액을 증류수와 에틸 아세테이트로 추출하고 식염수로 세 척한 후, 얻어진 유기층을 Na2SO4로 건조하고 여과한 후 용매를 증발시켜 제거한 다음, 플래쉬 실리카 컬럼 크로마토그래피(flash silica column chromatography)(n-헥산 : EA = 2:1)로 분리하여 표제의 화합물(2.59 g, 수율: 88.6%)을 얻었다.
m.p. 73-74 ℃,
Figure 112007038305617-pat00026
+53.9 (c 1.21, CHCl3)
1H-NMR(250MHz, CDCl3) δ 7.78(d, 2H, J=8.37 Hz), 7.45-7.33(m, 7H), 4.96(d, 1H, J=8.42 Hz), 4.08(dd, 2H, J1=10.37Hz, J2=3.27 Hz), 2.53(d, 1H, J=3.17 Hz), 2.45 (s, 3H)
키랄 HPLC: 99% ee (Chiralcel OD-H, 250 x 4.6 mm, 헥산 : 에탄올 = 95 : 5, 0.5 ml/min)
[실시예 2] ( R )-2-토실옥시-1-페닐에탄올(화학식 4의 화합물, ( R )-3)의 제조
Figure 112007038305617-pat00027
촉매로서 [R,R]-TsDPEN-RhCl-Cp·HCl·Et3N 대신에 [S,S]-TsDPEN-RhCl-Cp· HCl·Et3N(8 mg, 0.001 당량)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 상기 표제의 화합물을 합성하였다(2.5 g, 수율: 84.4%).
Figure 112007038305617-pat00028
-54.2 (c 1.05, CHCl3),
NMR 데이터는 실시예 1의 화합물과 동일.
키랄 HPLC: 99% ee (Chiralcel OD-H, 250 x 4.6 mm, 헥산 : 에탄올 = 95 : 5, 0.5 ml/min).
[실시예 3] ( R )-3-하이드록시-3-페닐프로판니트릴(( R )-4)의 제조
Figure 112007038305617-pat00029
실시예 1에서 제조한 (S)-2-토실옥시-1-페닐에탄올(2.8048 ㎖, 9.59 mmol)을 둥근 바닥 플라스크에 넣고 에탄올 수용액(EtOh: H2O=4:1) 200 ㎖를 첨가하여 용해시켰다. 0℃에서 결과 용액에 NaCN(1.645 g, 33.56 mmol)을 넣고, 질소 분위기 상온 조건에서 반응시키면서 TLC로 확인하여 (S)-2-토실옥시-1-페닐에탄올의 스팟이 모두 사라질 때까지 약 47시간 동안 반응시킨 후 반응을 종결하였다. 반응 혼합물을 회전 증발기로 농축하고, 농축된 반응 혼합물을 증류수와 에틸 아세테이트로 추 출한 후 식염수로 세척하였다. 얻어진 유기층을 Na2SO4로 건조하고 여과한 후 용매를 증발시켜 제거하고, 플래쉬 실리카 컬럼 크로마토그래피(n-헥산 : EA = 2:1)로 표제의 화합물을 분리하였다(1.24 g, 수율: 87.6%).
Figure 112007038305617-pat00030
+52.5 (c 0.78, EtOH)
1H-NMR(250MHz, CDCl3) δ 7.75(s, 5H), 4.93(t, 1H, J=6.15 Hz), 3.35 (br s, 1H), 2.66 (d, 2H, J=6.17 Hz)
[실시예 4] ( S )-3-하이드록시-3-페닐프로판니트릴(( S )-4)
Figure 112007038305617-pat00031
실시예 2에서 제조한 (R)-2-토실옥시-1-페닐에탄올을 사용하여 실시예 3과 동일한 방법으로 표제의 화합물을 합성하였다(1.1 g, 수율: 92.4%).
Figure 112007038305617-pat00032
-52.8 (c 0.36, EtOH)
NMR 데이터는 실시예 3의 화합물과 동일.
[실시예 5] ( R )-3-아미노-1-페닐-프로판-1-올(( R )-5)의 제조
Figure 112007038305617-pat00033
실시예 3에서 얻은 (R)-3-하이드록시-3-페닐프로판니트릴(1.153 g, 7.84 mmol)을 테트라하이드로퓨란(THF) 15 ㎖가 담긴 둥근 바닥 플라스크에 넣고 녹였다. 결과 용액에 보란 디메틸 설파이드 착체(borane dimethyl sulfide complex)(5.5 ㎖, 11 mmol)를 시린지를 이용하여 천천히 점적하고 오일 배스에서 디메틸 설파이드를 증발시킨 후, 반응 혼합물을 환류시키면서 TLC로 확인하여 (R)-3-하이드록시-3-페닐프로판니트릴의 스팟이 모두 사라질 때까지 약 6시간 동안 반응시켰다. 반응액에 1M의 메탄올성 HCl(methanolic HCl)을 넣고 용매를 증발시킨 후, 다시 2M의 HCl을 넣고 50 ㎖의 CH2Cl2로 2회 추출하였다. 추출물에 5M의 NaOH를 넣은 후 pH 시험지로 pH가 중성 내지 염기성 부근에 있는지를 확인한 다음, 다시 100 ㎖의 CH2Cl2로 5회 추출하였다. 추출물을 식염수로 세척한 다음, 얻어진 유기층을 Na2SO4로 건조하고 여과한 후 용매를 증발시켜 제거하였다. 잔류물을 얻은 후, 이를 정제하지 않고 바로 다음 반응에 사용하였다.
1H-NMR(250MHz, CDCl3) δ 7.35-7.23 (m, 5H), 4.94 (dd, 1H, J1=4.74 Hz, J2=8.25 Hz), 3.64 (br s, 3H), 3.12-2.89 (m, 2H), 1.78-1.68 (m, 2H)
[실시예 6] ( S )-3-아미노-1-페닐-프로판-1-올(( S )-5)의 제조
Figure 112007038305617-pat00034
실시예 4에서 얻은 (S)-3-하이드록시-3-페닐프로판니트릴을 이용하여 실시예 5와 동일한 방법으로 표제의 화합물을 합성하였다 (1.14g, 86%).
NMR 데이터는 상기 실시예 5의 화합물과 동일.
[실시예 7] ( R )- N -(에톡시카보닐)-3-아미노-1-페닐-1-프로판올(( R )-6)의 제조
Figure 112007038305617-pat00035
실시예 5에서 제조한 (R)-3-아미노-1-페닐-프로판-1-올(1.185 g, 7.84 mmol)을 둥근 바닥 플라스크에 넣고 CH2Cl2 20 ㎖를 첨가하여 용해시킨 후, 여기에 다시 클로로포름산 에틸(ethyl chloroformate)(1.0 ㎖, 10.4 mmol)을 첨가하였다. 결과 용액에 K2CO3(7.1 g, 52 mmol) 수용액(20 ㎖)을 천천히 첨가하고, 질소 분위기 상온 조건에서 24시간 동안 강하게 교반하였다. 증류수와 CH2Cl2로 추출하고 식염수로 세척한 뒤, 얻어진 유기층을 Na2SO4로 건조하고 여과한 후 용매를 증발시켜 제거하고, 플래쉬 실리카 컬럼 크로마토그래피(n-헥산 : EA = 1:1)를 통해 표제의 화합물을 얻었다(1.307 g, 수율: 75%).
1H-NMR(250MHz, CDCl3) δ 7.35-7.18 (m, 5H), 5.19 (br s, 1H), 4.76 (t, 1H, J=5.56 Hz), 4.11 (q, 2H, J=7.10 Hz), 3.55-3.42 (m, 1H), 3.29-3.17 (m, 1H), 1.94-1.84 (m, 2H), 1.25 (t, 3H, J=6.34 Hz)
+23.5 (c 0.75, CHCl3).
[실시예 8] ( S )- N -(에톡시카보닐)-3-아미노-1-페닐-1-프로판올(( S )-6)의 제조
Figure 112007038305617-pat00036
실시예 8에서 제조한 (S)-3-아미노-1-페닐-프로판-1-올을 이용하여 실시예 7과 동일한 방법으로 표제의 화합물을 합성하였다(0.96 g, 수율: 77 %).
Figure 112007038305617-pat00037
-24.8 (c 0.52, CHCl3)
NMR 데이터는 실시예 7의 화합물과 동일.
[실시예 9] ( R )- N -메틸-3-아미노-1-페닐-1-프로판올(( R )-7)의 제조
Figure 112007038305617-pat00038
실시예 7에서 얻은 (R)-N-(에톡시카보닐)-3-아미노-1-페닐-1-프로판올(1.148 g, 5.14 mmol)을 둥근 바닥 플라스크에 넣고 THF 15 ㎖를 첨가하여 용해시킨 후, THF 중의 1M 리튬알루미늄하이드라이드(LAH)(8 ㎖, 8 mmol)를 천천히 점적하고 질소 분위기하에서 4시간 동안 환류시켰다. 반응 결과물을 0℃로 냉각한 후, 물(5 mL)을 천천히 점적하고 에틸 아세테이트로 여과하였다. 결과물을 증류수와 에틸 아세테이트로 추출하고 식염수로 세척한 후, 얻어진 유기층을 Na2SO4로 건조하고 여과한 후 용매를 증발시켜 제거한 다음, 플래쉬 실리카 컬럼 크로마토그래피(MeOH : CH2Cl2 = 1:1)로 표제의 화합물을 얻었다(0.54 g, 수율: 64%).
1H-NMR(250MHz, CDCl3) δ 7.39-7.20 (m, 5H), 4.93 (dd, 1H, J1=3.27 Hz, J2=8.42 Hz), 4.02 (s, 2H), 2.90-2.84 (m, 2H), 2,44 (s, 3H), 1.87-1.74 (m, 1H)
[실시예 10] ( S )- N -메틸-3-아미노-1-페닐-1-프로판올(( S )-7)의 제조
Figure 112007038305617-pat00039
실시예 8에서 얻은 (S)-N-(에톡시카보닐)-3-아미노-1-페닐-1-프로판올을 사용하여 실시예 9와 동일한 방법으로 표제의 화합물을 합성하였다(0.51 g, 수율: 82.3%).
NMR 데이터는 실시예 9의 화합물과 동일.
[실시예 11] ( R )- N -메틸-3-페닐-3-(4-트리플루오로메틸-페녹시)-1-프로판아민(( R )-8)의 제조
Figure 112007038305617-pat00040
실시예 9에서 얻은 (R)-N-메틸-3-아미노-1-페닐-1-프로판올(0.427 g, 2.58 mmol)을 둥근 바닥 플라스크에 넣고 DMSO 13 ㎖를 첨가하여 용해시킨 후, 여기에 NaH(60 %, 0.160 g, 4 mmol)를 넣고 55℃로 2시간 동안 가열 혼합하였다. 용액의 색이 진한 오렌지색으로 변한 후, 4-클로로벤조트리플루오르화물(0.53 ㎖, 3.87 mmol)을 넣고 90℃로 6시간 동안 가열 혼합하였다. 반응이 종료된 후, 물(10 ㎖)을 첨가하고 20 ㎖의 에테르로 10회 추출하였다. 추출물을 식염수로 세척하고, 얻어진 유기층을 Na2SO4로 건조하고 여과한 후 용매를 증발시켜 제거한 다음, 플래쉬 실리카 컬럼 크로마토그래피(MeOH)로 표제의 화합물을 분리하였다(0.42 g, 수율: 84%).
1H-NMR(250MHz, CDCl3) δ 7.32 (d, 2H, J=8.52 Hz), 7.25-7.16 (m, 5H), 6.81 (d, 2H, J=8.57 Hz), 5.22 (dd, 1H, J1=4.72 Hz, J2=7.87 Hz), 2.79-2.65 (m, 2H), 2.34 (s, 3H), 2.27-1.88 (m, 2H)
[실시예 12] ( S )- N -메틸-3-페닐-3-(4-트리플루오로메틸-페녹시)-1-프로판아민(( S )-8)의 제조
Figure 112007038305617-pat00041
실시예 10에서 얻은 (S)-N-메틸-3-아미노-1-페닐-1-프로판올을 사용하여 실 시예 11과 동일한 방법으로 표제의 화합물을 합성하였다(0.19 g, 수율: 84%).
-4.4 (c 0.68, CHCl3)
NMR 데이터는 실시예 11의 화합물과 동일.
[실시예 13] ( R )-플루옥세틴 염산염(( R )-9)의 제조
Figure 112007038305617-pat00042
실시예 11에서 얻은 (R)-N-메틸-3-페닐-3-(4-트리플루오로메틸-페녹시)-1-프로판아민(215 mg, 0.695 mmol)에 디에틸 에테르 5 ㎖를 넣고 교반하였다. 결과 용액에 질소 가스 풍선을 달고 디에틸 에테르 중의 HCl 용액 0.45 ㎖를 천천히 적가하여 30분 동안 교반하였다. 고체가 생성되면 이를 여과하고 디에틸 에테르로 세척한 후 잔여 고체를 에틸 아세테이트에 용해하였다. 결과 용액에서 에틸 아세테이트를 농축시키고 헥산으로 재결정한 후, 생성된 고체를 여과하여 표제의 화합물을 얻었다(0.18 g, 수율: 97%).
m.p. 137-138℃
Figure 112007038305617-pat00043
-12.7 (c 0.31, CHCl3); 1H-NMR(250MHz , CDCl3) δ 7.44-7.26 (m, 7H), 6.90 (d, 2H, J=8.52 Hz), 5.46 (dd, 1H, J1=4.6 Hz, J2=7.9 Hz), 3.18-3.10 (m, 2H), 2.63 (s, 3H), 2.57-2.42 (m, 2H)
[실시예 14] (S)-플루옥세틴 염산염((S)-9)의 제조
Figure 112007038305617-pat00044
실시예 12에서 얻은 (S)-N-메틸-3-페닐-3-(4-트리플루오로메틸-페녹시)-1-프로판아민을 사용하여 실시예 13과 동일한 방법으로 표제의 화합물을 합성하였다 (58.3mg, 수율: 92%).
m.p. 138-140℃
Figure 112007038305617-pat00045
+12.9 (c 0.315, CHCl3)
NMR 데이터는 실시예 13의 화합물과 동일.
[ 실시예 15] (R)- 노르플루옥세틴((R)-10)의 제조
Figure 112007038305617-pat00046
실시예 5에서 얻은 (R)-3-아미노-1-페닐-프로판-1-올을 사용하여 실시예 11과 동일한 방법으로 표제의 화합물을 합성하였다(0.37 g, 수율: 67%).
Figure 112007038305617-pat00047
+3.5 (c 0.31, CHCl3)
1H-NMR(250MHz , CDCl3) δ 7.44-7.26 (m, 7H), 6.90 (d, 2H, J=4.52 Hz), 5.36 (m, 1H), 2.98-3.10 (m, 2H), 2.07-2.32 (m, 2H)
[ 실시예 16] (S)- 노르플루옥세틴((S)-10)의 제조방법
Figure 112007038305617-pat00048
실시예 6에서 얻은 (S)-3-아미노-1-페닐-프로판-1-올을 사용하여 (실시예 11과 동일한 방법으로 표제의 화합물을 합성하였다(0.26 g, 수율: 64%).
Figure 112007038305617-pat00049
-3.2 (c 0.23, CHCl3)
NMR 데이터는 실시예 15의 화합물과 동일.
상기에서 살펴본 바와 같이, 본 발명에 따르면 매우 높은 광학순도를 나타내고 NaCN, NaN3, 아민 등의 친핵체와 쉽게 반응하는 이탈기를 가지는 중간체 화합물을 이용함으로써 보다 쉽게 높은 광학활성을 갖는 플루옥세틴 또는 노르플루옥세틴을 제조할 수 있다.

Claims (9)

1) 하기 화학식 2의 화합물을 촉매로서 [R,R]-TsDPEN-RhCl-Cp 또는 [S,S]-TsDPEN-RhCl-Cp와 수소공여체의 존재 하에 비대칭 수소화 전이반응(asymmetric transfer hydrogenation)을 통해 환원시켜 하기 화학식 3a 또는 3b의 화합물을 제조하는 단계;
2) 상기 화학식 3a 또는 3b의 화합물을 니트릴 화합물과 반응시켜 하기 화학식 4a 또는 4b의 화합물을 제조하는 단계;
3) 상기 화학식 4a 또는 4b의 화합물을 BH3 존재 하에 환원반응시켜 화학식 5a 또는 5b의 화합물을 제조하는 단계; 및
4) 상기 화학식 5a 또는 5b의 화합물을 염기 존재 하에서 4-치환된 벤조트리플루오라이드 화합물과 반응시키는 단계
를 포함하는, 하기 화학식 1a 또는 1b의 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법:
[화학식 1a]
Figure 112008037419770-pat00050
[화학식 1b]
Figure 112008037419770-pat00051
[화학식 2]
Figure 112008037419770-pat00052
[화학식 3a]
Figure 112008037419770-pat00053
[화학식 3b]
Figure 112008037419770-pat00054
[화학식 4a]
Figure 112008037419770-pat00055
[화학식 4b]
Figure 112008037419770-pat00056
[화학식 5a]
Figure 112008037419770-pat00057
[화학식 5b]
Figure 112008037419770-pat00058
상기 식에서, R은 수소 또는 메틸이고,
X는 이탈기로서 토실옥시(OTs) 또는 메실옥시(OMs)이다.
제 1항에 있어서,
상기 화학식 5a 또는 5b의 화합물을 4-클로로벤조트리플루오라이드와 반응시키는 단계를 수행하기 전에, 화학식 5a 또는 5b의 화합물의 아민기에 에틸 클로로포르메이트를 부가하여 아민기를 보호한 후 환원제와 반응시켜 하기 화학식 6a 또는 6b의 화합물을 제조하는 단계를 더 포함하는 것을 특징으로 하는, 광학활성 플루옥세틴 의 제조방법.
[화학식 6a]
Figure 112008037419770-pat00059
[화학식 6b]
Figure 112008037419770-pat00060
삭제
제 1 항에 있어서,
상기 촉매에 대해 화학식 2의 화합물을 100 내지 100,000의 몰비로 사용하는 것을 특징으로 하는, 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법.
제 1 항에 있어서,
상기 수소공여체가 포름산 및 그 금속염; 암모늄 포름산염(ammoniun formate); 또는 포름산과 아민의 공비화합물인 것을 특징으로 하는, 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법.
제 1 항에 있어서,
상기 단계 1)의 반응이 질소분위기의 상온에서 3시간 내지 5시간 동안 수행되는 것을 특징으로 하는, 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법.
제 1 항에 있어서,
상기 니트릴 화합물이 NaCN 또는 KCN인 것을 특징으로 하는, 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법.
제 1 항에 있어서,
상기 치환된 벤조트리플루오라이드 화합물이, 4-클로로벤조트리플루오라이드, 4-플루오로벤조트리플루오라이드, 4-브로모벤조트리플루오라이드, 4-아이오도벤조트리플루오라이드, 4-메탄설포닐옥시벤조트리플루오라이드 또는 4-토실설포닐옥시벤조트리플루오라이드인 것을 특징으로 하는, 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법.
제 1 항에 있어서,
상기 염기가 NaH, KH, KOBu t , NaOBu t 또는 NaNH2인 것을 특징으로 하는, 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법.
KR1020070050832A 2007-05-25 2007-05-25 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법 KR100852364B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070050832A KR100852364B1 (ko) 2007-05-25 2007-05-25 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070050832A KR100852364B1 (ko) 2007-05-25 2007-05-25 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법

Publications (1)

Publication Number Publication Date
KR100852364B1 true KR100852364B1 (ko) 2008-08-14

Family

ID=39881803

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070050832A KR100852364B1 (ko) 2007-05-25 2007-05-25 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법

Country Status (1)

Country Link
KR (1) KR100852364B1 (ko)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Tetrahed.Asymm.2001*
Tetrahed.Asymm.2002
Tetrahed.Asymm.2004*
Tetrahed.Lett.2002

Similar Documents

Publication Publication Date Title
US6310248B2 (en) Process and intermediates
Kumar et al. Asymmetric dihydroxylation route to (R)-isoprenaline,(R)-norfluoxetine and (R)-fluoxetine
US6686505B2 (en) Process for producing optically active amino alcohols and intermediates therefore
KR20040073463A (ko) 에시탈로프람의 제조 방법
US8299305B2 (en) Method for preparing atomoxetine
US7956182B2 (en) Process for preparing optically active alcohols
KR100852364B1 (ko) 광학활성 플루옥세틴 또는 노르플루옥세틴의 제조방법
US7294744B2 (en) Process for manufacturing of enantiomerically pure 3-hydroxy-3-phenyl-propylamin
CN114315609B (zh) 一种制备顺式2-氨基环己醇的工艺方法
Banfi et al. Synthesis of new chiral phase-transfer catalysts and their application to michael additions.
US6689916B2 (en) Phenyl propenone compounds
KR100965833B1 (ko) 아토목세틴 및 (r)-니속세틴의 제조방법
JP2009515840A (ja) エスシタロプラムの製造方法
US7173139B2 (en) Enantioselective 1,4-addition of aromatic nucleophiles to α,β-unsaturated aldehydes using chiral organic catalysts
US7361789B1 (en) Dihydronaphthalene compounds, compositions, uses thereof, and methods for synthesis
WO2007009405A1 (en) A method for the preparation of (r)-n-methyl-3-(2-methylphenoxy)-3-phenylpropylamine hydrochloride (atomoxetine)
KR101071293B1 (ko) 광학 활성 2-설포닐옥시-1-헤테로아릴에탄올 유도체의 제조방법 및 이를 이용한 거울상 이성질체적으로 순수한 헤테로아릴-아미노 알코올의 제조방법
KR100914849B1 (ko) 2-설포닐옥시-1-(4-하이드록시페닐)에탄올 유도체의 제조방법
US9409855B2 (en) Asymmetric synthesis of (−)-venlafaxine using organocatalyst
KR101644016B1 (ko) 중간체로서 광학 활성 3-아미노-1-페닐프로판올 유도체의 제조방법 및 상기 중간체를 이용한 광학 활성 약학적 산물의 제조방법
EP2125772B1 (en) A process for the preparation of duloxetin and new key intermediates for use therein
EP2060559A1 (en) Process for the preparation of enantiomerically pure 3-hydroxy-3-arylpropylamines and their optical stereoisomers
CN116478026A (zh) 一种2-取代环庚三烯酮类化合物的合成方法
JP2002080444A (ja) 新規な光学活性化合物及びその製造方法
KR101143386B1 (ko) 광학 활성 2-설포닐옥시-1-헤테로아릴에탄올 유도체의 제조방법 및 이를 이용한 거울상 이성질체적으로 순수한 부푸랄롤의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130625

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee