KR100818684B1 - Control Method For Inductive Sensor - Google Patents

Control Method For Inductive Sensor Download PDF

Info

Publication number
KR100818684B1
KR100818684B1 KR1020040087280A KR20040087280A KR100818684B1 KR 100818684 B1 KR100818684 B1 KR 100818684B1 KR 1020040087280 A KR1020040087280 A KR 1020040087280A KR 20040087280 A KR20040087280 A KR 20040087280A KR 100818684 B1 KR100818684 B1 KR 100818684B1
Authority
KR
South Korea
Prior art keywords
sensor
rotating body
inductive sensor
control method
rotor
Prior art date
Application number
KR1020040087280A
Other languages
Korean (ko)
Other versions
KR20060038118A (en
Inventor
박종권
경진호
노승국
노명규
박병철
남우호
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020040087280A priority Critical patent/KR100818684B1/en
Publication of KR20060038118A publication Critical patent/KR20060038118A/en
Application granted granted Critical
Publication of KR100818684B1 publication Critical patent/KR100818684B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/24Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2611Measuring inductance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

본 발명은 인덕티브 센서에 관한 것으로서, 인덕턴스가 공기 간극에 의해 변하는 성질을 이용하여 회전체와 센서 사이의 간격을 비접촉으로 측정이 가능하도록 하는 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inductive sensor, by which a distance between a rotating body and a sensor can be measured in a non-contact manner by using a property of changing inductance by an air gap.

권선(12)이 감겨져 있는 다수개의 극(11)이 중심 방향으로 돌출되는 센서프로브(10)로 구성되며, 상기 극(11)은 16개를 구비하고, 4개의 인접 극(11)의 권선(12)이 직렬로 연결되어 하나의 권선군(14,15,16,17)으로 구성되어 있다.A plurality of poles 11, on which the windings 12 are wound, is composed of sensor probes 10 protruding toward the center direction. The poles 11 have 16, and the windings of four adjacent poles 11 12 is connected in series and is composed of one winding group 14, 15, 16, 17.

따라서 본 발명은 회전체의 변위를 측정하는 센서를 부착하여 인덕턴스가 공기 간극에 의해 변하는 성질을 이용하여 회전체와 센서 사이의 간격을 측정하여 회전체의 변형 발생여부를 쉽게 알 수 있는 효과가 있다.Therefore, the present invention is attached to the sensor for measuring the displacement of the rotor by measuring the distance between the rotor and the sensor using the property inductance is changed by the air gap there is an effect that can easily determine whether the deformation of the rotor. .

센서프로브, 극, 권선, 신호처리회로, 회전체Sensor probe, pole, winding, signal processing circuit, rotating body

Description

인덕티브 센서의 제어방법 {Control Method For Inductive Sensor}Control method for inductive sensor {Control Method For Inductive Sensor}

도 1(a)는 종래기술에 따른 자기센서의 사시도.Figure 1 (a) is a perspective view of a magnetic sensor according to the prior art.

도 1(b)는 종래기술에 따른 자기센서의 측면도.Figure 1 (b) is a side view of a magnetic sensor according to the prior art.

도 2는 본 발명에 따른 인덕티브 센서의 사시도.2 is a perspective view of an inductive sensor according to the present invention;

도 3은 본 발명에 따른 인덕티브 센서의 측면도.3 is a side view of an inductive sensor according to the present invention;

도 4는 본 발명에 따른 신호처리 회로의 구조를 나타낸 회로도.4 is a circuit diagram showing the structure of a signal processing circuit according to the present invention;

도 5는 본 발명에 따른 인덕티브 센서의 제어방법.5 is a control method of an inductive sensor according to the present invention.

* 도면의 주요 부분에 대한 부호 설명 *Explanation of symbols on the main parts of the drawings

10 : 센서프로브 11 : 극10: sensor probe 11: pole

12 : 권선 13 : 결합공12: winding 13: coupling hole

14 : X+ 군 15 : X- 군14: X + group 15: X- group

16 : Y+ 군 17 : Y- 군16: Y + group 17: Y- group

20 : 신호처리회로 21 : 센서구동수단20: signal processing circuit 21: sensor driving means

22 : 전류변환기 23 : 고역통과필터22: current converter 23: high pass filter

24 : 전파정류기 25 : 차동증폭기24: full-wave rectifier 25: differential amplifier

26 : 저역통과필터 100 : 회전체26: low pass filter 100: the rotating body

본 발명은 인덕티브 센서에 관한 것으로서, 좀더 구체적으로는 인덕턴스가 공기 간극에 의해 변하는 성질을 이용하여 회전체와 센서 사이의 간격을 측정하는 인덕티브 센서의 제어방법이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inductive sensor, and more particularly, to a method of controlling an inductive sensor that measures a distance between a rotating body and a sensor by using a property of changing inductance by an air gap.

종래 공지된 기술로 특허출원 공개된 특허공개번호 제2001-0020798호에서의 자기센서 및 그 제조방법은 도 1(a)을 참고로하여 설명하면, 연질 자성재료로 이루어진 통형상의 코어(3) 내측에 설치된 내부도체(1)에 고주파전원(5)에서 발생된 고주파전류를 통류시키고, 코어(3) 외측의 외부도체(2)에 감은 검출코일(4) 주위의 측정 자장을 변화시켜 피측정 자장의 강도 및 방향을 검출하도록 하며, 도 1(b)는 상기 도 1(a)에 나타낸 직교 플럭스게이트형 자기센서에 있어서의 내부도체(1)와 외부도체(2) 사이에 고주파전류를 통류시킨 경우에 있어서의 자장을 화살표가 붙은 파선(s)으로 나타내고 있으며, 내부도체(1)를 흐르는 여자전류와 외부도체(2)를 흐르는 여자전류에 의해 여자자장은 이들 내부도체(1)와 외부도체(2) 사이에만 발생하고 공간을 자화하는 일이 없고, 코어(3)에 자장을 집중시킬 수 있어 작은 전력으로 유효한 자화를 행할 수 있게 된다. 즉, 외부도체(2)를 코어(3) 주위에 효과적으로 배치함으로써 외부도체(2)의 외측으로 누설되는 여자자속을 실질적으로 제로로 할 수 있다.A magnetic sensor and a method of manufacturing the same according to a conventional patent application disclosed in Japanese Patent Application Laid-Open No. 2001-0020798, which is described with reference to FIG. 1 (a), is a cylindrical core 3 made of a soft magnetic material. The high frequency current generated from the high frequency power supply 5 is passed through the inner conductor 1 installed inside, and the measured magnetic field around the detection coil 4 wound around the outer conductor 2 outside the core 3 is changed to be measured. The intensity and direction of the magnetic field is detected, and FIG. 1 (b) flows a high frequency current between the inner conductor 1 and the outer conductor 2 in the orthogonal fluxgate type magnetic sensor shown in FIG. 1 (a). In this case, the magnetic field is indicated by the broken line s with arrows, and the excitation magnetic field is excited by the excitation current flowing through the inner conductor 1 and the excitation current flowing through the outer conductor 2. It occurs only between the conductors 2 and does not magnetize the space, The magnetic field can be concentrated in the core 3, so that effective magnetization can be performed with a small power. That is, by effectively disposing the outer conductor 2 around the core 3, the excitation magnetic flux leaking out of the outer conductor 2 can be made substantially zero.

이처럼 종래의 자기센서는 통형상 코어(3) 내측에 고주파전류를 통류시키는 내부도체(1)와 검출코일(4)을 감은 외부도체(2)로 구성되는데, 상기와 같은 구성는 기계등의 주축과 같은 회전체의 변위를 정밀하게 측정하기가 어렵고, 검출코일(4)이 외부도체(2)에 감겨져 있어 외부적인 충격에 의해 검출코일(4)의 변형이 발생되어 자기센서의 기능이 저하되는 단점이 발생하게 된다.As described above, the conventional magnetic sensor is composed of an inner conductor 1 through which a high frequency current flows inside the tubular core 3 and an outer conductor 2 wound around the detection coil 4. It is difficult to accurately measure the displacement of the same rotating body, and the detection coil 4 is wound around the outer conductor 2, so that deformation of the detection coil 4 occurs due to an external impact, thereby degrading the function of the magnetic sensor. This will occur.

상술한 바와 같은 문제점을 해결하기 위하여 본 발명에서는 회전체의 변위를 측정하는 센서를 부착하고 인덕턴스가 공기 간극에 의해 변하는 성질을 이용하여 회전체와 센서 사이의 간격을 측정하는 장치를 개발하게 되었다. 상기 회전체의 위치가 변한 만큼의 인덕턴스 변화를 센서프로브와 회전체 사이의 간격에 의해 측정할 수 있으며, 이를 환산하면 회전체의 변형 발생여부를 쉽게 알 수 있는 인덕티브 센서의 제어방법을 제공하는 것을 그 목적으로 한다.In order to solve the above problems, the present invention has developed a device for attaching a sensor for measuring the displacement of the rotating body and measuring the distance between the rotating body and the sensor using the property that the inductance is changed by the air gap. The change in inductance as much as the position of the rotating body can be measured by the distance between the sensor probe and the rotating body, and converting it provides a control method of the inductive sensor that can easily know whether the deformation of the rotating body occurs. For that purpose.

이러한 목적을 달성하기 위한 본 발명의 구성으로는,As a configuration of the present invention for achieving this object,

인덕턴스가 공기 간극에 의해 변하는 성질을 이용하여 회전체와 센서 사이의 간격을 측정하는 장치에 있어서,In the device for measuring the distance between the rotor and the sensor using the property that the inductance is changed by the air gap,

권선(12)이 감겨져 있는 다수개의 극(11)이 중심 방향으로 돌출되는 센서프로브(10)로 구성하는 것을 특징으로 한다.A plurality of poles 11 wound around the winding 12 is characterized by consisting of a sensor probe 10 protruding in the center direction.

본 발명의 다른 특징으로서, 상기 극(11)은 16개를 구비하고, 4개의 인접 극(11)의 권선(12)이 직렬로 연결되어 하나의 권선군(14,15,16,17)으로 구성할 수 있다.As another feature of the invention, the pole 11 has 16, the windings 12 of the four adjacent poles 11 are connected in series to one winding group (14, 15, 16, 17) Can be configured.

인덕턴스가 공기 간극에 의해 변하는 성질을 이용하여 회전체와 센서 사이의 간격을 측정하는 인덕티브 센서의 제어방법에 있어서,In the control method of the inductive sensor for measuring the distance between the rotor and the sensor using the property that the inductance is changed by the air gap,

센서프로브(10)를 회전체(100)에 삽입하여 가진 신호를 인가하는 인가단계(S10)와,An application step (S10) of applying a signal having the sensor probe 10 inserted into the rotating body 100,

인가된 신호에서 고주파 전압신호를 발생하는 발생단계(S20)와,A generation step (S20) of generating a high frequency voltage signal from the applied signal;

발생된 전압신호에서 주파수 성분을 추출하는 추출단계(S30)와,An extraction step S30 of extracting a frequency component from the generated voltage signal;

진폭 성분을 추출하는 추출단계(S40)와,An extraction step (S40) of extracting an amplitude component,

측정된 전압신호의 주파수 성분과 진폭 성분을 초기의 기준값과 비교하여 값의 차이가 없을시 양호, 값의 차이가 있을시 이상으로 회전체(100)의 변형 유무를 판단하는 판단단계(S50)로 구성하는 것을 특징으로 하는 인덕티브 센서의 제어방법이다.When the frequency component and the amplitude component of the measured voltage signal are compared with the initial reference value, there is no difference in value, and when there is a difference in value, the determination step (S50) determines whether or not the deformation of the rotating body 100 is greater than that. It is a control method of an inductive sensor characterized in that the configuration.

이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1(a)는 종래기술에 따른 자기센서의 사시도이고, 도 1(b)는 종래기술에 따른 자기센서의 측면도이고, 도 2는 본 발명에 따른 인덕티브 센서의 사시도이고, 도 3은 본 발명에 따른 인덕티브 센서의 측면도이고, 도 4는 본 발명에 따른 신호처리 회로의 구조를 나타낸 회로도이고, 도 5는 본 발명에 따른 인덕티브 센서의 제어방법이다.Figure 1 (a) is a perspective view of a magnetic sensor according to the prior art, Figure 1 (b) is a side view of the magnetic sensor according to the prior art, Figure 2 is a perspective view of an inductive sensor according to the present invention, Figure 3 is Figure 4 is a side view of the inductive sensor according to the invention, Figure 4 is a circuit diagram showing the structure of the signal processing circuit according to the present invention, Figure 5 is a control method of the inductive sensor according to the present invention.

본 발명은 인덕턴스가 공기 간극에 의해 변하는 성질을 이용하여 회전체와 센서 사이의 간격을 측정하는 장치와 관련된다. 측정하고자 하는 회전체(100)와 인 덕티브 센서와의 결합관계를 나타낸 도2를 기본으로 하고, 도 3의 측면도를 참고로 하여 설명하면,The present invention relates to an apparatus for measuring the distance between a rotating body and a sensor using the property that the inductance is changed by the air gap. Based on FIG. 2 showing the coupling relationship between the rotating body 100 to be measured and the inductive sensor, and described with reference to the side view of FIG.

센서프로브(10)는 0.1mm 내지 0.35mm의 규소강판을 적층하여 제작한다. 내부 공간에는 여러 개의 극(11)이 중심 방향으로 돌출되어 있으며, 각 극(11)당 0.15mm의 권선(12)을 80번 감고 공기간극은 0.3mm로 한다. 4개의 인접 극(11)의 권선(12)이 직렬로 연결되어 하나의 권선군을 형성하며, 마주보는 2개의 권선군이 하나의 신호채널로 센서출력이 된다. 즉, X+ 군(14)과 마주보는 X- 군(15)의 2개 권선군이 하나의 채널로, Y+ 군(16)과 Y- 군(17)이 하나의 채널로 구성된다. 결합공(13)은 측정작업시 센서프로브(10)를 안정적으로 지지하기 위하여 센서프로브(10)의 상하좌우 외형 일측에 구비된다.The sensor probe 10 is manufactured by laminating silicon steel sheets of 0.1 mm to 0.35 mm. In the inner space, a plurality of poles 11 protrude in the center direction, and the winding 12 of 0.15 mm per 80 is wound 80 times and the air gap is 0.3 mm. The windings 12 of four adjacent poles 11 are connected in series to form one winding group, and two winding groups facing each other become a sensor output through one signal channel. That is, two winding groups of the X- group 15 facing the X + group 14 are configured as one channel, and the Y + group 16 and the Y- group 17 are configured as one channel. The coupling hole 13 is provided at one side of the top, bottom, left and right outer sides of the sensor probe 10 in order to stably support the sensor probe 10 during the measurement operation.

도 4의 회로도에서 센서구동수단(21)은 고주파 전압 신호를 발생하는 장치로서, PWM 스위칭 증폭기 집적회로를 사용하여 간단하게 구현한다. 주파수는 20kHz 내지 80kHz 사이에서 결정되며, 전압 크기와 마찬가지로 권선수, 권선군을 이루는 극(11)의 수, 그리고 센서프로브(10)와 회전체(100) 사이의 간격에 의해 결정된다. 신호처리회로(20)는 전류변환기(22)와 복조필터로 구성되며, 복조필터는 고역통과필터(23), 전파정류기(24), 저역통과필터(26)로 이루어져 있다. 신호처리회로(20)는 기본적으로 진폭복조 과정을 구현하는데, 우선 고역통과필터(23)를 통해 센서구동수단(21)에서 발생하여 전류변환기(22)를 거쳐 전압 신호의 주파수 성분 이상 만을 추출하는 것으로 위치정보와 관계없는 저주파 잡음을 없애주게 된다. 전파정류기(24)를 통해 진폭 성분을 추출하여, 최종적으로 마주보는 권선군의 출력이 차동증폭기(25)에서 차이값이 계산되어 저역통과필터(26)를 거쳐서 최종 출력이 발생한다. 전파정류기(24)와 저역통과필터(26)의 조합은 코일 전류의 스위칭 잡음으로부터 위치 정보를 추정한다.In the circuit diagram of Fig. 4, the sensor driving means 21 is a device for generating a high frequency voltage signal, which is simply implemented using a PWM switching amplifier integrated circuit. The frequency is determined between 20 kHz and 80 kHz, and is determined by the number of windings, the number of poles 11 constituting the winding group, and the distance between the sensor probe 10 and the rotor 100 as well as the voltage magnitude. The signal processing circuit 20 includes a current converter 22 and a demodulation filter, and the demodulation filter includes a high pass filter 23, a full wave rectifier 24, and a low pass filter 26. The signal processing circuit 20 basically implements an amplitude demodulation process, which first occurs in the sensor driving means 21 through the high pass filter 23 and extracts only the frequency component abnormality of the voltage signal through the current converter 22. This eliminates low frequency noise irrelevant to positional information. By extracting the amplitude component through the full-wave rectifier 24, the difference in the output of the group of windings facing each other is calculated in the differential amplifier 25, the final output is generated through the low pass filter 26. The combination of full-wave rectifier 24 and low pass filter 26 estimates the positional information from the switching noise of the coil current.

인덕티브 센서의 정적 특성은 정밀 이송이 가능한 XY 스테이지 위에 측정 타켓을 부착하여 변위에 대한 응답을 측정하며, 성능에 있어서 0.43㎛의 분해능, 감도는 6 V/mm, 최대선형오차는 0.5%이하의 우수함을 보인다.The static characteristic of the inductive sensor measures the response to displacement by attaching a measurement target on the XY stage, which can be precisely transported, and has a resolution of 0.43 µm, a sensitivity of 6 V / mm, and a maximum linear error of 0.5% or less. Shows excellence

삭제delete

도 5는 인덕티브 센서의 제어방법을 나타낸 것으로서, 센서프로브(10)를 측정 대상물인 회전체(100)에 장착하고, 센서 코일에 고주파 전압신호를 인가하게 되면, 상기 인가된 전압신호에 의해 발생하는 전류신호를 검출하고, 상기 전류신호의 진폭을 추출하고, 상기 전류신호 진폭의 변화를 전압으로 변환하여 출력한다.FIG. 5 illustrates a method of controlling an inductive sensor. When the sensor probe 10 is mounted on the rotating body 100 as a measurement target and a high frequency voltage signal is applied to the sensor coil, the sensor probe 10 is generated by the applied voltage signal. The current signal is detected, the amplitude of the current signal is extracted, and the change in the amplitude of the current signal is converted into a voltage and output.

상술한 본 발명의 구성 및 작용에 의하면, 회전체의 변위를 측정하는 센서를 부착하여 인덕턴스가 공기 간극에 의해 변하는 성질을 이용하여 회전체와 센서 사이의 간격을 측정하여 회전체의 변형 발생여부를 쉽게 알 수 있는 효과가 있다.According to the configuration and operation of the present invention described above, by attaching a sensor for measuring the displacement of the rotating body by measuring the distance between the rotating body and the sensor by using the property that the inductance is changed by the air gap whether or not the deformation of the rotating body It is easy to see the effect.

Claims (3)

삭제delete 삭제delete 유도계수가 공기 간극에 의해 변하는 성질을 이용하여 회전체와 센서 사이의 간격을 측정하는 인덕티브 센서의 제어방법에 있어서,In the control method of the inductive sensor for measuring the distance between the rotor and the sensor by using the property that the induction coefficient is changed by the air gap, 센서프로브(10)를 회전체(100)에 삽입하여 가진 신호를 인가하는 인가단계(S10)와,An application step (S10) of applying a signal having the sensor probe 10 inserted into the rotating body 100, 인가된 신호에서 고주파 전압신호를 발생하는 발생단계(S20)와,A generation step (S20) of generating a high frequency voltage signal from the applied signal; 발생된 전압신호에서 주파수 성분을 추출하는 추출단계(S30)와,An extraction step S30 of extracting a frequency component from the generated voltage signal; 진폭 성분을 추출하는 추출단계(S40)와,An extraction step (S40) of extracting an amplitude component, 측정된 전압신호의 주파수 성분과 진폭 성분을 초기의 기준값과 비교하여 값의 차이가 없을시 양호, 값의 차이가 있을시 이상으로 회전체(100)의 변형 유무를 판단하는 판단단계(S50)로 구성하는 것을 특징으로 하는 인덕티브 센서의 제어방법.When the frequency component and the amplitude component of the measured voltage signal are compared with the initial reference value, there is no difference in value, and when there is a difference in value, the determination step (S50) determines whether or not the deformation of the rotating body 100 is greater than that. Control method of the inductive sensor, characterized in that the configuration.
KR1020040087280A 2004-10-29 2004-10-29 Control Method For Inductive Sensor KR100818684B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040087280A KR100818684B1 (en) 2004-10-29 2004-10-29 Control Method For Inductive Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040087280A KR100818684B1 (en) 2004-10-29 2004-10-29 Control Method For Inductive Sensor

Publications (2)

Publication Number Publication Date
KR20060038118A KR20060038118A (en) 2006-05-03
KR100818684B1 true KR100818684B1 (en) 2008-04-01

Family

ID=37145770

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040087280A KR100818684B1 (en) 2004-10-29 2004-10-29 Control Method For Inductive Sensor

Country Status (1)

Country Link
KR (1) KR100818684B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0165893B1 (en) * 1989-12-29 1999-03-30 후지무라 히로유끼 Inductance-type displacement sensor for eliminating inaccuracies due to external magnetic fields

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0165893B1 (en) * 1989-12-29 1999-03-30 후지무라 히로유끼 Inductance-type displacement sensor for eliminating inaccuracies due to external magnetic fields

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1001658930000*

Also Published As

Publication number Publication date
KR20060038118A (en) 2006-05-03

Similar Documents

Publication Publication Date Title
CN101627311B (en) High bandwidth open-loop current sensor
KR100993928B1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
CN109425840B (en) Nanocrystalline rotating magnetic property testing system and measuring method
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
JP2007052019A (en) Magnetometer for enhancing demagnetization region
CN102246054A (en) Method and device for detecting short-circuits in the stator core of electric machines
JP2003270307A (en) Magnetic field detecting element integrated on printed circuit board and manufacturing method therefor
US10458949B2 (en) Method for measuring a stator core of an electric machine and measuring device
JP2003004831A (en) Orthogonal flux gate type magnetic sensor
US9146279B2 (en) Method for detection of interlaminar sheet short circuits in the stator sheet core of electromachines
EP2789987A2 (en) Magnetic sensor, magnetic field sensor, contactless position sensor, and contactless position sensor system
JP5121679B2 (en) Fluxgate magnetic sensor
JP2003075475A (en) Ac current sensor
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
KR100818684B1 (en) Control Method For Inductive Sensor
CN110542871B (en) Magnetic characteristic measurement system and method for magnetic material
JP3764834B2 (en) Current sensor and current detection device
CN104614688B (en) For the c-type sensor and its detection method of D.C. magnetic biasing dynamic magnetic-flux measurement
CN103439405A (en) Multifunctional electromagnetic detection sensor synchronized by iron core and ferrite core and detection method thereof
JP2008107119A (en) Current sensor
JP5257811B2 (en) Fast response and low current consumption non-contact DC current sensor
JP5721475B2 (en) Interpolation probe for eddy current testing of ferromagnetic steel tubes
JP4691277B2 (en) Stress measuring apparatus and stress measuring method
CN114264988B (en) Device for measuring millimeter-level plane square inductance magnetic field intensity
JPH06281712A (en) Magnetic field sensor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
E801 Decision on dismissal of amendment
J201 Request for trial against refusal decision
AMND Amendment
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151208

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161222

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171204

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 13