KR100817029B1 - Development of gastric protected slilver nanoparticle and their manufacturing method - Google Patents

Development of gastric protected slilver nanoparticle and their manufacturing method Download PDF

Info

Publication number
KR100817029B1
KR100817029B1 KR1020070022720A KR20070022720A KR100817029B1 KR 100817029 B1 KR100817029 B1 KR 100817029B1 KR 1020070022720 A KR1020070022720 A KR 1020070022720A KR 20070022720 A KR20070022720 A KR 20070022720A KR 100817029 B1 KR100817029 B1 KR 100817029B1
Authority
KR
South Korea
Prior art keywords
silver
silver nano
protective coating
hardened
oil
Prior art date
Application number
KR1020070022720A
Other languages
Korean (ko)
Inventor
강석진
서국현
허태영
김현섭
기광석
이왕식
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020070022720A priority Critical patent/KR100817029B1/en
Application granted granted Critical
Publication of KR100817029B1 publication Critical patent/KR100817029B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/30Shaping or working-up of animal feeding-stuffs by encapsulating; by coating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Inorganic Chemistry (AREA)
  • Fodder In General (AREA)

Abstract

A method of manufacturing silver nanoparticles of a protective coating stable without decomposition in the stomach is provided to give silver nanoparticles having effects of causing no adverse effects when fed to a pig and poultry, increasing productivity and reducing the generation of odors in livestock facilities and capable of being well absorbed in the intestine and used as a feed additive. Silver nanoparticles stable without decomposition in the stomach are prepared by the steps of: immobilizing a silver nanoparticle colloidal solution and nutrients to a water insoluble carrier; mixing the fixed silver nanoparticle colloidal solution and a coating agent and stirring; and encapsulating the mixture. The silver nanoparticle colloidal solution has a particle size of 1 to 15nm and contains one or more polymeric stabilizers selected from the group consisting of polyvinylpyrrolidone, (1-vinyl pyrrolidone)-acrylic acid copolymer, polyoxyethylene stearate and (1-vinylpyrrolidone)-vinyl acetic acid copolymer. The carrier is selected from the group consisting of silica, cellulose, starch, zeolite, calcium carbonate, wheat red dog and corn flour. The coating agent is selected from the group consisting of a monovalent soap, divalent soap, hydrogenated vegetable oil and the like.

Description

위에서 안정한 보호코팅 은나노 및 그 제조방법{Development of gastric protected slilver nanoparticle and their manufacturing method}Stable protective coating on silver nano and its manufacturing method {Development of gastric protected slilver nanoparticle and their manufacturing method}

본 발명은 입경이 1 내지 15 nm인 은나노입자 콜로이드를 위에서 분해되지 않고 안정하게 하부 소화기관으로 이동해서 흡수될 수 있도록 코팅과정을 거쳐 보호 코팅시킨 은나노를 제조하는 방법 및 돼지 및 가금에 급여하기 위한 사료 첨가제를 개발하는 것이다.The present invention provides a method for producing silver nano-coated protective coating through a coating process so that silver nanoparticle colloid having a particle diameter of 1 to 15 nm can be absorbed by moving to the lower digestive system stably without decomposing in the stomach and to feed pigs and poultry. To develop feed additives.

은(silver)은 기본적으로 살균, 방취기능 및 650여 가지 병원성 세균에 대해 항균효과 등의 우수한 특징을 가지고 있으며, 나노화로 쪼개진 은나노는 원래의 은 (silver)보다 더욱 강력한 항균, 살균, 방취기능을 갖는다. 또한, 염소계열보다 수십배 강력한 살균력을 가지면서도 체내에서 무해한 특징을 갖는다. 특허공개 제2005-0097305호에서는 은의 항 미생물 활성에 대한 설명과 특허제517019호에는 은나노 코팅되어 탈취 기능을 하는 칸막이판이 형성되어 있는, 음식물 쓰레기용 건조기가 개시되어 있다. 특허공개 제2003-0082064호 및 제2003-0082065호에는 은나노입자가 항균제, 살균제 및 탈취제로 사용될 수 있다는 내용이 개시되어 있다. 그러나, 비록 상기한 종래 기술에는 사용의 한계점이 있으며, 은나노를 다른 물질과 합 성 또는 혼합할 경우 은나노가 쉽게 불안정화되고, 체내에 급여할 경우에도 위내에서 은의 불안정성으로 인해 고유의 특성을 잃어버려, 제품화에 큰 어려움이 있다. Silver basically has excellent features such as sterilization, deodorization and antimicrobial effect against more than 650 pathogenic bacteria.Silver nano silver, which is broken by nano-ization, has stronger antibacterial, sterilization and deodorization function than the original silver. Have In addition, while having a sterilizing power tens of times stronger than chlorine series, it has harmless characteristics in the body. Patent Publication No. 2005-0097305 discloses a description of the antimicrobial activity of silver and Patent No. 517019 discloses a food waste dryer in which a partition plate that is coated with silver nano-deodorizing function is formed. Patent Publication Nos. 2003-0082064 and 2003-0082065 disclose that silver nanoparticles can be used as antibacterial agents, fungicides and deodorants. However, although the above-described prior art has limitations of use, when silver nanoparticles are synthesized or mixed with other substances, silver nanoparticles are easily destabilized, and even when fed into the body, they lose their intrinsic properties due to the instability of silver in the stomach. There is a big difficulty in commercialization.

종래기술의 문제점을 해결하기 위하여 본 발명자들은 은나노 입자를 다른 물질과 합성 또는 혼합하여도 은 고유의 특성은 유지가 가능하도록 하였으며, 축산분야 적용을 위한 돼지 및 가금용 펠렛 타입의 보호코팅 은나노의 개발을 완성하였다.In order to solve the problems of the prior art, the inventors have made it possible to maintain the intrinsic properties of silver even if the silver nanoparticles are synthesized or mixed with other materials, and the development of protective coating silver nanopore of pig and poultry type for livestock applications. Was completed.

본 발명은 가축의 위내에서 분해되지 않고 장내에서 안정하게 이동 후 흡수 될 수 있도록 코팅기술을 제공하고자 한다.The present invention is to provide a coating technology that can be absorbed after stable movement in the intestine without decomposition in the stomach of livestock.

또한 본 발명의 목적은 상기 조성물을 이용하여 돼지 및 가금의 사료첨가제로의 적용방법을 제공하는 것이다.It is also an object of the present invention to provide a method of applying pig and poultry feed additives using the composition.

본 발명은 은나노 입자 콜로이드를 위(stomach) 내에서 분해되지 않고 안정하게 하부 소화기관으로 이동해서 흡수될 수 있도록 코팅시킨 은나노를 제조하는 방법 및 돼지 및 가금에 급여하기 위한 사료 첨가제에 관한 것이다. The present invention relates to a method for producing silver nano-coated silver nanoparticle colloid so that it can be stably moved and absorbed into the lower digestive tract without being broken down in the stomach and feed additives for feeding pigs and poultry.

본 발명의 조성물에 있어서 은나노입자 콜로이드 용액은 폴리비닐피롤리돈, (1-비닐 피롤리돈)-아크릴산 공중합체, 폴리옥시에틸렌 스테아레이트 및 (1-비닐피롤리돈)-비닐 아세트산 공중합체로 이루어진 군으로부터 선택된 하나 이상의 고분자 안정제를 포함하는 것인 조성물이다. 상기 고분자 안정제는 조성물 총 중량에 대하여 0.5 내지 5 중량%의 범위로 포함되는 것일 수 있다. 이들 고분자 안정제는 동물 체내 및 체외에 안전하면서도 은나노 입자가 콜로이드 용액 중에 고르게 분산되어 있도록 한다. 따라서, 본 발명의 조성물 중에 포함되어 있는 은나노 입자를 동물 체내 및 체외에 고르게 전달할 수 있게 한다. The silver nanoparticle colloidal solution in the composition of the present invention is a polyvinylpyrrolidone, (1-vinyl pyrrolidone) -acrylic acid copolymer, polyoxyethylene stearate and (1-vinylpyrrolidone) -vinyl acetic acid copolymer A composition comprising one or more polymer stabilizers selected from the group consisting of. The polymer stabilizer may be included in the range of 0.5 to 5% by weight based on the total weight of the composition. These polymer stabilizers are safe in animals and in vitro, but allow the silver nanoparticles to be evenly dispersed in the colloidal solution. Therefore, it is possible to evenly deliver the silver nanoparticles contained in the composition of the present invention in and out of the animal.

본 발명의 조성물에 사용되는 상기 은나노 입자 콜로이드는 당 업계에 알려진 은나노 입자 콜로이드를 제조하는 방법에 따라 제조될 수 있다. 예를 들면, 국제특허공개 제WO 02/087749호에는 콜로이드 용액의 제조 방법이 개시되어 있다. The silver nanoparticle colloid used in the composition of the present invention may be prepared according to a method for preparing silver nanoparticle colloid known in the art. For example, WO 02/087749 discloses a method for preparing a colloidal solution.

본 발명에 의한 은나노 제조방법은 다음과 같다.Silver nano-manufacturing method according to the present invention is as follows.

먼저 은나노 성분이 위내에서 보호될 수 있도록 상기에 명시한 액상의 은나노 콜로이드 용액을 담체에 고정화시켜 고정화된 은나노 성분을 만들었다. 여기서 은나노 입자 콜로이드 용액은 은염 또는 은 산화물 염과 폴리비닐피롤리돈, (1-비닐피롤리돈)-아크릴산 공중합체, 폴리옥시에틸렌 스테아레이트 및 (1-비닐피롤리돈)-비닐 아세트산 공중합체로 이루어진 군에서 하나 또는 둘 이상의 혼합물이 바람직하고, 상기 담체는 말분, 옥분, 실리카, 셀룰로오즈, 전분, 제올라이트, 탄산칼슘으로 구성된 군에서 선택되는 물 불용성 담체인 것이 바람직하며, 보다 바람직하게는 실리카인 것이 바람직하다.First, the silver nano colloidal solution of the above-mentioned liquid is immobilized on a carrier to make the silver nano component immobilized so that the silver nano component can be protected in the stomach. Wherein the silver nanoparticle colloidal solution is a silver salt or silver oxide salt with polyvinylpyrrolidone, (1-vinylpyrrolidone) -acrylic acid copolymer, polyoxyethylene stearate and (1-vinylpyrrolidone) -vinyl acetate copolymer In the group consisting of one or two or more mixtures are preferable, and the carrier is preferably a water-insoluble carrier selected from the group consisting of powder, jade, silica, cellulose, starch, zeolite and calcium carbonate, and more preferably silica. It is preferable.

다음으로 상기 제조된 담체에 고정화된 은나노 성분에 결합코팅제를 캡슐화시켜 과립 또는 침상 형태의 캡슐화된 은나노를 제조하였다. 상기 캡슐화는 슈퍼믹서, 리본믹서, 일반교반기, 호모믹서 및 V형혼합기 등의 혼합기에서 혼합교반한 후 익스트루더 또는 플로더 등의 압출기에서 수행하였다. 여기서 상기 고정화된 은나노와 결합코팅제의 중량비는 1 : 1~99인 것이 바람직하며 상기 압출기로 다공판크 기가 0.5~2.5mm인 것이 바람직하다. 또한, 상기 결합코팅제는 1가 비누, 2가 비누 및 녹는점이 40℃ 이상인 지방산 또는 극도경화된 식물성유지를 하나 또는 둘 이상을 포함한 것이 바람직하다. 상기 1가 비누는 나트륨비누 또는 칼륨비누가 바람직하고 상기 2가 비누는 칼슘, 마그네슘, 아연으로 구성된 비누로 구성된 군에서 선택되는 것이 바람직하다. 상기 녹는점이 40℃ 이상인 지방산은 팔미틴산, 스테아린산으로 구성된 군에서 선택되는 것이 바람직하며, 극도경화된 식물성유지는 요오드가 1이하 녹는점 57℃ 이상의 경화팜유와 경화팜스테아린으로 구성된 군에서 선택되는 것이 바람직하다. 상기 캡슐화된 은나노는 결합코팅제 함량이 50~99%인 것이 바람직하다.Next, the encapsulation coating agent was encapsulated in the silver nano component immobilized on the prepared carrier to prepare encapsulated silver nanoparticles in the form of granules or needles. The encapsulation was carried out in an extruder such as an extruder or a plotter after mixing and stirring in a mixer such as a super mixer, a ribbon mixer, a general stirrer, a homo mixer, and a V-type mixer. Herein, the weight ratio of the immobilized silver nano and the binder coating agent is preferably 1: 1 to 99, and the porous plate size of the extruder is preferably 0.5 to 2.5 mm. In addition, the binding coating agent preferably contains one or two or more monohydric soap, dihydric soap and fatty acid having a melting point of 40 ℃ or more or extremely hardened vegetable oil. The monovalent soap is preferably sodium soap or potassium soap, and the dihydric soap is preferably selected from the group consisting of soaps composed of calcium, magnesium and zinc. The fatty acid having a melting point of 40 ° C. or higher is preferably selected from the group consisting of palmitic acid and stearic acid, and the extremely hardened vegetable oil is preferably selected from the group consisting of hardened palm oil and hardened palm stearin having a melting point of 57 ° C. or higher. Do. The encapsulated silver nano is preferably a binding coating agent content of 50 to 99%.

본 발명에 따라 제조된 캡슐화된 은나노는 형태가 고르고 균일화된 모습을 나타내는 장점이 있다. 또한 코팅되지 않은 은나노를 직접 급여한 경우보다 은나노 성분이 위에서 분해되거나 소실되지 않고 장으로 바이패스되어 이용효율을 높여준다. 게다가 제조경비가 적게 들고 부지와 장치비도 적게 드는 장점이 있어서 제품의 생산단가도 낮출 수 있다. 이러한 것 때문에 위에서 보호되지 않는 형태로 은나노를 급여하는 것은 효과가 적고, 낭비가 되는 현상이 발생하게 된다. 따라서 보호 은나노를 개발하여 가축사양에 이용함으로서 돼지 및 가금류의 영양소 이용효율을 높여 생산성을 증가시키고, 각종 기능성 사료첨가제를 개발하는 것이다.The encapsulated silver nanoparticles prepared in accordance with the present invention have the advantage of exhibiting uniform and uniform appearance. In addition, the silver nano component is bypassed to the intestine without decomposing or losing from the stomach than when directly fed uncoated silver nano, thereby increasing utilization efficiency. In addition, the production cost of the product is lowered due to the advantages of low manufacturing cost and low site and equipment cost. Because of this, feeding silver nano in an unprotected form is less effective and wasteful. Therefore, the development of protective silver nano to use in livestock specification to increase the nutrient utilization efficiency of pigs and poultry to increase productivity, and to develop various functional feed additives.

이하 본 발명을 실시예를 통하여 보다 상세하게 설명하지만 본 발명의 보호범위가 하기 실시예에만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the protection scope of the present invention is not limited to the following Examples.

실시예Example 1: 캡슐화된  1: encapsulated 은나노Silver nano 제조방법 Manufacturing method

[실험예1]Experimental Example 1

은 함량 10,000ppm의 은나노 입자 콜로이드용액 0.5kg을 고정화 담체인 실리카 0.5kg에 혼합하여 고정화시킨 후 여기에 다시 결합코팅제인 칼슘비누 70kg과 경화팜스테아린 29kg을 슈퍼믹서에 섞어서 익스트루더로 1.2mm 다공판을 통해 사출하여 침상 및 입상의 캡슐화된 보호 은나노를 제조하였다. 위와 같이 제조된 보호 은나노의 결합코팅제 비율은 99% 이다. 0.5kg of silver nanoparticle colloidal solution with 10,000ppm silver content is mixed with 0.5kg of silica, which is immobilized carrier, and then immobilized.Then, 70kg of calcium soap and 29kg of hardened palm stearin are added to the super mixer by 1.2mm by extruder. Injection was carried out through the trial to produce encapsulated and granular encapsulated protective silver nano. The ratio of the binder coating agent of the protective silver nano prepared as described above is 99%.

[실험예 2]Experimental Example 2

은 함량 10,000ppm의 은나노 입자 콜로이드용액 1kg을 고정화 담체인 실리카 1kg에 혼합하여 고정화시킨 후 여기에 다시 결합코팅제인 칼슘비누 69kg과 경화팜스테아린 29kg을 슈퍼믹서에 섞어서 익스트루더로 1.2mm 다공판을 통해 사출하여 침상 및 입상의 캡슐화된 보호 은나노를 제조하였다. 위와 같이 제조된 보호 은나노의 결합코팅제 비율은 98% 이다.1kg of silver nanoparticle colloidal solution with 10,000ppm silver content is mixed with 1kg of silica as immobilization carrier, and then immobilized, and then mixed with 69kg of calcium soap and 29kg of hardened palm stearin in a super mixer. Injection was carried out to prepare encapsulated and granular encapsulated protective silver nanoparticles. The ratio of the binder coating agent of the protective silver nano prepared as described above is 98%.

[실험예 3]Experimental Example 3

은 함량 10,000ppm의 은나노 입자 콜로이드용액 5kg을 고정화 담체인 실리카 5kg에 혼합하여 고정화시킨 후 여기에 다시 결합코팅제인 칼슘비누 63kg과 경화팜스테아린 27kg을 슈퍼믹서에 섞어서 익스트루더로 1.2mm 다공판을 통해 사출하여 침상 및 입상의 캡슐화된 보호 은나노를 제조하였다. 위와 같이 제조된 보호 은나 노의 결합코팅제 비율은 90% 이다.5kg of silver nanoparticle colloidal solution with 10,000ppm silver content is mixed with 5kg of silica, which is immobilized carrier, and then immobilized, and then mixed with 63kg of calcium soap and 27kg of cured palm stearin in a super mixer. Injection was carried out to prepare encapsulated and granular encapsulated protective silver nanoparticles. The ratio of the binder coating agent of the protective silver nanoparticles prepared as described above is 90%.

[실험예 4]Experimental Example 4

은 함량 10,000ppm의 은나노 입자 콜로이드용액 10kg을 고정화 담체인 실리카 10kg에 혼합하여 고정화시킨 후 여기에 다시 결합코팅제인 칼슘비누 56kg과 경화팜스테아린 24kg을 슈퍼믹서에 섞어서 익스트루더로 1.2mm 다공판을 통해 사출하여 침상 및 입상의 캡슐화된 보호 은나노를 제조하였다. 위와 같이 제조된 보호 은나노의 결합코팅제 비율은 80% 이다.10 kg of silver nanoparticle colloidal solution with 10,000 ppm of silver is mixed with 10 kg of silica, which is immobilized carrier, and then immobilized. Injection was carried out to prepare encapsulated and granular encapsulated protective silver nanoparticles. The ratio of the binder coating agent of the prepared protective silver nano is 80%.

[실험예 5]Experimental Example 5

은 함량 10,000ppm의 은나노 입자 콜로이드용액 20kg을 고정화 담체인 실리카 20kg에 혼합하여 고정화시킨 후 여기에 다시 결합코팅제인 칼슘비누 42kg과 경화팜스테아린 18kg을 슈퍼믹서에 섞어서 익스트루더로 1.2mm 다공판을 통해 사출하여 침상 및 입상의 캡슐화된 보호 은나노를 제조하였다. 위와 같이 제조된 보호 은나노의 결합코팅제 비율은 60% 이다.20 kg of silver nanoparticle colloidal solution with 10,000 ppm of silver is mixed with 20 kg of silica, which is immobilized carrier, and then immobilized. Injection was carried out to prepare encapsulated and granular encapsulated protective silver nano. The ratio of the binder coating agent of the protective silver nano prepared as described above is 60%.

[실험예 6]Experimental Example 6

은 함량 10,000ppm의 은나노 입자 콜로이드용액 1kg을 고정화 담체인 말분 9kg에 혼합하여 고정화시킨 후 여기에 다시 결합코팅제인 칼슘비누 63kg과 경화팜스테아린 27kg을 슈퍼믹서에 섞어서 익스트루더로 1.2mm 다공판을 통해 사출하여 침상 및 입상의 캡슐화된 보호 은나노를 제조하였다. 위와 같이 제조된 보호 은나노의 결합코팅제 비율은 90% 이다.1kg of silver nanoparticle colloidal solution with 10,000ppm silver content is mixed and immobilized in 9kg of powder, which is immobilized carrier.Then, 63kg of calcium soap and 27kg of hardened palm stearin are mixed in a super mixer. Injection was carried out to prepare encapsulated and granular encapsulated protective silver nanoparticles. The ratio of the binder coating agent of the protective silver nano prepared as described above is 90%.

실시예Example 2: 캡슐화된  2: encapsulated 은나노Silver nano inin vitroin vitro 손실율Loss rate 측정 Measure

실시예1의 실험예 1~6에서 제조된 캡슐화된 은나노에 대하여 in vitro 손실율을 다음과 같은 방법으로 측정하여 결과를 표1에 나타내었다.In vitro loss ratio of the encapsulated silver nanoparticles prepared in Experimental Examples 1 to 6 of Example 1 was measured by the following method, and the results are shown in Table 1.

실험예 1~6에 의하여 제조된 캡슐화된 은나노의 시험관 내에서 안정성을 측정하기 위해, 제조된 보호 은나노를 시험관에 넣고 염산과 증류수를 첨가하여 pH 3으로 맞춘 5% 수용액을 제조한 후 상기 수용액을 JEIO TECH MC-11 다중교반기(multistirrer) 수욕조를 사용하여 40℃±0.1℃에서 1시간동안 교반하였다.In order to measure the stability of the encapsulated silver nanoparticles prepared in Experimental Examples 1 to 6, the prepared protective silver nanoparticles were placed in a test tube, hydrochloric acid and distilled water were added to prepare a 5% aqueous solution adjusted to pH 3, and then the aqueous solution was prepared. The mixture was stirred at 40 ° C. ± 0.1 ° C. for 1 hour using a JEIO TECH MC-11 multistirrer water bath.

상기 수용액을 Whatman paper No.3을 사용하여 필터링하여 고형분만을 취한 후 상기 고형분을 45℃±0.1℃에서 12시간 이상 건조하여 잔여 수분을 완전히 제거하였다.The aqueous solution was filtered using Whatman paper No. 3 to take only solids, and the solids were dried at 45 ° C. ± 0.1 ° C. for at least 12 hours to completely remove residual moisture.

상기 건조된 시료를 SANPLA DRY KEEPER에서 상온으로 냉각한 후 상기 냉각한 시료를 원자흡광분석기(AAS)를 통하여 은 함량을 측정하였다. 또한 대조구로는 상기 은나노 콜로이드 용액을 코팅하지 않고 실리카에 고정화시킨 제품을 사용해서 동일한 방법으로 비교실험을 실시하였다. 여기서 모든 분석실험은 3회 반복 측정하였고, 바탕실험을 병행하여 수행하였다.The dried sample was cooled to room temperature in a SANPLA DRY KEEPER and the cooled sample was then measured for silver content through an atomic absorption spectrometer (AAS). In addition, as a control, a comparative experiment was conducted in the same manner using a product immobilized on silica without coating the silver nano colloidal solution. Here, all assays were repeated three times, and the background experiments were performed in parallel.

캡슐화된 은나노에 대하여 in vitro 손실율In vitro loss rate for encapsulated silver nano 은함량(ppm)Silver content (ppm) in vitro 손실율(%)in vitro loss rate (%) 실험예Experimental Example 1One 50.250.2 10.510.5 22 100.1100.1 12.612.6 33 500.5500.5 17.817.8 44 998.5998.5 25.325.3 55 2003.22003.2 46.546.5 66 100.5100.5 13.813.8 대조구Control 100.5100.5 95.995.9

실시예Example 3: 주요병원성 미생물에 대한 최소 발육억제농도 ( 3: minimum growth inhibitory concentration against major pathogenic microorganisms ( MICMIC )의 확인Confirmation of)

최소 발육억제농도는 종래 알려진 방법에 근거하여 측정하였다 (Xu Hong?Xi and Lee Song F. Rhytother res, 18: 647-651, 2004). 먼저, 야외균주 5종 및 표준 균주 6종에 대하여 액체 배지 희석법 (broth dilution method)에 따라 측정하였다. Minimum growth inhibition concentrations were determined based on known methods (Xu Hong? Xi and Lee Song F. Rhytother res, 18: 647-651, 2004). First, 5 outdoor strains and 6 standard strains were measured according to the broth dilution method.

MIC 측정을 위하여 사용된 은나노입자 콜로이드 용액은 상기한 과정에 의해 얻어진 정제된 은나노입자 콜로이드 용액을 사용하였다. 은나노입자 콜로이드 용액을 멸균 증류수에 희석하여 최종농도가 1,000ug/ml가 되도록 한 다음, 0.2㎛ 필터 (Millipore, 미국)를 이용하여 여과하였다. 다음으로, 뮬러 힌톤 배지 (Mueller hinton broth) (Difco, 미국)로 2배씩 다단계 희석을 11단계 (211배까지 희석)하고, 96웰 플레이트 (Corning, 미국)의 각 웰에 100㎕씩 분주하였다. 다음으로, 트립틱 소이 브로스 (tryptic soy broth)(Difco, 미국)에서 증균된 균주를 MacFarland 0.5 탁도 (1.5x108 CFU/ml)로 맞춘 다음, 각 웰에 10㎕ 씩 접종한 후 24시간 동안 배양하였다. ELISA 리더 (Tecan, 호주)로 600nm에서 흡광도를 측정하여, 이로부터 최소억제농도를 측정하였다. As the silver nanoparticle colloidal solution used for the MIC measurement, the purified silver nanoparticle colloidal solution obtained by the above procedure was used. The silver nanoparticle colloidal solution was diluted in sterile distilled water to a final concentration of 1,000 ug / ml, and then filtered using a 0.2 μm filter (Millipore, USA). Next, 11-fold dilution (up to 211-fold) multi-step dilution with Mueller hinton broth (Difco, USA) was performed 11 times, and 100 μL was dispensed into each well of a 96 well plate (Corning, USA). Next, the strains enriched in tryptic soy broth (Difco, USA) were adjusted to MacFarland 0.5 turbidity (1.5x10 8 CFU / ml), and then inoculated into each well by 10 µl and incubated for 24 hours. It was. Absorbance was measured at 600 nm with an ELISA reader (Tecan, Australia) to determine the minimum inhibitory concentration.

최소억제농도의 측정 결과는 하기 표 2과 같다.The measurement result of the minimum inhibitory concentration is shown in Table 2 below.

주요병원성 미생물에 대한 은나노입자 콜로이드의 최소억제농도Minimum Inhibitory Concentration of Silver Nanoparticle Colloids for Major Pathogenic Microorganisms 균주Strain 최소억제농도(㎍/㎖)Minimum Inhibition Concentration (㎍ / ㎖) 야외균주a Outdoor strain a StaphylococcusStaphylococcus aureusaureus 15.615.6 StaphylococcusStaphylococcus epidermisepidermis 7.87.8 StreptococcusStreptococcus uberisuberis 7.87.8 EscherichiaEsherichia colicoli 15.615.6 KlebsiellaKlebsiella pneumoniaepneumoniae 7.87.8 표준균주b Standard strain b StaphylococcusStaphylococcus aureusaureus 305 305 15.615.6 Staphylococcus epidermis ATCC 12228Staphylococcus epidermis ATCC 12228 7.87.8 Streptococcus uberis ATCC 27958 Streptococcus uberis ATCC 27958 3.93.9 Streptococcus agalactiae ATCC 13813 Streptococcus agalactiae ATCC 13813 3.93.9 Escherichia coli O55 Esherichia coli O55 15.615.6 Bacillus subtilis ATCC 1024 Bacillus subtilis ATCC 1024 1.91.9

야외 균주a : 축산연구소 분리 균주, 표준균주b: 국립수의과학검역원 제공 Field strain a : Livestock Research Institute isolated strain, standard strain b : National Veterinary Research and Quarantine Service

표 2에 나타낸 바와 같이, 은나노입자 콜로이드의 최소억제농도는 균주에 따라 차이가 있으나, Staphylococcus aureusEscherichia coli에서 높은 최소억제농도를 나타내었다. 은나노입자 콜로이드는 대부분의 병원성미생물에 우수한 항균작용을 가지고 있는 것으로 나타났다. As shown in Table 2, the minimum inhibitory concentration of the silver nanoparticle colloid varies depending on the strain, but Staphylococcus aureus and Escherichia Coli showed high minimum inhibitory concentration. Silver nanoparticle colloids have been shown to have excellent antimicrobial activity against most pathogenic microorganisms.

실시예Example 4: 돼지용  4: pig 보호코팅 은나노Protective coating silver nano 의 악취 Stink of 저감효과Reduction effect

본 실시예에서는 양돈농가의 고질적인 병폐인 악취를 줄이기 위한 일환으로 보호코팅 은나노를 급여하여 돈사내 발생되는 가스의 농도를 측정하여 악취발생의 저감 효능을 확인하였다. 가스 농도 측정은 기체 측정기, 펌프 세트 MODEL.GV-100S (가스텍 (주), 일본)를 이용하여 돈사 내부의 중앙 환풍기 위치의 표면으로부터 3 cm 위의 위치에서 100 ml의 기체를 흡입하고 1 분 후에 암모니아 및 아민류 기체 성분의 양을 판독하였다. 기체 양의 측정에 사용된 상기 기체 측정기, 펌프 세트 MODEL.GV-100S (가스텍 (주), 일본)의 가스측정바 (1회용 유리재질)를 이용하여 암모니아 및 아민류를 측정하였다. In this embodiment, as a part of reducing the odor, which is a chronic disease of pig farms, the protective coating silver nano is fed to measure the concentration of the gas generated in the pig company to confirm the effect of reducing the odor. Gas concentration measurement was performed using a gas meter, pump set MODEL.GV-100S (Gastech Co., Ltd.), inhaling 100 ml of gas at a position 3 cm above the surface of the central ventilator position inside the pig house The amounts of ammonia and amine gas components were then read. Ammonia and amines were measured using a gas measuring bar (disposable glass material) of the gas measuring instrument and the pump set MODEL.GV-100S (Gastech Co., Japan) used for the measurement of the amount of gas.

본 실험예에서 돼지에 급여된 보호코팅 은나노는 실시예2에서 제조된 100 ppm 농도, 5g/두당/1일 씩 일반사료에 첨가하여 급여하였다. 농가선정은 악취발생이 심하며, 사육규모가 2000두 규모인 농장을 선정하였으며, 2006년 5월부터 9월 말 까지 5개월 동안 실시하였다. 그 결과는 하기 표 3와 같다. The protective coating silver nano supplemented to the pigs in this experimental example was added to the general feed by 100 ppm concentration prepared in Example 2, 5g / head / day per day. The farm selection was a bad odor and farms with 2000 heads were selected. The farm was selected for five months from May 2006 to the end of September. The results are shown in Table 3 below.

돈사내 악취발생 가스농도 측정Determination of odorous gas concentration in pig houses 가스종류Type of gas 5∼6월May to June 7∼8월July to August 9월September 평균Average 암모니아 ammonia 급여전Before pay 29.0ppm29.0 ppm 20.0ppm20.0 ppm 35.0ppm35.0 ppm 28.0ppm28.0 ppm 급여후After salary 14.0ppm14.0ppm 11.0ppm11.0 ppm 15.0ppm15.0 ppm 13.3ppm13.3 ppm 제거율Removal rate 51.7%51.7% 45.0%45.0% 57.1%57.1% 51.3%51.3% 아민류 Amines 급여전Before pay 91.0ppm91.0ppm 74.0ppm74.0ppm 97.0ppm97.0ppm 87.3ppm87.3 ppm 급여후After salary 41.0ppm41.0ppm 38.0ppm38.0 ppm 39.0ppm39.0 ppm 39.3ppm39.3 ppm 제거율Removal rate 54.9%54.9% 48.7%48.7% 59.8%59.8% 54.5%54.5%

표 3에 나타낸 바와 같이, 보호코팅 은나노를 급여 후, 돈사내부에 발생되는 암모니아와 아민류 가스의 50% 이상의 제거가 가능한 것으로 나타났다. As shown in Table 3, after the protective coating silver nano, it was found that more than 50% of the ammonia and amine gas generated in the pig house can be removed.

실시예Example 5: 돼지용  5: for pigs 보호코팅 은나노Protective coating silver nano 급여의 돼지의 성장기에 미치는 효과 Effect of Salary on Growth of Pigs

본 실시예에서는 실시예 4에서와 동일한 방법으로 급여되었으며, 이유시기의 자돈 40두에 대하여 농촌진흥청 축산연구소에서 수행되었다. 그 결과는 하기 표 4, 5와 같다.In this embodiment, it was paid in the same manner as in Example 4, and was carried out at the Rural Livestock Research Institute for 40 piglets at weaning season. The results are shown in Tables 4 and 5 below.

돼지용 보호코팅 은나노 급여 후 증체량에 미치는 효과Effect of protective coating for pigs on weight gain after silver nano supplementation 처리내역Treatment history 공시체중 (35일령, kg)Disclosure weight (35 days old, kg) 종료체중 (56일령, kg)End weight (56 days old, kg) 증체량 (kg)Weight gain (kg) 일당증체량 (kg)Daily weight gain (kg) 비고Remarks 일반사료 급여군 (20두)General feed group (20) 10.610.6 18.6918.69 8.098.09 0.400.40 보호코팅 은나노 21일 급여 Protection coating silver nano 21 days salary 보호코팅 은나노 급여군(20두)Protective coating silver nano salary group (20) 10.910.9 21.721.7 10.810.8 0.540.54

돼지용 보호코팅 은나노 급여 후 설사발생에 미치는 효과Effect of protective coating on pigs on diarrhea after feeding nano 설사발생Diarrhea 보호코팅 은나노 급여군 (20두)Protective coating silver nano salary group (20 heads) 일반사료 급여군 (20두)General feed group (20) 발생두수Number of occurrences 00 33 의심두수Doubtful head 1One 77

표 4에 나타낸 바와 같이, 보호코팅 은나노를 급여하였을 때 자돈의 증체량이 증가됨을 확인 할 수 있었고, 표 5에 나타난 바와 같이, 설사발생 빈도의 감소가 조사 되었다. 본 발명에 따른 보호코팅 은나노를 급여시 항균력이 뛰어난 은나노의 장내 저류에 의한 장내 병원성 세균의 감소, 소화율 향상 등에 의해 설사발생빈도의 감소와 증체량이 현저하게 증가되었음을 알 수 있다.As shown in Table 4, the protective coating was confirmed that the increase in piglets weight gain when the silver was fed, and as shown in Table 5, the decrease in the frequency of diarrhea was investigated. The protective coating according to the present invention can be seen that the reduction of intestinal diarrhea and increase in weight increase by the reduction of intestinal pathogenic bacteria due to the intestinal retention of silver nano with excellent antimicrobial activity, improved digestibility.

돼지용 보호코팅 은나노 급여 후 혈액변화Blood Change after Pig Protection 처리내역Treatment history Glucose (85-150)Glucose (85-150) GPT (31-58)GPT (31-58) GOT (32-84)GOT (32-84) 백혈구 (11-24)White blood cell (11-24) 적혈구 (5-8)Red blood cells (5-8) 혈소판 (325-715)Platelets (325-715) 일반사료 급여군(20두)General feed salary group (20) 121121 38.3038.30 43.2443.24 23.8023.80 9.019.01 636636 보호코팅 은나노 급여군(20두)Protective coating silver nano salary group (20) 145(↑)145 (↑) 53.4153.41 52.2252.22 23.3123.31 9.82(↑)9.82 (↑) 774(↑)774 (↑)

본 실험에 사용된 혈액변화측정은 돼지의 경정맥 (Jugular vein)에서 혈액을 채취 후 1시간 이내에 자동 생화학분석기(Acro, USA)와 혈구분석기(Hema VET-960, USA)를 이용하여 측정하였다.Blood changes used in this experiment were measured using an automated biochemical analyzer (Acro, USA) and hemocytometer (Hema VET-960, USA) within 1 hour after collecting blood from the jugular vein of pigs.

표 6에 나타낸 바와 같이, 보호코팅 은나노 급여 후 사료섭취량의 증가와 세포의 신진대사 촉진으로 면역형성이 증가되어 혈액내 glucose, 적혈구와 혈소판의 수치가 증가됨이 조사되었고, GOT 및 GTP 수치의 정상은 간내 독성인자로 작용하지 않음을 확인하였다. As shown in Table 6, the protective coating showed that the increase in feed intake and the increase of cell metabolism after nano supplementation resulted in an increase in the level of glucose, erythrocytes and platelets in the blood. It was confirmed that it does not act as a liver toxicity factor.

실시예Example 6: 가금용  6: poultry 보호코팅 은나노Protective coating silver nano 급여의 악취  Odor of salary 저감효과Reduction effect

본 실시예에서는 육계에 보호코팅 은나노를 급여하여 계사내 발생되는 가스의 농도를 측정하여 악취발생의 저감 효능을 확인하였다. 가스측정은 실시예 4에서와 동일한 방법으로 측정하였다. In this embodiment, the protective coating silver nano to the broilers were fed to measure the concentration of the gas generated in the cage to determine the efficacy of reducing the odor. Gas measurement was performed in the same manner as in Example 4.

본 실시예에서 육계에 급여된 보호코팅 은나노는 실시예1에서 제조된 100 ppm 농도, 0.2g/수당/1일 씩 일반사료에 첨가하여 급여하였다. 농가선정은 악취발생이 심하며 사육규모가 5만수 규모인 농장을 선정하였으며, 2006년 7월부터 8월 초 까지 33일 동안 실시하였다. 그 결과는 하기 표 7과 같다.The protective coating silver nano fed to broilers in this Example was added to the general feed of 100 ppm concentration prepared in Example 1, 0.2g / allowance / day. The farms were selected for farms with severe odors and a breeding scale of 50,000, and were conducted for 33 days from July 2006 to early August. The results are shown in Table 7 below.

계사내 악취발생 가스농도 측정 (단위: ppm)Determination of odorous gas concentration in cages (unit: ppm) 구분division 암모니아 가스농도Ammonia Gas Concentration 아민류 가스농도Amine gas concentration 일반사료 급여군(12,000수)General feed salary group (12,000 number) 1313 4242 보호코팅 은나노 급여군(12,000수)Protective coating silver nano salary group (12,000 number) 66 1818

표 7에 나타낸 바와 같이, 보호코팅 은나노를 급여 후, 계사내부에 발생되는 암모니아와 아민류 가스의 50% 이상의 제거가 가능한 것으로 나타났다. As shown in Table 7, after the protective coating silver nano, it was found that more than 50% of the ammonia and amine gas generated in the cage can be removed.

실시예Example 7 가금용  7 poultry 보호코팅 은나노Protective coating silver nano 급여의 육계의 성장기에 미치는 효과 Effect on the growing season of broiler chickens

본 실시예에서는 실시예 6에서와 동일한 방법으로 급여되었으며, 동일한 사육농가에서 수행되었다. In this example, the same method as in Example 6 was used to carry out the same breeding farm.

가금용 보호코팅 은나노 급여 후 육계에 미치는 효과Effect of protection coating for poultry on broilers after silver nano feeding 구분division 초기 사육수Early breeding 폐사수Dead shooter 출하수Shipment 출하중량 (kg)Shipping weight (kg) 평균체중 (kg)Average weight (kg) 사료요구율Feed rate 보호코팅 은나노 급여군Protective coating silver nano salary group 12,00012,000 305305 11,69511,695 19,03219,032 1.621.62 1.641.64 일반사료 급여군General feed salary 12,00012,000 427427 11,57311,573 18,13018,130 1.561.56 1.711.71

표 8에 나타낸 바와 같이, 보호코팅 은나노 급여 군의 폐사수 및 평균체중이 비급여군에 비해 월등히 높음을 확인 할 수 있으며, 비급여군에 비해 사료 요구율의 감소는 보호코팅 은나노 급여가 육계의 사료 섭취에 대한 효율성을 증대시킴을 알 수 있다.As shown in Table 8, it can be seen that the mortality and average weight of the protective coating silver nano-supply group were significantly higher than those of the non-paying group. It can be seen that it increases the efficiency of the

실시예Example 8 가금용  8 poultry 보호코팅 은나노Protective coating silver nano 급여의 콜레스테롤 감소효과 Cholesterol Reduction Effect of Feeding

본 실시예에서는 실시예 6에서와 동일한 방법으로 급여되었으며, 육계는 동일한 사육농가에서 수행되었으며, 산란계는 사육규모가 10만수 규모인 농장에서 수행되었다.In the present embodiment was fed in the same manner as in Example 6, broilers were carried out in the same breeding farms, laying hens were carried out on a farm of 100,000 breeding scale.

가금용 보호코팅 은나노 급여 후 콜레스테롤 변화 (mg/100g)Changes in Cholesterol after Feeding Silver Nanoprotective Coatings for Poultry (mg / 100g) 구분 division 육계Broiler 계란 egg 가슴살brisket 다리살Leg meat 일반사료 급여General feed salary 50.550.5 89.389.3 420.4420.4 보호코팅 은나노 급여Protective coating silver nano salary 41.841.8 77.277.2 304.3304.3

본 실시예에 사용된 콜레스테롤 분석은 식품공전(2006, 일반성분시험법)에 의거 분석하였다. 표 9에 나타낸 바와 같이, 보호코팅 은나노 급여는 육계 및 산란계의 체내 대사에 관여하여 포화지방산인 콜레스테롤의 근육내 및 계란내 농도를 20%정도 감소시킴을 확인 할 수 있다. Cholesterol analysis used in this example was analyzed according to the Food Code (2006, General Ingredient Test Method). As shown in Table 9, the protective coating silver nano supplementation is involved in the body metabolism of broilers and laying hens to reduce the concentration of saturated fatty acid cholesterol and intramuscular and egg cholesterol by 20%.

실시예Example 9:  9: 보호코팅된Protective coated 은나노Silver nano 사료첨가제와 액상( Feed additives and liquids ( 비처리Untreated ) ) 은나노Silver nano 급여 후 위 및 장내 농도 측정 Measurement of stomach and intestinal concentrations after salary

본 실시예에서는 액상의 은나노와 보호코팅 시킨 펠렛형태의 돼지 및 가금용 은나노 사료첨가제를 급여 후 위 및 장내 은나노의 농도를 측정하였다. 급여된 보호코팅 은나노는 실시예1에서 제조된 100 ppm 농도, 5g(돼지), 0.2g(육계)/두당/1일 씩 일반사료에 첨가하여 급여하였다. 급여기간은 5일간 급여하였으며 실험 종료 후 돼지 5두, 육계 10수의 장기를 채취하여, 각 장기별 은나노의 농도측정을 하였다. 은 농도는 유도결합플라즈마 방출분광법 (ICP-AES)을 이용하여 측정하였다. 요약하면, 시료를 적당량 취하여 비이커에 넣고 여기에 질산과 유리구를 넣고 가열한다. 이 과정은 방해물질을 제거하는 과정으로 용액이 투명하게 될 때까지 반복한다. 여기에 정제수를 넣고 가열하여 잔류물을 녹이고 희석하여 전처리를 마친다. 전처리가 된 시료는 ICP-AES를 이용하여 358.068 nm에서 방출선의 세기를 측정하고, 방출선의 세기는 농도에 비례하므로 검량선을 통해 농도값으로 환산하여 은 농도를 계산하였다.In this example, the concentration of silver nano in the stomach and intestine was measured after feeding the liquid silver nano-protective coated pig and poultry silver nano-feed additive in pellet form. Feeding protective coating silver nano was added to the general feed at 100 ppm concentration prepared in Example 1, 5g (pig), 0.2g (chicken) / head per day. Feeding period was five days. After the experiment, 5 pigs and 10 broilers were collected and silver nano concentrations were measured for each organ. Silver concentrations were measured using inductively coupled plasma emission spectroscopy (ICP-AES). In summary, take an appropriate amount of sample, place it in a beaker, add nitric acid and glass spheres, and heat. This process removes obstructions and repeats until the solution is clear. Purified water is added to it, and the residue is dissolved and diluted to finish pretreatment. The pretreated sample was measured for the emission line intensity at 358.068 nm using ICP-AES, and since the intensity of the emission line was proportional to the concentration, the silver concentration was calculated by converting the concentration value through the calibration curve.

돼지용 보호코팅 은나노 및 액상(비처리) 은나노 급여 후 장내 은나노 농도Intestinal silver nano concentration after protecting silver and liquid (non-treated) silver nano for pigs 구분 division 은나노 농도(㎍/kg)Silver Nano Concentration (㎍ / kg) 위 (stomach)Stomach 십이지장 (duodenum)Duodenum 공장 (jejunum)Plant (jejunum) 회장 (ileum)Ileum 맹장 (cecum)Cecum 결장 (colon)Colon 보호코팅 은나노 급여군A Protective coating silver nano salary group A 1.271.27 7.547.54 12.8812.88 15.7215.72 10.7710.77 5.945.94 액상 은나노 급여군B Liquid silver nano salary group B 12.8112.81 4.244.24 3.143.14 1.581.58 0.980.98 0.870.87 손실율(B/A)Loss Rate (B / A) -- 43.8%43.8% 75.7%75.7% 89.9%89.9% 90.1%90.1% 85.4%85.4%

가금용 보호코팅 은나노 및 액상(비처리) 은나노 급여 후 장내 은나노 농도Intestinal silver nano concentration after protection silver and liquid (non-treated) silver nano for poultry 구분 division 은나노 농도(㎍/kg)Silver Nano Concentration (㎍ / kg) 전위 (proventriculus)Proventriculus 십이지장 (duodenum)Duodenum 공장 (jejunum)Plant (jejunum) 회장 (ileum)Ileum 맹장 (cecum)Cecum 결장 (colon)Colon 보호코팅 은나노 급여군A Protective coating silver nano salary group A 1.451.45 1.241.24 2.542.54 3.113.11 2.232.23 0.980.98 액상 은나노 급여군B Liquid silver nano salary group B 3.213.21 2.212.21 1.141.14 0.870.87 0.740.74 0.550.55 손실율(B/A)Loss Rate (B / A) -- -- 55.2%55.2% 72.1%72.1% 64.9%64.9% 43.3%43.3%

표 10에서와 같이 돼지용 보호코팅된 은나노 급여 후 위에서 분해가 거의 일어나지 않았으며, 십이지장부터 장내 저류되기 시작하면서 회장에서 가장 높은 농도를 나타내었다. 표 11의 육계에서는 공장부터 액상 은나노 급여군에 비해 장내 저류되는 농도가 높아졌으며, 회장에서 가장 많은 은 농도가 측정되었다. 이는 기존의 액상 은나노에 비해 위내에서 은나노의 분해를 최소화하며 장내에 다량의 은나노를 저류 시킬 수 있음을 확인 할 수 있었다.As shown in Table 10, after digestion of silver-coated silver nano-protection for pigs, disintegration rarely occurred, and the intestinal retention began in the duodenum, indicating the highest concentration in ileum. In broilers of Table 11, the concentration of intestinal storage was higher in the plant than in the liquid silver nano feeding group, and the highest concentration of silver in the ileum was measured. This resulted in minimizing the decomposition of silver nanoparticles in the stomach compared to the existing liquid silver nanoparticles and confirmed that it can store large amounts of silver nanoparticles in the intestine.

본 발명은 가축의 위에서 분해되지 않고, 장내에 안전하게 이동 후 흡수될 수 있도록 보호 코팅된 은나노이며, 은나노 고유의 특성을 지니며 돼지 및 가금의 사료첨가제로 이용이 용이하도록 펠렛 형태로 고안된 발명품이다. The present invention is a silver nano-coated protective coating so that it can be safely absorbed after moving in the intestine, without being disintegrated in the stomach of the livestock, is an invention designed in the form of pellets so as to be easy to use as feed additives of pigs and poultry having the unique characteristics of silver nano.

돼지 및 가금에 급여시 전신적인 부작용이 없고 안정성이 뛰어나며, 생산성의 증대와 축사내 악취발생의 감소로 보다 친환경적인 축산업 구축에 이바지할 수 있다. 은나노를 이용한 사료첨가제의 개발은 본 발명이 처음이며, 국내뿐만 아니라 해외수출로 인한 막대한 경제적 이익을 가져올 것으로 예상된다.When feeding pigs and poultry, there is no systemic side effect and excellent stability, and it can contribute to the establishment of environment-friendly livestock industry by increasing productivity and reducing the occurrence of odor in the barn. The development of feed additives using silver nano is the first of the present invention, and is expected to bring enormous economic benefits from domestic as well as foreign exports.

Claims (8)

위(stomach) 내에서 분해되지 않고 안정한 은나노를 제조하는 방법에 있어서,In the method for producing a stable silver nanoparticles without decomposition in the stomach, (1) 액상 은나노 입자 콜로이드 및 영양소를 물 불용성 담체에 고정화 시키는 단계;(1) immobilizing the liquid silver nanoparticle colloid and nutrient on a water insoluble carrier; (2) 단계(1)에서 고정화된 은나노 및 영양소에 결합코팅제를 혼합기에서 혼합 교반하는 단계; 및,(2) mixing and stirring the binding coating agent in the silver nano and nutrients immobilized in step (1) in a mixer; And, (3) 단계(2)에서 제조된 혼합물을 압출기를 거쳐 캡슐화하는 단계로 이루어진 것을 특징으로 하는 위에서 안정한 보호 코팅 은나노 제조방법.(3) a stable protective coating silver nano production method of the above, characterized in that consisting of encapsulating the mixture prepared in step (2) via an extruder. 제1항에 있어서, 상기 은나노입자 콜로이드는 은나노입자의 입경이 1 내지 15 nm인 은나노입자 콜로이드 용액이고, 폴리비닐피롤리돈, (1-비닐 피롤리돈)-아크릴산 공중합체, 폴리옥시에틸렌 스테아레이트 및 (1-비닐피롤리돈)-비닐 아세트산 공중합체로 이루어진 군으로부터 선택된 하나 이상의 고분자 안정제를 포함하는 것을 특징으로 하는 위에서 안정한 보호코팅 은나노 제조방법.The silver nanoparticle colloid of claim 1, wherein the silver nanoparticle colloid is a silver nanoparticle colloid solution having a particle size of 1 to 15 nm, and polyvinylpyrrolidone, (1-vinyl pyrrolidone) -acrylic acid copolymer, polyoxyethylene stearate. A method of producing protective nano-coatings as described above, comprising at least one polymer stabilizer selected from the group consisting of a rate and a (1-vinylpyrrolidone) -vinyl acetate copolymer. 제 1항에 있어서, 상기 담체는 실리카, 셀룰로오즈, 전분, 제올라이트, 탄산칼슘, 말분, 옥분으로 이루어진 군에서 선택되는 것을 특징으로 하는 위에서 안정한 보호코팅 은나노 제조방법.The method of claim 1, wherein the carrier is selected from the group consisting of silica, cellulose, starch, zeolite, calcium carbonate, powder, and jade. 제 1항에 있어서, 상기 결합코팅제는 1가비누, 2가비누, 식물성 경화유, 극도 경화된 유지, 경화식물유, 경화옥수수유, 경화면실유, 경화땅콩유, 경화팜커넬유, 경화팜유, 경화팜스테아린유, 경화해바라기유, 경화채종유, 팔미틱산, 스테아린산 등의 지방산으로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 위에서 안정한 보호코팅 은나노 제조방법.The method of claim 1, wherein the binding coating agent monovalent soap, divalent soap, vegetable hardened oil, extremely hardened fats and oils, hardened vegetable oil, hardened corn oil, hardened cotton seed oil, hardened peanut oil, hardened palm kernel oil, hardened palm oil, hardened palm The method of claim 1, wherein the protective coating is stable, characterized in that the one or two or more mixtures selected from the group consisting of fatty acids such as stearin oil, cured sunflower oil, cured vegetable oil, palmitic acid, stearic acid. 제 1항에 제조방법에 의해 제조되는 보호코팅 은나노 조성물.The protective coating silver nano composition prepared by the method according to claim 1. 제 5항에 있어서, 축산물에 대한 항균 및 항취효과를 갖는 것을 특징으로 하는 보호코팅 은나노 조성물. The protective coating silver nano composition according to claim 5, which has an antibacterial and anti-odor effect on the livestock products. 제 5항에 있어서, 보호코팅 은나노 조성물을 포함하지 않는 일반사료에 비하여 축산물의 설사발생빈도가 감소되고 평균체중이 증가되는 것을 특징으로 하는 보호코팅 은나노 조성물.6. The protective coating silver nano composition according to claim 5, wherein the frequency of diarrhea and the average weight of the livestock products are reduced compared to the general feed which does not include the protective coating silver nano composition. 제 5항의 은나노 조성물을 가축에 급여하는 것을 특징으로 하는 축산물의 생산방법. A method for producing livestock products, comprising feeding the silver nano composition of claim 5 to livestock.
KR1020070022720A 2007-03-08 2007-03-08 Development of gastric protected slilver nanoparticle and their manufacturing method KR100817029B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070022720A KR100817029B1 (en) 2007-03-08 2007-03-08 Development of gastric protected slilver nanoparticle and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070022720A KR100817029B1 (en) 2007-03-08 2007-03-08 Development of gastric protected slilver nanoparticle and their manufacturing method

Publications (1)

Publication Number Publication Date
KR100817029B1 true KR100817029B1 (en) 2008-04-18

Family

ID=39571425

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070022720A KR100817029B1 (en) 2007-03-08 2007-03-08 Development of gastric protected slilver nanoparticle and their manufacturing method

Country Status (1)

Country Link
KR (1) KR100817029B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2722730C1 (en) * 2019-06-18 2020-06-03 Федеральное Государственное бюджетное научное учреждение "Федеральный научный центр биологических систем и агротехнологий российской академии наук" Method for increasing feed digestibility when introduction into the ration of bull-calves in fattening ultrafine particles of silicon dioxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060084424A (en) * 2006-07-04 2006-07-24 주식회사 에스에프 Feed composition containing mineral coated with nano silver
KR20060085777A (en) * 2005-01-25 2006-07-28 주식회사 이노바이오 Additives containing nano type silver for feed and process for preparing it
KR20060088090A (en) * 2006-07-04 2006-08-03 주식회사 에스에프 Health functional egg affording the high density lipoprotein in human body
KR20070017649A (en) * 2005-08-08 2007-02-13 김동린 a manufacturing method of assistance feed for livestock

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060085777A (en) * 2005-01-25 2006-07-28 주식회사 이노바이오 Additives containing nano type silver for feed and process for preparing it
KR20070017649A (en) * 2005-08-08 2007-02-13 김동린 a manufacturing method of assistance feed for livestock
KR20060084424A (en) * 2006-07-04 2006-07-24 주식회사 에스에프 Feed composition containing mineral coated with nano silver
KR20060088090A (en) * 2006-07-04 2006-08-03 주식회사 에스에프 Health functional egg affording the high density lipoprotein in human body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2722730C1 (en) * 2019-06-18 2020-06-03 Федеральное Государственное бюджетное научное учреждение "Федеральный научный центр биологических систем и агротехнологий российской академии наук" Method for increasing feed digestibility when introduction into the ration of bull-calves in fattening ultrafine particles of silicon dioxide

Similar Documents

Publication Publication Date Title
CN100396191C (en) Method for preparing natural bamboo charcoal vinegar feed addictive
US20110293776A1 (en) Feed composition comprising a mineral complex and methods of using the mineral complex
CN112189763A (en) Preparation process and application of plant essential oil microcapsule
CN105876131B (en) Compound deodorant for livestock and poultry houses
CN101530168A (en) Additive of organic zinc feed and preparation method and use thereof
CN102113619A (en) Mycotoxin mildewproof adsorbent for swine feed
CN110892947A (en) Compound acidifier for poultry and preparation method and application thereof
CN102113625A (en) Multi-efficacy composite capable of keeping healthy and inhibiting and capturing mildew for poultry
CN107333977A (en) A kind of bacteria inhibiting composition and its applied in acidulant is prepared
CN111903849A (en) Feed additive for replacing antibiotics and preparation method thereof
JP2015521052A (en) Methods and compositions utilizing larch wood extract in animal feed
CN111772041A (en) Broad-spectrum slow-release acidifier for feed and preparation method thereof
CN108142688B (en) Zinc oxide-free conservation material
KR100817029B1 (en) Development of gastric protected slilver nanoparticle and their manufacturing method
CN111972547A (en) Starch garlic oil compound feed additive capable of replacing antibiotics
CN101530167A (en) Additive of organic copper feed and preparation method and use thereof
CN107960543B (en) Glycine-type additive premix feed for piglets
KR100842451B1 (en) Development of ruminally protected silver nanoparticle and their utilization for ruminant enrichment
US11337443B2 (en) Use of copper-calcium sulphate as animal feed additive
CN114344356A (en) Bacteriostatic composite active substance microcapsule particles and preparation method and application thereof
KR20040074652A (en) Total Care System for Animals
CN106359906A (en) Preparation method of zinc ion antibacterial feed
CN108041299B (en) Antibiotic-free piglet compound feed
Mutlu et al. Alleviation potential of quercetin in laying quails exposed to lead: Effects on productive performance, egg quality, cecal microflora, and nutrient digestibility
JP2008237193A (en) Method for controlling intestinal ph of poultry, and poultry feed

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant