KR100841805B1 - Method for producing feedstocks of high quality lube base oil from coking gas oil - Google Patents

Method for producing feedstocks of high quality lube base oil from coking gas oil Download PDF

Info

Publication number
KR100841805B1
KR100841805B1 KR1020070075100A KR20070075100A KR100841805B1 KR 100841805 B1 KR100841805 B1 KR 100841805B1 KR 1020070075100 A KR1020070075100 A KR 1020070075100A KR 20070075100 A KR20070075100 A KR 20070075100A KR 100841805 B1 KR100841805 B1 KR 100841805B1
Authority
KR
South Korea
Prior art keywords
oil
vacuum
residue
cgo
gas oil
Prior art date
Application number
KR1020070075100A
Other languages
Korean (ko)
Inventor
김경록
김창국
유재욱
신지선
박삼룡
Original Assignee
에스케이에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이에너지 주식회사 filed Critical 에스케이에너지 주식회사
Priority to KR1020070075100A priority Critical patent/KR100841805B1/en
Priority to JP2010518101A priority patent/JP5349475B2/en
Priority to PCT/KR2008/002205 priority patent/WO2009014303A1/en
Priority to CN2008801005062A priority patent/CN101790576B/en
Priority to GB1000418.2A priority patent/GB2463606B/en
Priority to US12/668,817 priority patent/US20100193400A1/en
Application granted granted Critical
Publication of KR100841805B1 publication Critical patent/KR100841805B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G71/00Treatment by methods not otherwise provided for of hydrocarbon oils or fatty oils for lubricating purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

A method for manufacturing feedstocks of high quality lube base oil from CGO is provided to improve economic efficiency greatly by using the CGO with a low utility value, and to maximize efficiency by recycling UCO(unconverted oil) of fuels hydrocracker. A method for manufacturing feedstocks of high quality lube base oil comprises the steps of: separating VGO(vacuum gas oil), VR(vacuum residue), or a mixture(VR/AR) of AR(atmospheric residue) and the VR from the AR, and supplying the VGO to a hydrotreating unit(HDT) and the VR or the mixture to a first fractional distillation process(Fs1); obtaining CGO by performing a coking process of the VR or mixture, and supplying the obtained CGO with the VGO to the hydrotreating unit; removing impurities in the hydrotreating unit; obtaining light and heavy hydrocarbon through a hydrocracking unit(HDC); separating an oil product and UCO from the hydrocarbon; obtaining the feedstocks of high quality lube base oil and residue UCO; and recycling the obtained UCO to the hydrocracking unit.

Description

코커가스유를 이용한 고급 윤활기유 공급원료의 제조방법{Method for producing feedstocks of high quality lube base oil from coking gas oil}Method for producing feedstocks of high quality lube base oil from coking gas oil}

본 발명은 코커가스유(CGO)를 이용하여 고급 윤활기유 공급원료를 제조하는 방법에 관한 것으로, 좀 더 상세하게는 종래 수소화 반응공정에 사용되어지는 감압가스유(VGO)에 코커가스유(CGO)를 혼합하여 연료유 수소화처리공정 및 수소화분해공정을 수행하고 이로부터 발생되어지는 미전환유(UCO)를 재순환시킴으로써 고급 윤활기유 공급원료를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a high-grade lubricating base oil feedstock using a coker gas oil (CGO), and more specifically, to the reduced pressure gas oil (VGO) used in the conventional hydrogenation process, coker gas oil (CGO) ) And a process for producing an advanced lubricating base oil feedstock by performing a fuel oil hydrotreating process and hydrocracking process and recycling the unconverted oil (UCO) generated therefrom.

종래의 연료유 수소화분해공정과 연계하여 윤활기유 공급원료를 제조하는 공정은 감압증류공정(V1)에서 생산된 감압가스유(VGO)를 수소화분해하면서 발생되는 미전환유(UCO)를 이용하는 방법으로, 먼저 유분 속에 포함된 황, 질소, 산소 및 금속성분 등의 불순물을 제거하는 수소화처리 반응공정(HDT)을 거친 후, 주 반응공정인 수소화분해 반응공정(HDC)을 통과하면서 경질 탄화수소로 상당량이 전환되고, 일련의 분별증류공정(Fs)을 거치면서 분해된 각종 오일 및 가스를 분리하여 경질 유분을 제품화한다. 상기 반응에 있어서, 일반적으로 패스당 반응 전환율이 40%정도로 설계되며, 패스당 전환율을 100%로 운전하는 것은 실질적으로 불가능하므로, 마지막 분별증류공정에서는 항상 미전환유(UCO)가 발생하게 되며, 이를 일부 외부로 빼내어 윤활기유의 원료로 사용하고 나머지를 수소화분해 반응공정으로 리싸이클한다.The process of manufacturing the lubricating base oil feedstock in connection with the conventional fuel oil hydrocracking process is a method using the unconverted oil (UCO) generated by hydrocracking the reduced pressure gas oil (VGO) produced in the vacuum distillation process (V1), First, it undergoes a hydrotreatment reaction process (HDT) to remove impurities such as sulfur, nitrogen, oxygen and metals contained in the oil, and then converts a considerable amount into light hydrocarbons while passing through a hydrocracking reaction process (HDC), which is a main reaction process. In the process, a series of fractional distillation processes (Fs) separate the decomposed various oils and gases to produce light oil. In the above reaction, the reaction conversion rate per pass is generally designed to be about 40%, and it is practically impossible to operate the conversion rate per pass at 100%, so that unconverted oil (UCO) is always generated in the last fractionation process. Part of it is taken out and used as raw material for lubricating base oil and the rest is recycled to hydrocracking reaction process.

공급되는 감압가스유(VGO)에 다량 포함된 방향족 화합물, 황 화합물, 산호 화합물 및 질소화합물 등은 수소화처리 반응공정을 거치면서 거의 대부분 수소에 의해 포화되기 때문에 부산되는 미전환유(UCO)의 90% 이상은 포화 탄화수소가 되므로 윤활기유 성상에서 가장 중요한 특성의 하나인 점도지수가 높은 오일이 된다.90% of unconverted unconverted oil (UCO), which is a by-product, because aromatics, sulfur compounds, coral compounds, and nitrogen compounds contained in a large amount of reduced pressure gas oil (VGO) are saturated by hydrogen during the hydroprocessing reaction process. Since the above becomes a saturated hydrocarbon, it becomes an oil having a high viscosity index, which is one of the most important characteristics in lubricating base oil properties.

이에 본 출원인은 한국 특허공고 제96-13606호에서 감압가스유(VGO) 연료유 수소화분해공정의 리싸이클 모드 오퍼레이션에서 직접 미전환유(UCO)를 빼내어 윤활기유 생산용 공급원료로 제공함으로써 제1 감압증류공정(상압잔사유의 감압증류공정)에 리싸이클시킬 필요가 없이 상기 제1 감압증류공정 및 수소화처리 및 수소화분해 반응공정의 요량(부하)을 감소시켜 효과적인 연료유 및 고급 윤활기유 공급원료를 제조하는 방법을 제시하였다. 이에 따라 미전환유(UCO)를 윤활기유 공급원료의 제조에 사용하지 않고 제1 감압증류공정 또는 수소화분해 반응공정으로 리싸이클시키는 종래의 연료유 수소화분해반응 공정에 비하여, 상기 윤활기유 공급원료의 제조방법은 비효율성을 크게 제거하면서 100N, 150N 등급의 점도를 갖는 고급 윤활기유 공급원료를 제조할 수 있게 하였으나, 이는 감압가스유(VGO) 만을 사용하도록 설계된 것으로, 저가의 코커가스유(CGO)를 함께 사용하고 미전환유(UCO)를 리싸이클링 함으로써 고급 윤활기유의 공급원료를 보다 경제적으로 제조하는 것에 대해서는 고려된 바가 없다.In this regard, the present applicant directly extracts unconverted oil (UCO) from a recycle mode operation of a reduced pressure gas oil (VGO) fuel oil hydrocracking process in Korean Patent Publication No. 96-13606 and provides it as a feedstock for producing lubricant base oil. It is not necessary to recycle the process (reduced pressure distillation of atmospheric pressure residue) to reduce the amount (load) of the first reduced pressure distillation process and the hydroprocessing and hydrocracking reaction process to produce an effective fuel oil and high grade lube base oil feedstock. The method is presented. Accordingly, compared to the conventional fuel oil hydrocracking process in which unconverted oil (UCO) is recycled in a first vacuum distillation process or a hydrocracking reaction process without using the lubricating base oil feedstock, a method of producing the lubricating base oil feedstock Although it is possible to manufacture high quality lubricant base oils having a viscosity of 100N and 150N while greatly removing the inefficiency, it is designed to use only reduced pressure gas oil (VGO), and together with low cost coker gas oil (CGO) No economic considerations have been given to making the feedstock of higher lubrication base oils more economical by using and recycling unconverted oil (UCO).

이에 본 출원인은 전술한 고급 윤활기유의 공급원료를 제조하는 방법의 효율과 경제성을 극대화하기 위하여 연구를 거듭한 결과, 코커가스유(CGO)를 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)로부터 생산하고 이를 감압가스유(VGO)와 혼합하여 수소화처리 및 수소화분해 반응시킨 후, 이로부터 발생되는 미전환유(UCO)를 재순환시킴으로써 고급 윤활기유의 공급원료를 생산할 수 있는 방법을 제시하게 되었다.Accordingly, the present applicant has repeatedly studied to maximize the efficiency and economic efficiency of the above-described method for producing a feedstock of high-grade lubricant base oil, coke gas oil (CGO) as a vacuum residue (VR) or atmospheric pressure residue and vacuum residue oil It can be produced from a mixture of (VR / AR) and mixed with reduced-pressure gas oil (VGO) to hydroprocess and hydrocracking reaction, and then recycled unconverted oil (UCO) generated from it to produce a feedstock of high-grade lubricant base oil. I came up with a way.

따라서, 본 발명의 목적은 사용가치가 적은 코커가스유(CGO)를 활용함으로써 경제성을 현저하게 개선할 수 있고, 연료유 수소화분해공정의 미전환유(UCO)를 재순환시킴으로써 효율을 극대화할 수 있는 고급 윤활기유 공급원료의 제조 방법을 제공하는 데에 있다.Accordingly, an object of the present invention is to significantly improve the economics by utilizing a low value of coker gas oil (CGO), and the high efficiency that can maximize the efficiency by recycling the unconverted oil (UCO) of the fuel oil hydrocracking process It is to provide a method for producing a lubricant base oil feedstock.

상기 목적을 달성하기 위한 본 발명에 따른 코커가스유(CGO)를 이용하여 고급 윤활기유 공급원료를 제조하는 방법은, 상압잔사유(AR)를 제1 감압증류공정(V1)에서 증류하여 감압가스유(VGO), 및 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)로 분리하고, 상기 감압가스유(VGO)는 직접 수소화처리 반응공정(HDT)으로 공급하며, 상기 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)은 제1 분별증류공정(Fs1)으로 공급하는 단계; 상기 제1 분별증류공정(Fs1)에서 연료성분이 분리된 상기 감압잔사유(VR) 또는 상압잔사유와 감압잔사 유의 혼합물(VR/AR)을 코커드럼으로 공급하여 코킹공정을 수행한 다음 다시 상기 제1 분별증류공정(Fs1)을 통하여 코커가스유(CGO)를 얻고 얻어진 코커가스유(CGO)를 상기 감압가스유(VGO)와 함께 수소화처리 반응공정(HDT)으로 공급하는 단계; 상기 수소화처리 반응공정(HDT)을 통하여 불순물을 제거하는 단계; 수소화분해 반응공정(HDC)을 통하여 경질 및 중질의 탄화수소를 얻는 단계; 상기 경질 및 중질의 탄화수소를 제2 분별증류공정(Fs2)에 공급하여 오일제품 및 미전환유로 분리하는 단계; 상기 분리된 미전환유 전부를 제2 감압증류공정(V2)에 공급하여 소정의 점도등급을 갖는 고급 윤활기유 공급원료 및 잔량의 미전환유를 얻는 단계; 및 상기 제2 감압증류공정(V2)으로부터 얻어진 미전환유를 상기 수소화분해 반응공정(HDC)으로 재순환시키는 단계로 이루어진다.The method for producing an advanced lubricating base oil feedstock using coker gas oil (CGO) according to the present invention for achieving the above object, by distilling atmospheric pressure residual oil (AR) in the first reduced pressure distillation process (V1) Oil (VGO) and vacuum residue (VR) or a mixture of atmospheric residue and a mixture of vacuum residue (VR / AR), and the vacuum gas oil (VGO) is supplied directly to the hydroprocessing reaction process (HDT) Supplying the vacuum residue (VR) or a mixture of the atmospheric residue and the vacuum residue (VR / AR) to a first fractional distillation process (Fs1); In the first fractional distillation process (Fs1), the fuel residue is separated, the vacuum residue (VR) or the atmospheric residue oil and the mixture of vacuum residue oil (VR / AR) is supplied to a coker drum to perform a coking process and then again the Obtaining coker gas oil (CGO) through a first fractional distillation process (Fs1) and supplying the coker gas oil (CGO) obtained together with the reduced pressure gas oil (VGO) to a hydroprocessing reaction process (HDT); Removing impurities through the hydrotreating process (HDT); Obtaining light and heavy hydrocarbons through a hydrocracking reaction process (HDC); Supplying the hard and heavy hydrocarbons to a second fractional distillation process (Fs2) to separate the oil product and the unconverted oil; Supplying all of the separated unconverted oil to a second vacuum distillation process (V2) to obtain an advanced lubricant base oil feedstock having a predetermined viscosity grade and remaining unconverted oil; And recycling the unconverted oil obtained from the second vacuum distillation process (V2) to the hydrocracking reaction process (HDC).

상기 목적을 달성하기 위한 본 발명에 따른 코커가스유(CGO)를 이용하여 고급 윤활기유 공급원료를 제조하는 또 다른 방법은, 상압잔사유(AR)를 제1 감압증류공정(V1)에서 증류하여 감압가스유(VGO), 및 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)로 분리하고, 상기 감압가스유(VGO)는 직접 수소화처리 반응공정(HDT)으로 공급하며, 상기 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)은 제1 분별증류공정(Fs1)으로 공급하는 단계; 상기 제1 분별증류공정(Fs1)에서 연료성분이 분리된 상기 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)을 코커드럼으로 공급하여 코킹공정을 수행한 다음 다시 상기 제1 분별증류공정(Fs1)을 통하여 코커가스유(CGO)를 얻고 얻어진 코커가스유(CGO)를 상기 감압가스유(VGO)와 함께 수소화처리 반응공정(HDT)으로 공급하는 단계; 상 기 수소화처리 반응공정(HDT)을 통하여 불순물을 제거하는 단계; 수소화분해 반응공정(HDC)을 통하여 경질 및 중질의 탄화수소를 얻는 단계; 상기 경질 및 중질의 탄화수소를 제2 분별증류공정(Fs2)에 공급하여 오일제품 및 미전환유로 분리하는 단계; 상기 분리된 미전환유 일부를 제2 감압증류공정(V2)에 공급하여 소정의 점도등급을 갖는 고급 윤활기유 공급원료 및 잔량의 미전환유를 얻는 단계; 및 상기 제2 분별증류공정으로부터 분리된 나머지 미전환유 및 제2 감압증류공정(V2)으로부터 얻어진 미전환유를 상기 수소화분해 반응공정(HDC)으로 재순환시키는 단계로 이루어진다.Another method for preparing a high-grade lubricating base oil feedstock using the coker gas oil (CGO) according to the present invention for achieving the above object, by distilling the atmospheric residual oil (AR) in the first vacuum distillation process (V1) Decompression gas oil (VGO), and vacuum residue (VR) or a mixture of atmospheric residue and a mixture of vacuum residue (VR / AR), the vacuum gas oil (VGO) is a direct hydroprocessing reaction (HDT) Supplying the vacuum residue (VR) or a mixture of the atmospheric residue and the vacuum residue (VR / AR) to a first fractional distillation process (Fs1); In the first fractional distillation process (Fs1), the coking process is performed by supplying the vacuum residue (VR) or the mixture of atmospheric pressure residue and the vacuum residue (VR / AR) from which the fuel component is separated into a coker drum, and then performing a coking process. Obtaining coker gas oil (CGO) through the first fractional distillation process (Fs1) and supplying the coker gas oil (CGO) to the hydroprocessing reaction process (HDT) together with the reduced pressure gas oil (VGO); Removing impurities through the hydrotreating process (HDT); Obtaining light and heavy hydrocarbons through a hydrocracking reaction process (HDC); Supplying the hard and heavy hydrocarbons to a second fractional distillation process (Fs2) to separate the oil product and the unconverted oil; Supplying the separated unconverted oil to a second vacuum distillation process (V2) to obtain an advanced lubricant base oil feedstock having a predetermined viscosity grade and remaining unconverted oil; And recycling the remaining unconverted oil separated from the second fractional distillation process and the unconverted oil obtained from the second vacuum distillation process (V2) to the hydrocracking reaction process (HDC).

본 발명에 따르면, 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물 (VR/AR)에 코킹공정을 수행하여 얻어진 코커가스유(CGO)를 감압가스유(VGO)와 함께 혼합하여 수소화처리 및 분해 반응공정(HDT, HDC)을 진행하고, 이로부터 얻어진 미전환유(UCO)를 상기 수소화분해 반응공정(HDC)으로 재순환시킴으로써 고급 윤활기유의 공급원료를 생산할 수 있으므로, 저급이면서 처리가 어려운 성질의 코커가스유(CGO)를 활용하여 보다 경제적이고 효율적인 고급 윤활기유 공급원료의 제조가 가능하게 되는 효과가 있다.According to the present invention, a coker gas oil (CGO) obtained by performing a coking process on a vacuum residue (VR) or a mixture of atmospheric pressure residue and a vacuum residue (VR / AR) is mixed with a vacuum gas oil (VGO) Hydrogenation and decomposition reaction processes (HDT, HDC) are carried out, and the unconverted oil (UCO) obtained therefrom can be recycled to the hydrocracking reaction process (HDC) to produce a feedstock of high-grade lubricating base oil, which is low and difficult to process. By utilizing coke gas oil (CGO) of the nature it is possible to produce a more economical and efficient high-grade base oil feedstock.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications and variations of the present invention can be readily used by those skilled in the art, and all such variations or modifications can be considered to be included within the scope of the present invention.

이하, 본 발명의 첨부된 도면을 참조하면서 좀 더 구체적으로 살펴보면 다음과 같다.Hereinafter, with reference to the accompanying drawings of the present invention in more detail as follows.

전술한 바와 같이, 도 1은 본 발명의 일 실시예에 따른 코킹공정으로부터 공급된 코커가스유(CGO)와 제1 감압증류공정으로부터 공급된 감압가스유(VGO)를 이용한 수소화분해 공정 및 고급 윤활기유 원료를 재순환 모드로 제조하는 방법에 관한 개략공정도로서, 수소화 반응의 원료로 일반적으로 사용되는 감압가스유(VGO) 만을 사용하는 것이 아니라, 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)을 제1 분별증류공정(Fs1), 코커드럼을 통한 코킹공정 후, 다시 제1 분별증류공정을 통하여 코커가스유(CGO)를 생산한 다음, 이를 감압가스유(VGO)와 혼합하여 수소화처리 반응공정에 공급하고, 수소화처리 분해공정(HDC)을 통하여 경질유분을 생산하고 이에 수반되는 미전환유(UCO)를 사용하여 고급 윤활기유 공급원료를 생산하는 방법을 나타낸다.As described above, FIG. 1 is a hydrocracking process and an advanced lubricator using coker gas oil (CGO) supplied from a coking process and a vacuum gas oil (VGO) supplied from a first vacuum distillation process according to an embodiment of the present invention. As a schematic process chart of a method for producing an oil raw material in a recirculation mode, it is not only using vacuum gas oil (VGO) which is generally used as a raw material for the hydrogenation reaction, but also a vacuum residue or a vacuum residue and a vacuum residue. The mixture (VR / AR) of the first fractional distillation process (Fs1), after the coking process through the coker drum, the coke gas oil (CGO) is produced again through the first fractional distillation process, and then reduced pressure gas oil (VGO) ) And a light feed through a hydrocracking process (HDC) to produce a light fraction, followed by the use of unconverted oil (UCO) to produce an advanced lubricant base oil feedstock.

좀 더 구체적으로 도 1을 살펴보면, 본 발명은 상압증류공정(CDU)으로부터 분리된 상압잔사유(AR)를 제1 감압증류공정(V1)에서 증류하여 감압가스유(VGO) 및 감압잔사유(VR), 또는 감압가스유(VGO) 및 감압잔사유와 상압잔사유의 혼합물(VR/AR)로 분리하고, 상기 감압가스유(VGO)는 직접 수소화처리 반응공정(HDT)으로 공급되며, 상기 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물 (VR/AR)에 대하여 제1 분별증류공정(Fs1)과 코커드럼을 통한 코킹공정, 그리고 다시 제1 분별증류공정(Fs1)을 수행함으로써 코커가스유(CGO)를 얻는다. 이렇게 얻어진 코커가스유(CGO)를 상기 감압가스유(VGO)와 함께 수소화처리 반응공정(HDT)으 로 공급한다.In more detail, referring to Figure 1, the present invention is distilled from the atmospheric residual oil (AR) separated from the atmospheric pressure distillation process (CDU) in the first vacuum distillation process (V1) to reduce the pressure gas oil (VGO) and the vacuum residue ( VR) or a vacuum gas oil (VGO) and a mixture of vacuum residue oil and a vacuum residue oil (VR / AR), and the vacuum gas oil (VGO) is directly supplied to a hydroprocessing reaction process (HDT). For the vacuum residue (VR) or the mixture of atmospheric residue and the vacuum residue (VR / AR), the first fractional distillation process (Fs1) and the coking process through the coker drum, and again the first fractional distillation process (Fs1) Coke gas oil (CGO) is obtained by performing. The coker gas oil (CGO) thus obtained is supplied to the hydroprocessing reaction process (HDT) together with the reduced pressure gas oil (VGO).

상기 코커가스유(CGO) 생산과정을 좀 더 구체적으로 살펴보면, 제1 감압증류공정(V1)에서 분리된 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물 (VR/AR)은 제1 분별증류공정(Fs1)을 거쳐 일부 비점이 낮은 성분을 분리하고, 남은 유분이 코커드럼에 투입되며, 코커드럼에서 코크스를 형성할 수 있는 충분한 온도까지 급격하게 가열되는데, 이때 히터코일(Heater coil) 내에서의 최소 속도 및 체류시간을 유지하고 코크스 형성을 억제하기 위하여 스팀이 함께 공급된다. 코커드럼에 잔류하는 액체는 코크스 및 경질 탄화수소 기체로 전환되고 모든 기체는 코커드럼 상단으로 유출된다. 이러한 과정을 수행하기 위해서는 최소 2개의 코커드럼이 필요하며, 하나의 드럼에 코크스가 형성되는 도중에 나머지 하나에는 오일의 흐름을 중지하고 코크스를 제거하는 작업이 진행된다. 이러한 코킹공정을 통하여 생산되는 코커가스유(CGO)는 산화안전성이 좋지 않고, HPNA(High Poly-Nuclear Aromatic hydrocarbon) (방향족 고리 7개 이상)의 함량이 높기 때문에, 이를 수소화처리 및 분해 반응공정에 공급하여 생산되는 미전환유(UCO)는 고급 윤활기유의 원료로 부적당하다. 그러나 본 발명에 따른 방법과 같이 미전환유(UCO)를 수소화분해 반응공정(HDC)으로 재순환하는 경우에는, HPNA 함량이 낮고, 산화안정성이 확보된 고품질의 미전환유(UCO) 확보가 가능하고, 고급 윤활기유의 원료로 사용 가능한 100D 및 150D 등급의 윤활기유 원료가 최대로 생산될 수 있으며, 기존에 벙커C유로 활용되거나 경유(DSL)를 생산하기 위한 원료로만 활용되었던 코커가스유(CGO)를 고급윤활기유의 원료로 사용될 수 있게 함으로써 고부가화에 따른 경제성이 개 선되는 효과를 갖는다.Looking at the coker gas oil (CGO) production process in more detail, the vacuum residue (VR) separated in the first vacuum distillation process (V1) or a mixture of atmospheric pressure residue and the vacuum residue (VR / AR) is made of 1 The fractional low boiling point component is separated through the fractional distillation process (Fs1), and the remaining oil is added to the coker drum and heated rapidly to a sufficient temperature to form coke in the coker drum. Steam is supplied together to maintain minimum velocity and residence time in the chopper and to suppress coke formation. The liquid remaining in the coker drum is converted to coke and light hydrocarbon gas and all gas is discharged to the top of the coker drum. At least two coker drums are required to perform this process, and while the coke is formed on one drum, the other one stops the flow of oil and removes the coke. Coker gas oil (CGO) produced through this coking process is not oxidatively safe and has a high content of HPNA (High Poly-Nuclear Aromatic hydrocarbon) (7 or more aromatic rings). Unconverted oil (UCO), produced by supply, is not suitable as a raw material for high-grade lubricating base oils. However, when the unconverted oil (UCO) is recycled to the hydrocracking process (HDC) as in the method according to the present invention, it is possible to secure a high quality unconverted oil (UCO) having low HPNA content and oxidative stability, and high quality. 100D and 150D grades of lubricating base oil which can be used as raw material of lubricating base oil can be produced to the maximum, and coke gas oil (CGO), which was previously used only as bunker C oil or as raw material for producing diesel fuel (DSL), is an advanced lubricator. By making it possible to use it as a raw material of oil, it has the effect of improving the economics due to high added value.

본 발명에 따른 방법에 있어서의 코킹공정의 구체적인 조건은 하기 표 1에 나타난 바와 같다.Specific conditions of the coking process in the method according to the present invention are as shown in Table 1 below.

운전조건, 단위Operating condition, unit 범위range 히터 방출 온도, ℃Heater discharge temperature, ℃ 480~500480-500 코커드럼 온도, ℃Cocker Drum Temperature, ℃ 500~600500-600 상단-코커드럼 압력, psigTop-cocker drum pressure, psig 15~3015-30 순환비 (순환부피/공급부피)Circulation Ratio (Circulation Volume / Supply Volume) 0.05~0.20.05-0.2

코킹공정으로부터 생산된 코커가스유(CGO)는 감압가스유(VGO)와 혼합되어 수소화처리 반응공정(HDT)으로 공급되는데, 이때 코커가스유(CGO)와 감압가스유(VGO)의 혼합에 있어서 감압가스유(VGO)의 함량이 높아지면 고급 윤활기유의 생산량이 높아지지만 생산 비용이 증가하고, 코커가스유(CGO)의 함량이 높아지면 생산비용이 절감되는 이점은 있으나, 코커가스유(CGO)의 성상이 감압가스유(VGO)에 비하여 좋지 않기 때문에, 감압가스유(VGO)와 코커가스유(CGO)의 혼합부피비(VGO/CGO)는 3~9가 바람직하다. 수소화처리 반응공정(HDT)에 공급되는 감압가스유(VGO)와 코커가스유(CGO) 및 수소화반응을 통하여 얻어진 미전환유(UCO)의 대표적인 성상을 하기 표 2에 나타내었다.The coker gas oil (CGO) produced from the coking process is mixed with the vacuum gas oil (VGO) and supplied to the hydroprocessing reaction process (HDT), where the coker gas oil (CGO) and the vacuum gas oil (VGO) are mixed. Higher VGO content yields higher lubrication base oil production but increases production cost. Higher CGO content lowers production cost, but coker gas oil (CGO) Since the properties of are not as good as those of the vacuum gas oil (VGO), the mixing volume ratio (VGO / CGO) of the vacuum gas oil (VGO) and the coker gas oil (CGO) is preferably 3 to 9. Representative properties of reduced pressure gas oil (VGO) and coker gas oil (CGO) and unconverted oil (UCO) obtained through the hydrogenation reaction are shown in Table 2 below.

Figure 112007054464969-pat00001
Figure 112007054464969-pat00001

수소화처리 반응공정(HDT)은 공급원료에 포함된 황, 질소, 산소 및 금속성분 등의 불순물을 제거하는 공정이며, 수소화처리 반응공정(HDT)을 거친 후 주 반응공정인 수소화분해 반응공정(HDC)의 수소화분해 과정을 통하여 경질 탄화수소로 상당히 전환된다. 상기 수소화처리 반응공정(HDT)과 수소화분해 반응공정(HDC)은 1회 통과(once-through) 모드 또는 재순환(recycle) 모드로 운전될 수 있으며, 일단(one-stage) 또는 이단(two-stage)으로 다양하게 변형되어 구성될 수 있다.The hydrotreating process (HDT) is a process for removing impurities such as sulfur, nitrogen, oxygen, and metals contained in the feedstock. After the hydrotreating process (HDT), the main reaction process is a hydrocracking reaction process (HDC). The hydrocracking process of) converts significantly to light hydrocarbons. The hydrotreating reaction process (HDT) and hydrocracking reaction process (HDC) may be operated in a once-through mode or recycle mode, and may be one-stage or two-stage. It can be configured in various ways.

수소화분해 반응공정(HDC)을 통하여 생성된 경질 및 중질의 탄화수소를 제2 분별증류공정(Fs2)에 공급하여 오일제품 및 미전환유(UCO)로 분리한다. 분리된 미전환유(UCO)의 전부 또는 일부를 제2 감압증류공정(V2)에 공급하여 소정의 점도등급을 갖는 고급 윤활기유 공급원료를 분리하고 잔량의 미전환유(UCO)를 얻게 된다.The light and heavy hydrocarbons produced through the hydrocracking reaction process (HDC) are fed to a second fractional distillation process (Fs2) and separated into oil products and unconverted oil (UCO). All or part of the separated unconverted oil (UCO) is supplied to the second vacuum distillation process (V2) to separate the high grade lube base oil feedstock having a predetermined viscosity grade and to obtain the remaining amount of unconverted oil (UCO).

또한 상기 제2 감압증류공정(V2)으로부터의 잔량의 미전환유(UCO)는 상기 수소화분해 반응공정(HDC)으로 재순환시킨다. 한편, 선택적으로 일부만 제2 감압증류공정(V2)으로 공급된 경우에는 상기 제2 분별증류공정(Fs2)으로부터의 나머지 미전환유(UCO)를 상기 제2 감압증류공정(V2)으로부터의 잔량의 미전환유(UCO)와 함께 상기 수소화분해 반응공정(HDC)으로 재순환시키게 된다.In addition, the remaining unconverted oil (UCO) from the second reduced pressure distillation process (V2) is recycled to the hydrocracking reaction process (HDC). On the other hand, when only a part of the gas is selectively supplied to the second vacuum distillation step V2, the remaining unconverted oil UCO from the second fractional distillation step Fs2 is not yet remaining in the remaining amount from the second vacuum distillation step V2. It is recycled to the hydrocracking reaction process (HDC) together with refuel (UCO).

이때, 상기 수소화분해 반응공정(HDC)으로 재순환되는 총 미전환유에 대한 상기 제2 분별증류공정(Fs2)에서 생성되는 미전환유의 비는 3:1 ~ 5:1가 바람직하며, 상기 제2 감압증류공정(V2)으로부터 수소화분해 반응공정(HDC)으로 재순환되는 미전환유에 대한 제2 감압증류공정(V2)으로 공급되는 미전환유의 비는 1.3:1 ~1.5:1이 바람직하다.In this case, the ratio of the unconverted oil produced in the second fractional distillation process (Fs2) to the total unconverted oil recycled to the hydrocracking reaction process (HDC) is preferably 3: 1 to 5: 1, and the second reduced pressure The ratio of the unconverted oil supplied to the second vacuum distillation process (V2) to the unconverted oil recycled from the distillation process (V2) to the hydrocracking reaction process (HDC) is preferably 1.3: 1 to 1.5: 1.

상기 제2 감압증류공정(V2)은 320 ~ 350℃의 탑저온도 및 140 ~ 160 mmHg의 탑저압력, 75 ~ 95℃의 탑정온도 및 60 ~ 80 mmHg의 탑정압력으로 운전되며, 상기 제2 감압증류공정(V2)에서 얻어진 소정의 점도 등급을 갖는 윤활기유 공급원료에 대해서는 탈왁스 공정 및 안정화 공정이 더욱 진행될 수 있다.The second vacuum distillation process (V2) is operated at a column bottom temperature of 320 to 350 ° C., a column bottom pressure of 140 to 160 mmHg, a column top temperature of 75 to 95 ° C., and a column top pressure of 60 to 80 mm Hg. For the lube base oil feedstock having a predetermined viscosity grade obtained in the distillation process (V2), the dewaxing process and the stabilization process may be further proceeded.

따라서 본 발명에 따라, 같은 양의 상압잔사유(AR)가 제1 감압증류공정(V1)에 공급되었을 경우, 감압잔사유(VR)로부터 약 10 ~ 25 부피%까지 코커가스유(CGO)를 추출하여 감압잔사유(VR)와 혼합하고, 수소화처리 및 분해 반응공정(HDT, HDC)의 원료로 사용할 수 있으므로, 종래의 감압가스유(VGO)만을 공급원료로 사용한 경우에 비하여 약 10 ~ 30 % 정도의 상압잔사유(AR)를 부가가치가 높은 경질유분 및 고급 윤활기유의 공급원료로 더 전환할 수 있는 장점을 갖는다.Therefore, according to the present invention, when the same amount of atmospheric residue oil (AR) is supplied to the first reduced pressure distillation process (V1), coker gas oil (CGO) to about 10 to 25% by volume from the vacuum residue (VR) It can be extracted and mixed with vacuum residue (VR) and used as a raw material for hydroprocessing and decomposition reaction processes (HDT, HDC). Therefore, it is about 10 to 30 compared to the case where only conventional vacuum gas oil (VGO) is used as a feedstock. It has the advantage of converting the atmospheric residual oil (AR) of about% to a feedstock of high value-added light oil and high-grade lubricating base oil.

이하, 본 발명을 하기 실시예를 통하여 좀 더 구체적으로 살펴보지만, 이에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited thereto.

실시예Example 1 One

상압잔사유(AR)를 원료로 제1 감압증류공정(V1)에서 분리된 감압잔사유(VR)는 제1 분별증류공정(Fs1)을 통해 일부 비점이 낮은 성분을 분리하고, 500℃로 가열되어 코커드럼으로 투입되었다. 코커드럼에서 온도 550℃, 상단 코커드럼 압력 25 Psig 조건으로 가열되어 드럼에 잔류하는 액체는 코크스 및 경질 탄화수소 기체로 전환되었고 모든 기체는 제1 분별증류공정(Fs1)을 통해 LPG, Gas, 나프타, 코커가스유(CGO)로 분리되었다. 상기 표 2에 나타난 성상을 지닌 코커가스유(CGO)와 감압가스유(VGO)는 수소화처리 반응공정(HDT)에서 LHSV(Liquid Hourly Space Velocity) 3.429 hr-1, 압력 2397 Psig, 온도 385.8℃, 촉매는 UF-210STARS(UOP사 제품)를 이용하여 수소유입속도 842 Nm3/m3의 조건으로 처리한 후, 후술하는 리사이클된 UCO와 함께 LHSV 1.241 hr-1, 압력 2397 Psig, 온도 395.2℃로 UF-210/HC-115/UF-100 촉매(UOP사 제품)를 이용하여 수소유입속도 1180Nm3/m3의 조건으로 VGO/CGO 수소화분해반응공정(HDC)에서 처리하였다.The vacuum residue oil (VR) separated from the first vacuum distillation process (V1) using the atmospheric residue oil (AR) as a raw material separates some low boiling point components through the first fractional distillation process (Fs1) and is heated to 500 ° C. And into the cocker drum. The liquid remaining in the drum, heated to a temperature of 550 ° C and a top coker drum pressure of 25 Psig in the coker drum, was converted to coke and light hydrocarbon gas, and all gases were converted to LPG, Gas, Naphtha, It was separated into coker gas oil (CGO). Coker gas oil (CGO) and reduced pressure gas oil (VGO) having the properties shown in Table 2 are LHSV (Liquid Hourly Space Velocity) 3.429 hr −1 , pressure 2397 Psig, temperature 385.8 ° C., in a hydrotreating reaction process (HDT). The catalyst was treated using UF-210STARS (manufactured by UOP Co., Ltd.) under a condition of hydrogen inflow rate of 842 Nm 3 / m 3 , followed by LHSV 1.241 hr −1 , pressure 2397 Psig, and temperature 395.2 ° C. with recycled UCO described below. The UF-210 / HC-115 / UF-100 catalyst (manufactured by UOP Co., Ltd.) was treated in a VGO / CGO hydrocracking process (HDC) under a hydrogen inflow rate of 1180 Nm 3 / m 3 .

이어서 통상의 분별증류공정을 거쳐 비점이 350℃ 이하인 디젤 및 경질제품을 회수하고 전술한 표 2에 나타난 성상을 지닌 미전환유(UCO)를 얻었으며 이를 UCO 감압증류공정(V2)에 주입하여 탑정압력 75 mmHg, 탑정온도 80℃ 및 탑저압력 150mmHg, 탑저온도 325℃로 감압증류하여 하기 표 3과 같은 경질추출물(Light Distillate) 36.3 LV%, 100N 추출물 33.4 LV%, 중간추출물(Middle Distillate) 10.5 LV% 및 탑저제품인 150N 추출물 19.8 LV% 등을 얻었다.Subsequently, diesel and light products having a boiling point of 350 ° C. or lower were recovered through a conventional fractional distillation process, and unconverted oil (UCO) having the properties shown in Table 2 was obtained, and injected into a UCO vacuum distillation process (V2) to determine the top pressure. Distilled under reduced pressure at 75 mmHg, tower top temperature 80 ℃ and tower bottom pressure 150mmHg, tower bottom temperature 325 ℃ Light Distillate 36.3 LV%, 100N extract 33.4 LV%, Middle Distillate 10.5 LV % And 19.8 LV% of 150N extract, which is a bottom product, was obtained.

이중 100N 및 150N 추출물만 중간제품으로 공급량(V2로 공급되는 UCO양)의 53.2%(즉 100N: 33.4% 및 150N: 19.8%)만 빼내고 나머지(공급량의 46.8%)는 모두 합하여 VGO 수소화분해반응공정(HDC)으로 리사이클하였다. 이를 통하여 하기 표 3에 나타난 바와 같은 100N 및 150N 등급의 고점도 지수, 저휘발도의 고급 윤활기유 원료를 생산하였고, UCO의 53.2%를 재순환함으로써 내화성 성분과 다핵 방향족 화합물의 누적방지기능은 자동적으로 달성하면서 V1과 HDT에 여유용량을 제공함으로써 윤활기유 원료 생산량만큼의 추가처리용량을 제공하여 시설을 매우 효율적으로 활용할 수 있음이 입증되었다. Only 100N and 150N extracts were taken out as 53.2% (ie, 100N: 33.4% and 150N: 19.8%) of the supply amount (ie, 100N: 33.4% and 150N: 19.8%) as intermediate products, and the rest (46.8% of the supply amount) were summed together to produce Recycled to (HDC). This resulted in the production of 100N and 150N grade high viscosity index, low volatility high grade lubricating base oils as shown in Table 3, and by accumulating 53.2% of UCO, cumulative prevention of refractory components and polynuclear aromatic compounds is automatically achieved. By providing extra capacity for V1 and HDT, it has been proven that the facility can be used very efficiently by providing additional processing capacity as much as the amount of lubricant base oil production.

Figure 112007054464969-pat00002
Figure 112007054464969-pat00002

비교예Comparative example

상압잔사유(AR)를 원료로 하여 제1감압증류공정(V1)에서 분리하여 전술한 [표 2]에 나타난 성상을 지닌 감압가스유(VGO)를 수소화처리 반응공정(HDT)에서 LHSV(Liquid Hourly Space Velocity) 3.429 hr-1, 압력 2397 Psig, 온도 385.8℃, 수소유입속도 842Nm3/m3의 조건에서, 촉매로 UF-210STARS(UOP사 제품)를 이용하여 수소화처리한 후, 후술하는 리사이클된 UCO와 함께 LHSV 1.241 hr-1, 압력 2397 Psig, 온도 395.2℃에서 UF-210/HC-115/UF-100 촉매(UOP사 제품)를 이용하여 수소유입속도 1180 Nm3/m3의 조건으로 수소화분해 반응공정(HDC)에서 처리하였다.The vacuum gas oil (VGO) having the properties shown in the above [Table 2] is separated from the first vacuum distillation process (V1) by using the atmospheric residual oil (AR) as a raw material, and the LHSV (Liquid) in the hydroprocessing reaction process (HDT). Hourly Space Velocity) After hydrogenation using UF-210STARS (manufactured by UOP) as a catalyst under the conditions of 3.429 hr -1 , pressure 2397 Psig, temperature 385.8 ° C., hydrogen inflow rate 842 Nm 3 / m 3 , the recycling described later With UCO and LHSV 1.241 hr -1 , pressure 2397 Psig, temperature 395.2 ° C using UF-210 / HC-115 / UF-100 catalyst (manufactured by UOP) at a hydrogen flow rate of 1180 Nm 3 / m 3 Treatment was carried out in a hydrocracking reaction process (HDC).

이어서 통상의 분리기 및 여러 개의 분별증류공정을 거쳐 비점이 350℃ 이하인 디젤 및 경질제품을 회수하고 하기 표 4에 나타난 성상을 지닌 미전환유(UCO)를 얻었으며, 이를 UCO 감압증류공정(V2)에 주입하여 탑정압력 75 mmHg, 탑정온도 80℃ 및 탑저압력 150 mmHg, 탑저온도 325℃로 감압증류하여 하기 표 4와 같은 경질추출물(Light Distillate) 32.5LV%, 100N 추출물 34.8LV%, 중간추출물(Middle Distillate) 14.6LV% 및 탑저제품인 150N 추출물 18.1LV% 등을 얻었다.Subsequently, diesel and light products having a boiling point of 350 ° C. or lower were recovered through a conventional separator and several fractional distillation processes to obtain unconverted oil (UCO) having the properties shown in Table 4 below, which was subjected to a UCO vacuum distillation process (V2). Injected by distillation under reduced pressure to a column top pressure of 75 mmHg, tower top temperature of 80 ℃ and tower bottom pressure of 150 mmHg, tower bottom temperature of 325 ℃ light distillate 32.5LV%, 100N extract 34.8LV%, intermediate extract ( Middle Distillate) 14.6LV% and 150N extract of the bottom product 18.1LV%.

이중 100N 및 150N 추출물만 중간제품으로 공급량(V2로 공급되는 UCO양)의 52.9%(즉 100N: 34.8% 및 150N: 18.1%)만 빼내고 나머지(공급량의 47.1%)는 모두 합하여 수소화분해 반응공정(HDC)으로 리사이클하였다. 이를 통하여, 하기 표 4에 나타난 것과 같은 100N 및 150N 등급의 고점도 지수, 저휘발도의 고급 윤활기유 원료를 생산하였다.Among them, only 100N and 150N extracts were taken out of 52.9% (that is, 100N: 34.8% and 150N: 18.1%) of the supply amount (ie, 100N: 34.8% and 150N: 18.1%) as intermediate products, and the rest (47.1% of the supply amount) were summed together. HDC). Through this, a high viscosity index, low volatile high-grade lubricant base oil raw material of 100N and 150N grades as shown in Table 4 was produced.

Figure 112007054464969-pat00003
Figure 112007054464969-pat00003

상기 본 발명에 따른 실시예와 종래 기술에 의한 비교예를 비교하면, 양 실시예에 적용되는 수소화분해 공정의 조건 등은 유사하나, 감압가스유(VGO) 만을 공급원료로 하는 비교예와는 달리 본 발명의 실시예의 경우에는 감압잔사유(VR) 또는 감압잔사유와 상압잔사유의 혼합물(VR/AR)로부터 제조된 코커가스유(CGO) 10~25%를 감압가스유(VGO)와 혼합하여 원료로 활용할 수 있으며, 이로부터 발생되는 미전환유를 수소화분해 반응공정(HDC)으로 리싸이클 시킴으로써 종래기술과 유사한 성상의 윤활기유의 원료를 생산할 수 있으므로, 종래 기술에 따른 비교예에 비하여 약 10~30%정도의 감압가스유(VGO)를 대체할 수 있게 된다. 즉, 동일한 양의 상압잔사유(AR)를 기준으로 하는 경우, 종래 기술에 따른 비교예에 비하여 부가가치가 높은 경질유분 및 고급 윤활 기유의 공급원료를 보다 더 많이 생산할 수 있다.Comparing the embodiment according to the present invention and the comparative example according to the prior art, the conditions of the hydrocracking process applied to both examples are similar, but unlike the comparative example using only reduced pressure gas oil (VGO) as a feedstock In the exemplary embodiment of the present invention, 10-25% of coker gas oil (CGO) prepared from vacuum residue (VR) or a mixture of vacuum residue and atmospheric pressure residue (VR / AR) is mixed with vacuum gas oil (VGO). It can be used as a raw material, and by recycling the unconverted oil generated from this by hydrocracking reaction process (HDC), it is possible to produce a raw material of lubricating base oil of similar properties as the prior art, about 10 to 30 compared to the comparative example according to the prior art It will be able to replace about VGO. That is, based on the same amount of atmospheric residual oil (AR), it is possible to produce more feedstock of light oil and high-grade lubricating base oil of high added value compared to the comparative example according to the prior art.

도 1은 본 발명의 일 실시예에 따른 연료유 수소화분해공정 및 윤활기유 공급원료를 리싸이클 모드로 제조하는 개략 공정도이다.1 is a schematic process diagram of producing a fuel oil hydrocracking process and a lubricating base oil feedstock in recycle mode according to an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

CGO: 코커가스유 VGO: 감압가스유CGO: Coker Gas Oil VGO: Decompression Gas Oil

UCO: 미전환유 CDU: 상압증류공정UCO: unconverted oil CDU: atmospheric distillation process

AR: 상압잔사유 VR: 감압잔사유AR: Pressure Residual Oil VR: Pressure Residual Oil

V1: 제1 감압증류공정 V2: 제2 감압증류공정V1: first reduced pressure distillation step V2: second reduced pressure distillation step

HDT: 수소화처리 반응공정 HDC: 수소화분해 반응공정HDT: Hydroprocessing Reaction Process HDC: Hydrocracking Reaction Process

Fs1: 제1 분별증류공정 Fs2: 제2 분별증류공정Fs1: first fractional distillation process Fs2: second fractional distillation process

Claims (5)

상압잔사유(AR)를 제1 감압증류공정(V1)에서 증류하여 감압가스유(VGO), 및 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)로 분리하고, 상기 감압가스유(VGO)는 직접 수소화처리 반응공정(HDT)으로 공급하며, 상기 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)은 제1 분별증류공정(Fs1)으로 공급하는 단계;The atmospheric residue oil (AR) is distilled from the first vacuum distillation process (V1), and separated into vacuum gas oil (VGO), and vacuum residue oil (VR) or a mixture of atmospheric residue and vacuum residue (VR / AR). The vacuum gas oil (VGO) is directly supplied to a hydroprocessing reaction process (HDT), and the vacuum residue (VR) or a mixture of atmospheric pressure residue and a vacuum residue oil (VR / AR) is a first fractional distillation process ( Feeding to Fs1); 상기 제1 분별증류공정(Fs1)에서 연료성분이 분리된 상기 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)을 코커드럼으로 공급하여 코킹공정을 수행한 다음 다시 상기 제1 분별증류공정(Fs1)을 통하여 코커가스유(CGO)를 얻고 얻어진 코커가스유(CGO)를 상기 감압가스유(VGO)와 함께 상기 수소화처리 반응공정(HDT)으로 공급하는 단계; In the first fractional distillation process (Fs1), the coking process is performed by supplying the vacuum residue (VR) or the mixture of atmospheric pressure residue and the vacuum residue (VR / AR) from which the fuel component is separated into a coker drum, and then performing a coking process. Obtaining coker gas oil (CGO) through the first fractional distillation process (Fs1) and supplying the coker gas oil (CGO) obtained together with the reduced pressure gas oil (VGO) to the hydroprocessing reaction process (HDT); 상기 수소화처리 반응공정(HDT)을 통하여 불순물을 제거하는 단계; Removing impurities through the hydrotreating process (HDT); 수소화분해 반응공정(HDC)을 통하여 경질 및 중질의 탄화수소를 얻는 단계; Obtaining light and heavy hydrocarbons through a hydrocracking reaction process (HDC); 상기 경질 및 중질의 탄화수소를 제2 분별증류공정(Fs2)에 공급하여 오일제품 및 미전환유로 분리하는 단계; Supplying the hard and heavy hydrocarbons to a second fractional distillation process (Fs2) to separate the oil product and the unconverted oil; 상기 분리된 미전환유 전부를 제2 감압증류공정(V2)에 공급하여 소정의 점도등급을 갖는 고급 윤활기유 공급원료 및 잔량의 미전환유를 얻는 단계; 및 Supplying all of the separated unconverted oil to a second vacuum distillation process (V2) to obtain an advanced lubricant base oil feedstock having a predetermined viscosity grade and remaining unconverted oil; And 상기 제2 감압증류공정(V2)으로부터 얻어진 미전환유를 상기 수소화분해 반응공정(HDC)으로 재순환시키는 단계로 이루어지는 것을 특징으로 하는 코커가스 유(CGO)를 이용한 고급 윤활기유 공급원료의 제조 방법.Recycling the unconverted oil obtained from the second vacuum distillation step (V2) to the hydrocracking reaction step (HDC), characterized in that the manufacturing method of the advanced lubricant base oil feedstock using coker gas oil (CGO). 상압잔사유(AR)를 제1 감압증류공정(V1)에서 증류하여 감압가스유(VGO), 및 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)로 분리하고, 상기 감압가스유(VGO)는 직접 수소화처리 반응공정(HDT)으로 공급하며, 상기 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)은 제1 분별증류공정(Fs1)으로 공급하는 단계; The atmospheric residue oil (AR) is distilled from the first vacuum distillation process (V1), and separated into vacuum gas oil (VGO), and vacuum residue oil (VR) or a mixture of atmospheric residue and vacuum residue (VR / AR). The vacuum gas oil (VGO) is directly supplied to a hydroprocessing reaction process (HDT), and the vacuum residue (VR) or a mixture of atmospheric pressure residue and a vacuum residue oil (VR / AR) is a first fractional distillation process ( Feeding to Fs1); 상기 제1 분별증류공정(Fs1)에서 연료성분이 분리된 상기 감압잔사유(VR) 또는 상압잔사유와 감압잔사유의 혼합물(VR/AR)을 코커드럼으로 공급하여 코킹공정을 수행한 다음 다시 상기 제1 분별증류공정(Fs1)을 통하여 코커가스유(CGO)를 얻고 얻어진 코커가스유(CGO)를 상기 감압가스유(VGO)와 함께 상기 수소화처리 반응공정(HDT)으로 공급하는 단계; In the first fractional distillation process (Fs1), the coking process is performed by supplying the vacuum residue (VR) or the mixture of atmospheric pressure residue and the vacuum residue (VR / AR) from which the fuel component is separated into a coker drum, and then performing a coking process. Obtaining coker gas oil (CGO) through the first fractional distillation process (Fs1) and supplying the coker gas oil (CGO) obtained together with the reduced pressure gas oil (VGO) to the hydroprocessing reaction process (HDT); 상기 수소화처리 반응공정(HDT)을 통하여 불순물을 제거하는 단계; Removing impurities through the hydrotreating process (HDT); 수소화분해 반응공정(HDC)을 통하여 경질 및 중질의 탄화수소를 얻는 단계; Obtaining light and heavy hydrocarbons through a hydrocracking reaction process (HDC); 상기 경질 및 중질의 탄화수소를 제2 분별증류공정(Fs2)에 공급하여 오일제품 및 미전환유로 분리하는 단계; Supplying the hard and heavy hydrocarbons to a second fractional distillation process (Fs2) to separate the oil product and the unconverted oil; 상기 분리된 미전환유 일부를 제2 감압증류공정(V2)에 공급하여 소정의 점도등급을 갖는 고급 윤활기유 공급원료 및 잔량의 미전환유를 얻는 단계; 및 Supplying the separated unconverted oil to a second vacuum distillation process (V2) to obtain an advanced lubricant base oil feedstock having a predetermined viscosity grade and remaining unconverted oil; And 상기 제2 분별증류공정(Fs2)으로부터 분리된 나머지 미전환유 및 제2 감압증류공정(V2)으로부터 얻어진 미전환유를 상기 수소화분해 반응공정(HDC)으로 재순환 시키는 단계로 이루어지는 것을 특징으로 하는 코커가스유(CGO)를 이용한 고급 윤활기유 공급원료의 제조 방법.Coker gas oil comprising the step of recycling the remaining unconverted oil separated from the second fractional distillation (Fs2) and the unconverted oil obtained from the second reduced pressure distillation (V2) to the hydrocracking reaction process (HDC). Process for preparing advanced lubricant base oil feedstock using (CGO). 제1항 또는 제2항에 있어서, 상기 수소화처리 반응공정(HDT)에 공급되는 감압가스유(VGO) 및 코커가스유(CGO)의 혼합부피비(VGO/CGO)가 3 ~ 9인 것을 특징으로 하는 코커가스유(CGO)를 이용한 고급 윤활기유 공급원료의 제조 방법.The mixed volume ratio (VGO / CGO) of the reduced pressure gas oil (VGO) and the coker gas oil (CGO) supplied to the hydroprocessing reaction process (HDT) is 3 to 9. Method for producing high-grade lubricating base oil feedstock using coker gas oil (CGO). 제1항 또는 제2항에 있어서, 상기 수소화분해 반응공정(HDC)으로 재순환되는 미전환유에 대한 상기 제2 분별증류공정(Fs2)에서 생성되는 미전환유의 비가 3:1 ~ 5:1인 것을 특징으로 하는 코커가스유(CGO)를 이용한 고급 윤활기유 공급원료의 제조 방법.According to claim 1 or 2, wherein the ratio of the unconverted oil produced in the second fractional distillation process (Fs2) to the unconverted oil recycled to the hydrocracking reaction process (HDC) is 3: 1 to 5: 1. A process for producing an advanced lubricating base oil feedstock using coker gas oil (CGO). 제1항 또는 제2항에 있어서, 상기 제2 감압증류공정(V2)으로부터 수소화분해 반응공정(HDC)으로 재순환되는 미전환유(UCO)에 대한 상기 제2 감압증류공정(V2)에 공급되는 미전환유의 비가 1.3:1 ~ 1.5:1인 것을 특징으로 하는 코커가스유(CGO)를 이용한 고급 윤활기유 공급원료의 제조 방법.The U.S. feed to the second reduced pressure distillation process (V2) for unconverted oil (UCO) recycled from the second reduced pressure distillation process (V2) to the hydrocracking reaction process (HDC). A process for producing an advanced lubricating base oil feedstock using coker gas oil (CGO), characterized in that the ratio of the conversion oil is 1.3: 1 to 1.5: 1.
KR1020070075100A 2007-07-26 2007-07-26 Method for producing feedstocks of high quality lube base oil from coking gas oil KR100841805B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020070075100A KR100841805B1 (en) 2007-07-26 2007-07-26 Method for producing feedstocks of high quality lube base oil from coking gas oil
JP2010518101A JP5349475B2 (en) 2007-07-26 2008-04-18 Method for producing high-grade lubricating base oil feedstock from coker gas oil
PCT/KR2008/002205 WO2009014303A1 (en) 2007-07-26 2008-04-18 Method for producing feedstocks of high quality lube base oil from coking gas oil
CN2008801005062A CN101790576B (en) 2007-07-26 2008-04-18 Method for producing feedstocks of high quality lube base oil from coking gas oil
GB1000418.2A GB2463606B (en) 2007-07-26 2008-04-18 Method for producing feedstocks of high quality lube base oil from cooking gas oil
US12/668,817 US20100193400A1 (en) 2007-07-26 2008-04-18 Method for producing feedstocks of high quality lube base oil from coking gas oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070075100A KR100841805B1 (en) 2007-07-26 2007-07-26 Method for producing feedstocks of high quality lube base oil from coking gas oil

Publications (1)

Publication Number Publication Date
KR100841805B1 true KR100841805B1 (en) 2008-06-26

Family

ID=39772643

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070075100A KR100841805B1 (en) 2007-07-26 2007-07-26 Method for producing feedstocks of high quality lube base oil from coking gas oil

Country Status (6)

Country Link
US (1) US20100193400A1 (en)
JP (1) JP5349475B2 (en)
KR (1) KR100841805B1 (en)
CN (1) CN101790576B (en)
GB (1) GB2463606B (en)
WO (1) WO2009014303A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170084887A (en) * 2016-01-13 2017-07-21 에스케이이노베이션 주식회사 Method for producing high quality lube base oil through absorption of poly nuclear aromatics in unconverted oil

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914887B2 (en) * 2013-09-12 2018-03-13 Chevron U.S.A. Inc. Two-stage hydrocracking process for making heavy lubricating base oil from a heavy coker gas oil blended feedstock
JP6391108B2 (en) * 2014-02-13 2018-09-19 コスモ石油株式会社 Method for producing lubricating base oil
US10711207B2 (en) 2014-10-22 2020-07-14 Uop Llc Integrated hydrotreating and slurry hydrocracking process
US11034895B1 (en) * 2020-01-22 2021-06-15 Axens SA Process for production of on specification group III/III+ base oils while preserving base oil yield

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020084408A (en) * 2001-04-28 2002-11-07 차이나 페트로리움 앤드 케미컬 코포레이션 Process and Apparatus for Processing Residue

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1525738A (en) * 1974-12-13 1978-09-20 Exxon Research Engineering Co Simultaneous production of naphthenic and paraffinic lubricating oil basestocks
GB8629476D0 (en) * 1986-12-10 1987-01-21 Shell Int Research Manufacture of lubricating base oils
US4940529A (en) * 1989-07-18 1990-07-10 Amoco Corporation Catalytic cracking with deasphalted oil
JP3065816B2 (en) * 1992-10-02 2000-07-17 日石三菱株式会社 Production method of high viscosity index low viscosity lubricating base oil
KR960013606B1 (en) * 1993-05-17 1996-10-09 주식회사 유공 Preparation of lubricating base oil by use of unconverted oil
KR980007693A (en) * 1996-06-26 1998-03-30 김광호 External condition monitoring and recordable vehicles
JP2001055585A (en) * 1999-08-19 2001-02-27 Jgc Corp Treatment of petroleum and treating system thereof
US6517705B1 (en) * 2001-03-21 2003-02-11 Uop Llc Hydrocracking process for lube base oil production
KR20030073026A (en) * 2002-03-08 2003-09-19 에스케이 주식회사 Method for producing feedstocks of high quality and heavy lube base oil from unconverted oil of fuels hydrocracker
US6787026B2 (en) * 2002-10-28 2004-09-07 Chevron U.S.A. Inc. Process for the production of high quality base oils

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020084408A (en) * 2001-04-28 2002-11-07 차이나 페트로리움 앤드 케미컬 코포레이션 Process and Apparatus for Processing Residue

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170084887A (en) * 2016-01-13 2017-07-21 에스케이이노베이션 주식회사 Method for producing high quality lube base oil through absorption of poly nuclear aromatics in unconverted oil
KR102458858B1 (en) 2016-01-13 2022-10-25 에스케이이노베이션 주식회사 Method for producing high quality lube base oil through absorption of poly nuclear aromatics in unconverted oil

Also Published As

Publication number Publication date
CN101790576A (en) 2010-07-28
CN101790576B (en) 2013-03-20
US20100193400A1 (en) 2010-08-05
JP2011504517A (en) 2011-02-10
WO2009014303A1 (en) 2009-01-29
GB2463606B (en) 2012-02-08
GB201000418D0 (en) 2010-02-24
GB2463606A (en) 2010-03-24
JP5349475B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
KR101399207B1 (en) Method for producing feedstocks of high quality lube base oil from unconverted oil
KR960013606B1 (en) Preparation of lubricating base oil by use of unconverted oil
US6726832B1 (en) Multiple stage catalyst bed hydrocracking with interstage feeds
JP3713297B2 (en) An integrated method for improving the quality of middle distillate products.
US8110091B2 (en) Process for the conversion of feedstocks resulting from renewable sources for producing gas oil fuel bases with a low sulphur content and with an improved cetane number
JP7048728B2 (en) Low quality oil reforming method and reforming system
RU2495086C2 (en) Selective recycling of heavy gasoil for purpose of optimal integration of heavy crude oil and vacuum gas oil refining
KR100841805B1 (en) Method for producing feedstocks of high quality lube base oil from coking gas oil
CN105586087B (en) A kind of method being hydrocracked
JP4564176B2 (en) Crude oil processing method
CN101629105A (en) Method for combining coal tar fractional distillation and hydro-conversion
CN109486518A (en) A kind of method for modifying and system of low-quality oil
KR20030073026A (en) Method for producing feedstocks of high quality and heavy lube base oil from unconverted oil of fuels hydrocracker
CA2867920C (en) Selective separation of heavy coker gas oil
JP4184713B2 (en) Method for increasing production of chemical products in coke oven
US20210261872A1 (en) Two-step hydrocracking method using a partitioned distillation column
JP5489952B2 (en) Production method of vacuum gas oil
TW202408659A (en) Hydrocracking process with optimized management of the recycling for the production of naphtha
CN114395411A (en) System and method for preparing mesophase pitch and oil product based on coal tar hydrogenation
CN109486515A (en) A kind of method and system that poor oil efficiently modifies
IL111694A (en) Method for producing feedstocks of high quality lube base oil from unconverted oil of fuel hydrocracker operating in recycle mode
JP2017193662A (en) Method of refining light oil and method of producing c8 aromatic hydrocarbon
KR20100109625A (en) Method of manufacturing light oil and raw material of lube base oil
KR20160071706A (en) Process for the production of white oils meeting the cfr standard from waste oils

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130312

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140312

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190325

Year of fee payment: 12