KR100833765B1 - 리튬 이온 전지 - Google Patents

리튬 이온 전지 Download PDF

Info

Publication number
KR100833765B1
KR100833765B1 KR1020050134529A KR20050134529A KR100833765B1 KR 100833765 B1 KR100833765 B1 KR 100833765B1 KR 1020050134529 A KR1020050134529 A KR 1020050134529A KR 20050134529 A KR20050134529 A KR 20050134529A KR 100833765 B1 KR100833765 B1 KR 100833765B1
Authority
KR
South Korea
Prior art keywords
lithium ion
ion battery
battery
binder
separator
Prior art date
Application number
KR1020050134529A
Other languages
English (en)
Other versions
KR20070071234A (ko
Inventor
김진희
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020050134529A priority Critical patent/KR100833765B1/ko
Publication of KR20070071234A publication Critical patent/KR20070071234A/ko
Application granted granted Critical
Publication of KR100833765B1 publication Critical patent/KR100833765B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 이온 전지에 관한 것으로, 보다 상세하게는 세라믹 세퍼레이터 기능막을 구비함에 따라 보호회로(Protection Circuit Module;PCM)가 불필요하게 되어, 비용절감과 내부 저항 감소의 효과가 있는 리튬 이온 전지에 관한 것이다.
리튬 이온 전지, 세라믹 세퍼레이터, 보호회로

Description

리튬 이온 전지{Lithium Ion Rechargeable Battery}
도 1은 보호회로가 장착된 종래의 리튬 이온 전지의 구성을 도시한 블럭도
도 2a는 본 발명에 따른 세라믹 세퍼레이터가 구비됨에 따라 보호회로가 제거되어 베어 셀과 외부 세트가 직접 결합한 것을 도시한 블럭도
도 2b는 본 발명에 따른 세라믹 세퍼레이터가 구비됨에 따라 보호회로가 제거되어 베어 셀과 충전기가 직접 결합한 것을 도시한 블럭도
도 3은 본 발명에 따른 세라믹 세퍼레이터가 구비된 전극조립체의 사시도
도 4는 본 발명에 따른 세라믹 다공막의 개념도
< 도면의 주요부분에 대한 부호의 설명 >
100 - 보호회로 110 - 외부단자
120 - 베어 셀 130 - 센서 저항
140 - 충방전 FET 소자 150 - 퓨즈
160 - 제 1제어부 170 - 온도 퓨즈
180 - 제 2제어부 200 - 세라믹 세퍼레이터가 구비된 베어셀
210 - 양극판 215 - 양극 단자
220 - 음극판 225 - 음극 단자
230 - 세라믹 세퍼레이터 232 - 1차 입자
234 - 2차 입자 236 - 바인더
300 - 외부 세트 400 - 충전기
본 발명은 리튬 이온 전지에 관한 것으로, 보다 상세하게는 세라믹 세퍼레이터 기능막을 가지므로 보호회로(Protection Circuit Module;PCM)가 불필요한 리튬 이온 전지에 관한 것이다.
이차 전지는 재충전이 가능하고 소형 및 대용량화 가능성이 크다. 근래에 캠코더, 휴대용 컴퓨터, 휴대 전화 등 휴대용 전자기기 수요 증가가 이루어지면서 이들 휴대용 전자기기의 전원으로 이차 전지에 대한 연구 개발이 많이 이루어지고 있다. 근래에 개발되고 사용되는 것 가운데 대표적으로는 니켈수소(Ni-MH)전지와 리튬(Li)이온 전지 및 리튬이온(Li-ion) 폴리머 전지가 있다.
이차 전지의 재료로 많이 사용되는 리튬은 원소 자체의 원자량이 작아 단위 질량당 전기 용량이 큰 전지를 제조하기에 적합한 재료이다. 한편, 리튬은 수분과 격렬하게 반응하므로 리튬계 전지에서는 비수성 전해질을 사용하게 된다. 이 경우, 물의 전기분해 전압에 영향을 받지 않으므로 리튬계 전지에서는 3 내지 4 볼트(V) 정도의 기전력을 발생시킬 수 있다는 장점이 있다.
리튬 이온 이차 전지에서 사용되는 비수성 전해질은 크게 액상 전해질과 고상 전해질이 있다. 액상 전해질은 리튬염을 유기 용매에 해리시킨 것이다. 유기 용 매로는 대개 에틸렌 카보네이트, 프로필렌 카보네이트 또는 다른 알킬기 함유 카보네이트나 유사한 유기 화합물이 사용될 수 있다.
그런데, 리튬 이온 이차 전지에서는 전해질의 이온전도도가 낮다. 전해질의 이온 전도도가 낮다는 문제는 전극의 활물질 면적을 늘리고, 두 전극의 대향 면적을 크게 함으로써 어느 정도 보완될 수 있다.
그러나, 전극의 대향 면적을 늘리는 작업도 여러 가지 제약 요인에 따른 한계가 있다. 결국, 전해질의 낮은 이온전도도는 전지의 내부 임피던스를 크게 하여 내부 전압 강하를 크게 하고, 특히, 대전류 방전이 필요할 때 전지의 전류를 제한하고 따라서 출력을 제한하는 요인이 된다.
더욱이, 세퍼레이터도 두 전극 사이에서 리튬 이온의 이동을 제한하는 요인이 된다. 두 전극 사이에 존재하는 세퍼레이터가 전해질에 대한 충분한 투과성, 젖음성(wettability)을 갖지 못할 경우, 세퍼레이터에 의한 두 전극 사이에서의 리튬 이온의 이동을 제한하여 전지의 전기적 특성을 떨어뜨리게 된다.
따라서, 전지의 성능과 관련된 세퍼레이터의 특성에 있어서, 세퍼레이터의 내열성, 열변형 저항성, 내화학성, 기계적 강도 등과 함께 세퍼레이터의 임의의 단면에서 빈 공간 부분의 면적을 의미하는 공공율, 전해액에 의한 젖음성 등이 주요 지표가 된다.
한편, 리튬 이온 전지의 세퍼레이터는 자체가 전지의 과열을 방지하는 안전장치의 역할도 하게 된다. 세퍼레이터의 통상적 재료가 되는 폴리올레핀 계통의 미다공성 막은 전지의 이상으로 인하여 일정 이상의 온도가 되면, 연화되고 부분적으 로 용융상태가 된다. 따라서, 전해액의 연결통로, 리튬 이온의 통로가 되는 미다공성 막의 미세 통공이 폐쇄된다(shut down). 리튬 이온의 이동은 중단되고, 전지의 내외부 전류의 흐름이 멈추어 전류에 의한 전지의 온도 상승도 멈추게 된다.
그러나, 전지의 온도가 어떤 이유로, 가령 외부 열전이 등의 이유로 갑자기 상승할 경우, 세퍼레이터의 미세 통공 폐쇄에도 불구하고, 전지의 온도 상승이 일정 시간 계속되어 세퍼레이터의 파손이 생길 수 있다. 즉, 세퍼레이터가 부분적으로 녹아 그 부분에서 전지의 두 극이 직접 닿아 내부 단락을 일으킬 수 있고, 세퍼레이터가 수축되고, 수축으로 인하여 줄어든 위치에서 전지의 두 극이 맞닿아 단락될 수 있다. 이런 단락은 더욱 심각한 위험성을 가지게 된다.
그리고, 전지의 고용량화 경향에 따라 이차 전지에서 단시간에 많은 전류가 흐를 수 있게 된다. 이런 경우, 이차 전지에서 일단 이상 과전류가 흐르게 되면, 세퍼레이터의 미세 통공 폐쇄가 이루어져도 전류 차단에 의해 바로 전지의 온도가 낮아지기보다는 이미 발생된 열에 의해 세퍼레이터의 용융이 계속되어 세퍼레이터 파손에 의한 내부 단락이 발생할 가능성이 커지고 있다.
이런 상황에서는 세퍼레이터의 개공 폐쇄에 의한 전류 차단도 중요하지만 전지 과열시 세퍼레이터가 용융되거나 수축되는 문제가 더욱 중요한 문제가 된다. 즉, 전극 사이의 내부 단락을 가령 200도씨 이상의 비교적 높은 온도에서도 안정적으로 방지하는 것이 요청된다.
또한, 리튬 이온 이차전지는 전지의 안전성 확보를 위해 과충전 전압, 과방전 전압, 과전류로부터 보호하는 기능을 가진 보호회로(PCM)를 통상적으로 구비하 고 있다.
도 1은 보호회로가 장착된 종래의 리튬 이온 전지의 구성을 도시한 블럭도이다. 도 1에 도시된 바와 같이, 종래의 배터리 팩은 외부 단자(110), 배터리 셀(120), 센서 저항(130), 충방전 FET 소자(140), 퓨즈(150), 제1제어부(160), 온도 퓨즈(170) 및 제2제어부(180)로 이루어져 있다.
상기와 같이 구성된 종래의 배터리 팩에서는 상기 외부 단자(110)를 통해 외부 세트 또는 충전기가 연결되어 방전 또는 충전 동작이 이루어진다. 상기 외부 단자(110)와 배터리 셀(120) 사이의 경로는 충방전 경로로 사용되는 대전류 경로이며, 이 대전류 경로를 통해 비교적 큰 전류가 흐른다.
상기 외부 단자(110)에 충전기가 연결되면, 배터리 셀(120)의 충전 동작이 일어나며, 이 때의 충전 경로는 외부 단자(110)(P+), 퓨즈(150), 온도 퓨즈(170), 충방전 FET 소자(140), 배터리 셀(120), 센서 저항(130) 및 외부 단자(110)(P-)로 볼 수 있다.
상기 외부 단자(110)에 외부 세트가 연결되면, 배터리 셀(120)의 방전 동작이 일어나며, 이 때의 방전 경로는 배터리 셀(120)의 양극, 충방전 FET 소자(140), 온도 퓨즈(170), 퓨즈(150), 외부 단자(110)(P+), 외부 단자(110)(P-), 센서 저항(130) 및 배터리 셀(120)의 음극으로 볼 수 있다.
여기서, 상기 충방전 FET 소자(140)는 배터리 셀(120)이 과충전 또는 과방전 되거나 외부 세트에서 쇼트가 발생했을 때, 제1제어부(160)에 의해 작동(off)된다. 물론, 이러한 과충전, 과방전 또는 외부 쇼트는 상기 센서 저항(130)에 의해 센싱 된다. 또한, 상기 퓨즈(150)는 이러한 제1제어부(160)에 의해 충방전 FET 소자(140)가 제대로 작동되지 않을 때, 퓨즈(150)가 과열되어 융단된다. 물론, 상기 제2제어부(180)와 퓨즈(150) 사이에는 상기 퓨즈(150)에 고열을 제공하는 저항(도시되지 않음)이 연결되어 있다.
한편, 상기 온도 퓨즈(170)는 실제로 상기 충방전 FET 소자(140) 위에 설치되어 있다. 따라서, 상기 충방전 FET 소자(140)가 규정 온도 범위가 되었을 때 융단되어 대전류 경로에 전류가 흐르지 않도록 한다.
보호회로는 자체가격이 비쌀 뿐만 아니라, 검사비용, 기타부품 작업비용 등에 의해 전지제조 단가를 높이고, 또한 두 극 사이에 보호회로가 장착됨으로 인해 전지의 내부저항이 증가한다는 단점이 있다.
본 발명은 상술한 종래의 이차 전지의 문제점을 제거하기 위한 것으로, 고온에서도 수축되거나 쉽게 용융되지 않아 전극 사이의 내부 단락을 방지할 수 있는 다공막을 구비함으로써 보호회로의 장착이 불필요한 리튬 이온 전지를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위한 본 발명의 리튬 이온전지는, 두 전극판과 상기 두 전극판 사이에 개재된 세퍼레이터가 권취되어 형성된 전극 조립체를 포함하는 베어셀에 전기적으로 연결된 양극단자 및 음극단자를 포함하며, 상기 세퍼레이터는 세라믹 물질이 바인더에 의해 결합되어 형성되며, 상기 전극판 중 어느 하나에 결착되고, 상기 베어셀은 이차전지 보호회로 없이 직접 전기적으로 외부세트에 연결되는 것을 특징으로 한다.
이 때 상기 세퍼레이터는 세라믹 물질의 1차 입자가 일부 소결되거나 용해 재결정되어 이루어진 2차 입자가 바인더에 의해 결합되어 이루어지는 다공막(이하, 세라믹 세퍼레이터라 하기로 한다)을 포함하여 이루어질 수 있다.
본 발명에서 다공막의 세라믹 물질과 바인더는 중량비는 98:2 ~ 85:15 범위인 것이 바람직하다.
또한 본 발명에서 다공막의 2차 입자는 포도송이 모양 및 층상의 입자군 중 선택된 어느 하나로 이루어질 수 있다. 또한, 본 발명에서 1차 입자 자체가 포도송이 모양 입자군이나 비늘형 입자가 적층상으로 결속된 층상 입자군일 수도 있다.
이 때, 응집된 2차 입자를 만드는 방법은, 화학물질을 이용하여 해당 물질 전부 혹은 1차 입자의 표면 일부를 녹이고 재결정화 시키는 등의 다양한 화학적인 방법, 외부 압력을 인가하는 등의 물리적 방법 등을 들 수 있다. 그 가운데 용이한 방법의 하나로는 입자 재질의 용융 온도 부근까지 가열을 통해 재질의 온도를 상승시키고, 넥킹(necking)시키는 방법을 들 수 있다.
입자들을 일부 용융 혹은 일부 소결시켜 응집시키는 가공을 할 때의 세라믹 재료를 얼마나 용융시킬 것인가는, 이후 세라믹 재료에 바인더 및 용매를 섞어 페이스트(paste)나 분산상의 다공막액을 만들 때의 재료 교반 과정에서 본 발명의 특징적 입자 형상이 일정 정도로 유지될 수 있고, 형성된 다공막의 밀도가 낮도록 결정되는 것이 바람직하다. 다공막의 밀도가 높으면 다공막의 공공율이 작아져 리튬 이온들의 이동이 원활하지 않게 된다.
본 발명에서 세라믹 재질로는 지르코늄 산화물(가령 ZrO2), 알루미나(Al2O3) 실리카(SiO2), 티타늄 산화물(TiO2), 이온 전도성 유리 등의 각각과 이들의 혼합물을 사용할 수 있으며, 특히 지르코늄 산화물을 사용하는 것이 바람직하다. 지르코늄 산화물은 아크릴레이트 바인더와의 혼합 교반에 있어서 제타(Z) 전위의 관계로부터도 분산되기 쉽게 되어 생산성에 유리하고, 화학적으로도 안정적이며, 단가 면에서도 유리하다는 점에서 바람직한 재료가 된다. 더욱이, 지르코늄 산화물은 방열성이 뛰어나고, 고온에서 리튬 화합물과 함께 양호한 p/n 접합을 이루어 다이오드 성질을 가질 수 있다. 또한, 과도한 리튬 이온이 음극에 투입되는 것을 효율적으로 방지할 수 있다.
기타, 다공막을 이루는 세라믹 재질로는 지르코늄, 알미늄, 실리콘, 티타늄 각각의 절연성 질화물, 수산화물, 케톤화물, 혹은 이러한 화합물들의 혼합물이 사용될 수 있다. 여기서, 절연성 질화물이라는 한정은 티타늄 나이트라이드(TiN) 등은 도전성을 가지므로 본 발명의 세라믹 재질로 적합하지 않기 때문에 언급된 것이다.
본 발명에서 상기 다공막이 리튬 이온 전지의 적어도 한 전극의 적어도 한 판면에 부착된 형태로 이루어질 수 있다. 이를 위해 활물질이 도포된 전극 위에 다시 다공막액을 도포하고, 베이킹(baking)을 통해 도포된 다공막액에서 용매를 제거하는 방법을 사용할 수 있다.
다공막은 바인더 및 용매의 혼합액에 세라믹 물질 2차 입자가 고른 분산상을 형성하는 다공막액을 만들고, 전극 집전체에 활물질이 코팅된 전극판을 그 다공막액에 딥(dipping)하는 방법으로 전극판 전체를 둘러싸도록 이루어질 수 있다. 다공막은 스프레이 형태로 전극판에 다공막액을 뿌리는 등의 방법으로 이루어질 수도 있다.
본 발명에서 바인더는 주로 고분자 수지로 이루어지며, 고분자 수지로는 200도씨 이상의 열에도 견딜 수 있는 아크릴레이트나 메타아크릴레이트의 중합체 또는 이들의 공중합체로 이루어지는 것이 바람직하다.
본 발명에서 상기 다공막이 리튬 이온 전지의 적어도 한 전극의 적어도 한 판면에 부착된 형태로 이루어질 수 있다. 이를 위해 활물질이 도포된 전극 위에 다시 다공막액을 도포하고, 베이킹(baking)을 통해 도포된 다공막액에서 용매를 제거하는 방법을 사용할 수 있다.
다공막은 바인더 및 용매의 혼합액에 세라믹 물질 2차 입자가 고른 분산상을 형성하는 다공막액을 만들고, 전극 집전체에 활물질이 코팅된 전극판을 그 다공막액에 딥(dipping)하는 방법으로 전극판 전체를 둘러싸도록 이루어질 수 있다. 다공막은 스프레이 형태로 전극판에 다공막액을 뿌리는 등의 방법으로 이루어질 수도 있다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 리튬 이온 전지의 구성과 작용을 상세히 설명하기로 한다.
도 2a, 도 2b는 본 발명에 따른 세라믹 세퍼레이터가 구비됨에 따라 보호회로가 제거되어 베어 셀과 외부 세트 혹은 충전기가 직접 결합한 것을 도시한 블럭도이다. 도 2a를 참조하면, 세라믹 세퍼레이터가 구비된 베어 셀(200)과 휴대폰 본체 또는 노트북과 같은 외부 세트(300)가 보호회로 없이 직접 전기적으로 연결되어 있다. 도 1에서와 같이 종래의 리튬 이온 전지는 과방전시 센서 저항(130)이 이를 감지하여 제 1제어부(160)에 신호를 전달하고, 제 1제어부(160)가 방전 FET 소자를 작동(off)시켜 온도 퓨즈(170)를 끊음으로써 전류가 차단된다. 세퍼레이터가 전극과 별도로 형성된 종래의 리튬 이온 전지에 보호회로가 없다면, 전지가 과열될 때 전지 내의 세퍼레이터가 수축 작용을 일으키고, 이에 따라 전극 사이의 단락을 일으킬 수 있다. 그러나, 세라믹 세퍼레이터가 일단 전극과 결착되어 형성되면 전지가 과열되어도 그 결착력에 의해 세퍼레이터가 열을 받아 수축되거나, 단락을 일으키는 확률을 낮출 수 있다. 또한, 세라믹 세퍼레이터는 기존의 폴리머 세퍼레이터보다 내열성이 우수하므로 열에 의한 용융으로 세퍼레이터가 파손될 위험이 적다.
도 2b를 참조하면, 세라믹 세퍼레이터가 구비된 베어 셀(200)과 충전기(400)가 보호회로 없이 직접 전기적으로 연결되어 있다. 도 1에서와 같이 종래의 리튬 이온 전지는 과충전시 센서 저항(130)이 이를 감지하여 제 1제어부(160)에 신호를 전달하고, 제 1제어부(160)가 충전 FET 소자를 작동(off)시켜 온도 퓨즈(170)를 끊음으로써 전류가 차단된다. 상술한 과방전의 경우와 마찬가지로, 과충전시에도 세라믹 세퍼레이터가 구비되어 있는 경우, 내부 단락의 위험성을 감소시킬 수 있다.도 2a, 도 2b와 같이 보호회로를 제거함으로써 종래 대비 58%만큼의 비용절감 효과가 있고, 저항 측정 실험 결과 내부저항이 40 mΩ에서 20 mΩ으로 감소되었다.
도 3은 본 발명에 따른 세라믹 세퍼레이터가 구비된 전극조립체의 사시도이다. 도 3을 참조하면, 본 발명에 따른 다공성 격리막이 적용되는 전극조립체는 양극집전체의 소정영역에 양극활물질층이 형성된 양극전극판(210), 음극집전체의 소정영역에 음극활물질층이 형성된 음극전극판(220), 상기 양극전극판(210) 및 음극전극판(220)상에 도포되어 상기 양극전극판(210)과 음극전극판(220)의 쇼트(short)를 방지하고 리튬 이온의 이동만 가능하게 하는 세라믹 세퍼레이터(230)가 젤리-롤 형상으로 권취되어 형성된다.
또한, 상기 양극활물질로는 LiCoO2, LiMn2O4, LiNiO2, LiMnO2 등의 리튬 산화물이 사용되고 있다. 또한 음극활물질로는 탄소(C) 계열 물질, Si, Sn, 틴 옥사이드, 틴 합금 복합체(composite tin alloys), 전이 금속 산화물 등이 사용되고 있다.
상기 양극판(210)의 양극집전체는 알루미늄(Al) 재질, 음극판(220)의 음극집전체는 구리(Cu) 재질을 사용하며, 상기 세라믹 세퍼레이터(230)는 일반적으로 바인더 및 용매의 혼합액에 세라믹 입자가 고른 분산상을 형성하도록 다공막액을 만들고, 전극 집전체에 활물질이 코팅된 전극판을 그 다공막액에 담그는 방법(dipping), 전극면에 대해 전면 인쇄의 방법, 스프레이 방법 등으로 이루어질 수 있다.
이때, 다공막이 본 발명에 따른 다공성으로, 포도송이 모양 및 층상의 입자군 중 선택된 어느 하나가 바인더에 의해 결합된 상태를 이루기 위해서는 먼저 세라믹 물질의 1차 입자들이 응집된 상태의 2차 입자, 즉, 포도송이 모양의 입자군을 이룬다. 1차 입자들이 편린(片鱗) 상태를 이루는 경우, 2차 입자는 1차 입자들이 부분 소결되어 적층된 적층상의 입자군일 수 있다. 2차 입자를 형성하는 방법으로는 1차 입자의 부분 소결, 전부 용해나 부분 용해 후 재결정 등을 제시할 수 있다. 세라믹 재료를 전부 용해시켜 재결정시키면 1차 입자는 상호 응집된 형상으로 석출될 수 있으므로 1차 입자와 2차 입자가 동시적으로 형성될 수도 있다.
도 4는 본 발명에 따른 세라믹 다공막의 개념도이다. 바인더가 개개의 2차 입자(234) 표면 전체를 감싸면서 2차 입자(234)들을 결합시킬 경우, 바인더(236)의 이온 전도도가 작을 경우, 2차 입자(234) 내부를 통한 이온 전도는 원활히 이루어질 수 없다. 따라서, 바인더(236)의 이온전도도에 관계없이 다공막의 이온전도도를 높이기 위해서, 바인더(236)는, 도 4와 같이, 1차 입자(232)로 이루어지는 2차 입자(234) 사이에 사각형으로 표시된 것과 같이 2차 입자(234)의 표면 일부에만 존재하여 2차 입자(234)들을 연결하는 다리의 형태로 이차 입자들을 결합시키는 것이 바람직하다.
이를 위해 바인더(236)는 다공막 형성용 슬러리 내에 소량 사용되는 것이 바람직하다. 본 발명의 다공막에서 세라믹 물질과 바인더(236)의 비율은 질량 기준으로 98:2 내지 85:15라면 세라믹 물질 필러가 바인더(236)에 의해 완전히 덮이는 것 을 방지할 수 있다. 즉, 바인더(236)가 필러 물질을 덮어 필러 물질 내로 이온 전도가 제한되는 문제를 피할 수 있다.
바인더(236)의 재료로서는 바인더(236) 자체가 팽창하지 않아 결과적으로 다공막의 공공율을 높일 수 있도록 하기 위해, 다른 물질에 대한 결착력이 우수하고 팽창율이 낮은 아크릴 고무계 바인더가 좋다. 일례로, 아크릴레이트나 메타아크릴레이트의 중합체 혹은 이들의 공중합체가 있다.
이상 설명한 바와 같이, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형의 실시가 가능한 것은 물론이고, 그와 같은 변경은 특허청구범위 기재의 범위 내에 있게 된다.
본 발명에 따른 리튬 이온 전지에 의하면, 세라믹 세퍼레이터를 구비하여 베어 셀 자체로 과충전, 과방전에 대한 안전성이 확보됨에 따라 보호회로를 제거할 수 있게 됨으로써 보호회로의 제조 비용이 절감되고 공정이 단축되는 효과가 있으며, 또한 보호회로의 제거로 전지의 내부 저항이 감소되어 전지의 효율성이 증대되는 효과가 있다.

Claims (11)

  1. 두 전극판과 상기 두 전극판 사이에 개재된 세퍼레이터가 권취되어 형성된 전극 조립체를 포함하는 베어셀에 전기적으로 연결된 양극단자 및 음극단자를 포함하는 리튬 이온 전지에 있어서,
    상기 세퍼레이터는 세라믹 물질이 바인더에 의해 결합되어 형성되며, 상기 전극판 중 어느 하나에 결착되고,
    상기 베어셀은 이차전지 보호회로 없이 직접 전기적으로 외부세트에 연결되는 것을 특징으로 하는 리튬 이온 전지.
  2. 제 1항에 있어서,
    상기 세퍼레이터는 세라믹 물질의 1차 입자가 일부 소결되거나 용해 재결정되어 이루어진 2차 입자가 바인더에 의해 결합되어 이루어지는 다공막을 포함하여 이루어지는 것을 특징으로 하는 리튬 이온 전지.
  3. 제 2 항에 있어서,
    상기 다공막에서 상기 세라믹 물질과 상기 바인더는 중량비는 98:2 ~ 85:15 범위인 것을 특징으로 하는 리튬 이온 전지.
  4. 제 2항에 있어서,
    상기 2차 입자는 포도송이 모양 및 층상의 입자군 중 선택된 어느 하나로 이루어지는 것을 특징으로 하는 리튬 이온 전지.
  5. 제 2항에 있어서,
    상기 세라믹 물질로 실리카(SiO2), 알루미나(Al2O3), 지르코늄 산화물(ZrO2), 티타늄 산화물(TiO2)가운데 적어도 하나를 사용하는 것을 특징으로 하는 리튬 이온전지.
  6. 제 2항에 있어서,
    상기 세라믹 물질로 실리콘 질화물, 실리콘 수산화물, 실리콘 알콕시화물, 실리콘 케톤화물, 알루미늄 질화물, 알루미늄 수산화물, 알루미늄 알콕시화물, 알루미늄 케톤화물, 지르코늄 질화물, 지르코늄 수산화물, 지르코늄 알콕시화물, 지르코늄 케톤화물, 티타늄 수산화물, 티타늄 알콕시화물, 티타늄 케톤화물 가운데 적어도 하나를 사용하는 것을 특징으로 하는 리튬 이온 전지.
  7. 제 2항에 있어서,
    상기 바인더는 고분자 수지로 이루어지는 것을 특징으로 하는 리튬 이온 전지.
  8. 제 7항에 있어서,
    상기 고분자 수지는 아크릴레이트나 메타아크릴레이트의 중합체 혹은 이들의 공중합체 가운데 하나로 이루어지는 것을 특징으로 하는 리튬 이온 전지.
  9. 제 2항에 있어서,
    상기 베어셀의 내부에서 서로 대향하게 될 상기 두 전극의 전극면들 가운데 적어도 한 쪽에 상기 다공막이 존재하는 것을 특징으로 하는 리튬 이온 전지.
  10. 제 9항에 있어서,
    상기 다공막은 상기 전극을 상기 2차 입자가 분산된 용매 및 바인더 혼합용액에 담그는 방법(dipping), 상기 용액으로 스프레이하는 방법, 상기 용액으로 전면 인쇄하는 방법 가운데 하나의 방법으로 형성하여 이루어지는 것을 특징으로 하는 리튬 이온 전지.
  11. 삭제
KR1020050134529A 2005-12-29 2005-12-29 리튬 이온 전지 KR100833765B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050134529A KR100833765B1 (ko) 2005-12-29 2005-12-29 리튬 이온 전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050134529A KR100833765B1 (ko) 2005-12-29 2005-12-29 리튬 이온 전지

Publications (2)

Publication Number Publication Date
KR20070071234A KR20070071234A (ko) 2007-07-04
KR100833765B1 true KR100833765B1 (ko) 2008-05-29

Family

ID=38506399

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050134529A KR100833765B1 (ko) 2005-12-29 2005-12-29 리튬 이온 전지

Country Status (1)

Country Link
KR (1) KR100833765B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097249B1 (ko) 2009-10-27 2011-12-21 삼성에스디아이 주식회사 Pcm 어셈블리와, 이를 이용한 각형 이차 전지

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960015661U (ko) * 1994-10-11 1996-05-17 리튬 밧데리의 안전장치
JPH1064499A (ja) 1996-07-10 1998-03-06 Saft America Inc 安全弁電気断路器を備えたリチウムイオン電気化学電池
KR20040058917A (ko) * 2002-12-27 2004-07-05 삼성에스디아이 주식회사 보호 수단을 가지는 리튬 이차 전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960015661U (ko) * 1994-10-11 1996-05-17 리튬 밧데리의 안전장치
JPH1064499A (ja) 1996-07-10 1998-03-06 Saft America Inc 安全弁電気断路器を備えたリチウムイオン電気化学電池
KR20040058917A (ko) * 2002-12-27 2004-07-05 삼성에스디아이 주식회사 보호 수단을 가지는 리튬 이차 전지

Also Published As

Publication number Publication date
KR20070071234A (ko) 2007-07-04

Similar Documents

Publication Publication Date Title
KR100646535B1 (ko) 리튬 이온 전지용 전극조립체와 이를 이용한 리튬 이온이차전지
KR100659820B1 (ko) 리튬 이온 이차 전지
EP1998401B1 (en) Electrode assembley and secondary battery using the same
EP2048734B1 (en) Electrode assembly and secondary battery having the same
JP4537355B2 (ja) Ptc素子を備えた二次電池
KR100305101B1 (ko) 방폭형이차전지
KR100908977B1 (ko) 이차전지의 전극 조립체
KR100824851B1 (ko) 전극 조립체 및 이를 구비하는 이차 전지
KR100358224B1 (ko) 리튬 이차전지
JP4382557B2 (ja) 非水二次電池
US7985498B2 (en) Lithium secondary battery
KR100876271B1 (ko) 리튬 이차 전지
JP2009059571A (ja) 電池用集電体及びこれを用いた電池
KR101308195B1 (ko) 전극조립체와 이를 포함하는 리튬 이차전지 및 리튬이차전지의 제조방법
KR100833765B1 (ko) 리튬 이온 전지
KR101450337B1 (ko) 젤리롤형 전극 조립체 및 이를 구비한 이차 전지
KR101201081B1 (ko) 리튬 이차 전지
KR100833741B1 (ko) 젤리롤형 전극 조립체 및 이를 구비하는 이차 전지
KR101023850B1 (ko) 이차전지용 이차보호소자
JPH1050293A (ja) 電気化学装置
KR20080095464A (ko) 이차 전지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130422

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140423

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150421

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160419

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170424

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180503

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190502

Year of fee payment: 12