KR100776583B1 - 지열 열펌프 시스템 최적화 튜닝방법 및 이를 구현한휴대용 전자기기 - Google Patents

지열 열펌프 시스템 최적화 튜닝방법 및 이를 구현한휴대용 전자기기 Download PDF

Info

Publication number
KR100776583B1
KR100776583B1 KR1020060119541A KR20060119541A KR100776583B1 KR 100776583 B1 KR100776583 B1 KR 100776583B1 KR 1020060119541 A KR1020060119541 A KR 1020060119541A KR 20060119541 A KR20060119541 A KR 20060119541A KR 100776583 B1 KR100776583 B1 KR 100776583B1
Authority
KR
South Korea
Prior art keywords
heat pump
pump system
tuning
unit
refrigerant
Prior art date
Application number
KR1020060119541A
Other languages
English (en)
Inventor
최종민
이춘우
김용찬
강훈
Original Assignee
한밭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한밭대학교 산학협력단 filed Critical 한밭대학교 산학협력단
Priority to KR1020060119541A priority Critical patent/KR100776583B1/ko
Application granted granted Critical
Publication of KR100776583B1 publication Critical patent/KR100776583B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/002Compression machines, plants or systems with reversible cycle not otherwise provided for geothermal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명은, 냉매를 압축하는 압축기, 실내와 열교환하는 실내열교환기, 냉매를 팽창시키는 팽창장치 및 후술하는 지중열교환기를 순환하는 2차 유체와 열교환하는 실외열교환기를 구비하는 열펌프와, 상기 실외열교환기에서 열교환된 2차 유체가 지중과 열교환하는 지중열교환기를 구비하는 지열 열펌프 시스템의 최적화 튜닝 방법에 관한 것으로, 지열 열펌프 시스템에서 사용자가 손쉽게 얻을 수 있는 데이터를 입력화면으로 입력하는 제1 단계(S1)와; 상기 제1 단계에서 입력된 데이터를 사용하여 시스템 튜닝 및 최적화와 관련된 냉매 상태량을 계산하고 데이터베이스화된 정보와의 비교를 통하여 지열 열펌프 시스템의 운전상태를 분석하고 튜닝 방향을 설정하는 제2 단계(S2)와; 그리고 상기 제2 단계에서의 분석 결과 및 튜닝방향을 가시화하여 출력 화면으로 출력하는 제3 단계(S3)를 포함하는 것을 특징으로 한다. 이러한 구성에 의해서 대용량의 지열 열펌프 시스템의 설치 지역 및 히트 싱크 또는 열원과 지중 열교환기 타입에 따른 다양한 운전 부하 조건에서 현장에서 취득이 용이한 데이터를 이용하여 시스템의 성능 및 운전 특성을 진단 및 평가하고 튜닝 방향을 제시할 수 있다.
지열 열펌프 시스템, 몰리에르선도, 엔탈피, 전자기기

Description

지열 열펌프 시스템 최적화 튜닝방법 및 이를 구현한 휴대용 전자기기{Optimizing Method of Ground Source Heat Pump and Portable Electric Device Programming the same}
도 1은 지열 열펌프 시스템의 구조를 나타내는 도면;
도 2는 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝방법이 적용되는 지열 열펌프 시스템을 나타내는 도면;
도 3은 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝방법을 나타내는 도면;
도 4는 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝방법의 입력화면을 나타내는 도면이다.
도 5는 본 발명에 따르는 지열 열펌프 시스템의 몰리에르선도를 나타내는 도면;
도 6은 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝방법의 출력화면을 나타내는 도면; 그리고
도 7은 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝방법을 구현한 휴대용 전자기기의 구성을 나타내는 도면이다.
<도면의 주요 부분에 대한 부호의 설명>
100 : 열펌프 110 : 압축기
120 : 실내열교환기 130 : 팽창장치
140 : 실외열교환기 200 : 휴대용 전자기기
210 : 입력부 220 : 분석부
230 : 출력부 240 : 데이터베이스 저장부
본 발명은 압축기, 응축기(열교환기), 팽창장치와 증발기(열교환기)로 구성된 증기압축사이클을 이용한 열펌프 시스템에 있어서, 열원으로서 지열을 사용하는 지열 열펌프 시스템 최적화 튜닝방법에 관한 것이다. 보다 상세하게는 지열 열펌프 시스템이 설치된 현장에서 용이하게 취득할 수 있는 데이터를 이용하여 지열 열펌프 시스템을 진단하고 최적화를 위한 튜닝방향을 제공할 수 있는 지열 열펌프 시스템 최적화 튜닝방법에 관한 것이다. 이렇게 함으로써 사용자는 지열 열펌프 시스템 설치 시 다양한 운전조건에서 운전되는 지열 열펌프 시스템의 성능 및 신뢰성을 확보할 수 있으며, 그 결과 운전조건에 부합되는 최적의 운전조건을 설정할 수 있다.
근래, 화석연료의 고갈로 인한 에너지 위기를 극복하고, 화석 연료 연소과정에서 발생되는 대기 오염 물질에 의한 지구 온난화 현상을 해결하기 위한 방안으로 신재생 에너지 이용에 대한 관심이 날로 증가하고 있다. 구체적으로 신재생 에너지 관련 기술개발 및 이를 이용한 시설에 대한 보급을 위한 투자 등에 관련되어 정부 의 지원이 증가하고 있다. 국내에서는 신재생 에너지 보급 확대, 관련 산업 및 시장 육성을 위해 공공기관 신축 건물에 대한 대체에너지 이용 의무화 제도가 시행되고 있으며, 이러한 목적을 달성할 수 있는 대표적인 시스템이 지열 에너지를 이용하는 지열 열펌프 시스템이다.
지열 열펌프 시스템은 하나의 시스템으로 냉방 및 난방을 수행하는 열펌프 시스템으로서 냉방 시에는 건물 내의 열을 지중으로 방출하고, 난방 시에는 지중의 열을 흡수하여 실내로 공급함으로써 냉방 및 난방 기능을 구현한다. 지열 열펌프 시스템에서 냉, 난방시 각각 히트 싱크(heat sink) 및 열원(heat source)의 역할을 하는 지열은, 일반적인 열펌프 시스템에서 히트 싱크 및 열원으로써 널리 사용되는 공기보다 안정적이다. 따라서 지열 열펌프 시스템은 기존 냉난방 시스템과 비교하여 효율이 높고 성능이 우수하다.
도 1은 지열 열펌프 시스템의 구조를 나타내는 도면이며, 도 2는 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝방법이 적용되는 지열 열펌프 시스템을 나타내는 도면이다.
도 1에 도시한 것과 같이, 지열 열펌프 시스템은 열펌프(100)와 지중으로부터 열을 흡수 또는 방출하는 지중열교환기(300)로 구성된다. 지중열교환기(300)는 부동액 등 2차 유체가 순환하는 순환관(320)이 지중에 설치되는 구성을 가지고 있다. 상기 지중을 순환하도록 설치되는 순환관(320)의 외측은 그라우트재(310)가 충전된다.
상기 열펌프(100)는 일반적으로 증기 압축식 사이클을 가지고 있다. 구체적 으로 도 2에 도시된 바와 같이, 열펌프(100)는 압축기(110), 실내열교환기(120), 팽창장치(130) 및 실외열교환기(140)로 구성되어 있다. 상기 열펌프(100)는 내부를 흐르는 냉매의 흐름을 변화시켜 냉방과 난방 기능을 선택적으로 수행한다. 이를 위해서 냉매의 흐름을 변환시키기 위한 사방 밸브(150)가 설치되어 있다.
상기 실내열교환기(120)는 건물 내를 순환하는 물 또는 공기 등의 2차 유체가 통과하는 구성을 가지고 있으며, 2차 유체는 실내열교환기(120)를 통과하면서 열펌프(100)의 냉매와 열교환을 한다. 또한, 상기 실외열교환기(140)는 지중열교환기(200)를 순환하는 부동액 등의 2차 유체가 통과하는 순환통로(210)가 통과하는 구성을 가지고 있으며, 2차 유체는 실외열교환기(140)를 통과하면서 열펌프(100)의 냉매와 열교환을 한다. 여기서 2차 유체는 열펌프(100)를 순환하는 냉매와 열교환하는 유체를 의미하며, 냉매는 실내열교환기(120) 및 실외열교환기(140)에서 2차 유체와 열교환한다.
구체적으로 냉방 기능을 수행할 경우, 도 2의 화살표 A방향으로 순환하며, 냉매는 실외열교환기(140)에서 실외열교환기를 통과하는 2차 유체에게 열을 빼앗기고, 실내열교환기(120)에서 실내열교환기를 통과하는 2차 유체로부터 열을 흡수한다. 따라서 건물 내로부터 열을 흡수하기 때문에 건물이 냉방된다. 이때 상기 실외열교환기(140)에서 냉매로부터 열을 빼앗은 2차 유체는 지중열교환기(300)를 통과하면서 지중으로 열을 방출한다.
난방 기능을 수행할 경우, 사방 밸브(150)에 의하여 냉매의 순환경로가 도 2의 화살표 B의 방향으로 바뀌며, 냉매는 실외열교환기(140)의 2차 유체로부터 열을 흡수하고 실내열교환기(120)의 2차 유체에게 열을 빼앗기게 된다. 실내열교환기(120)에서 열을 흡수한 2차 유체는 건물을 난방시키며, 실외열교환기(140)에서 열을 빼앗긴 2차 유체는 지중열교환기(200)를 순환하면서 지중으로부터 열을 흡수한다.
실외열교환기(140)에서 냉매와 열교환하는 2차 유체가 지중의 온도 변화에 따라서 온도(부하)가 변화하며, 2차 유체의 부하 변동에 따라서 지열 열펌프 시스템의 성능이 크게 변화된다. 지열 열펌프 시스템은 다양한 지역에 설치되고, 설치된 지역의 지중 온도는 지역에 따라 다양하다. 아울러, 지중열교환기(300) 역시 설치 방법에 따라 수직형(Vertical type), 수평형(Horizontal type), 개방형(Open loop), 폐쇄형(Closed loop), SCW(Standanding column well) 등의 다양한 형태를 가지고 있다. 그리고 지중 열원 또는 히트 싱크의 종류 역시 토양 열원, 지하수 열원, 지표수 열원 등 다양하다. 따라서 지열 열펌프 시스템은 설치 지역, 지중열교환기의 형태, 열원 또는 히트 싱크의 종류에 따라서 다양한 2차 유체의 부하 특성을 갖는다. 그 결과 이러한 다양한 부하 조건에 대응하여 지열 열펌프 시스템은 최대의 성능과 신뢰성을 갖도록 최적화되어야 한다.
부하 조건에 따라서 성능을 최적화시키기 위해서는 열펌프의 냉매 충전량, 열펌프의 고압 및 저압 조절, 냉매 순환량 조절, 팽창장치 사이즈 조절 및 2차 유체의 유량 조절 등 복합적인 조절이 필요하다. 하지만, 지열 열펌프 시스템은 용량이 커서 부하 변동 조건을 조절하기 위한 성능 평가 장치 제작이 어렵고, 대부분의 경우 제작 업체에서 일괄적으로 냉매를 충전하거나, 열펌프의 고압 및 저압만을 현 장에서 체크하여 설치하고 있는 실정이다. 이러한 일괄적인 냉매 충전이나 열펌프의 압력에 의존하여 지열 열펌프 시스템의 운전조건을 설정할 경우, 지열 열펌프 시스템의 열펌프의 최적 운전 조건을 만족시키지 못하기 때문에 열펌프의 성능을 저하시키며, 압축기 등 열펌프 구성들을 손상시키는 등의 문제점을 가지고 있다.
본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로, 지열 열펌프시스템에서 취득이 용이한 시스템 데이터를 입력하여 냉매 상태량을 계산하고, 이를 통하여 지열 열펌프 시스템의 운전 상태를 진단하고 분석하여 튜닝 방향을 제시함으로써, 지열 열펌프 시스템의 설치 지역, 열원 또는 히트 싱크 및 지중열교환기 종류에 따른 다양한 운전 부하 조건에 대응하여 지열 열펌프 시스템을 최적화시킬 수 있는 지열 열펌프 시스템 최적화 튜닝 방법을 제공하는 것을 목적으로 한다.
또한 본 발명은 지열 열펌프 시스템 최적화 튜닝 방법의 결과 및 튜닝방향을 화면으로 출력하도록 함으로써 사용자가 쉽게 튜닝 방향에 관한 정보를 습득할 수 있는 지열 열펌프 시스템의 최적화 튜닝 방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해서 본 발명은, 냉매를 압축하는 압축기, 실내와 열교환하는 실내열교환기, 냉매를 팽창시키는 팽창장치 및 후술하는 지중열교환기를 순환하는 2차 유체와 열교환하는 실외열교환기를 구비하는 열펌프와, 상기 실외열교환기에서 열교환된 2차 유체가 지중과 열교환하는 지중열교환기를 구비하는 지열 열펌프 시스템의 최적화 튜닝 방법에 관한 것으로, 지열 열펌프 시스템에서 사 용자가 손쉽게 얻을 수 있는 데이터를 입력화면으로 입력하는 제1 단계(S1)와; 상기 제1 단계에서 입력된 데이터를 사용하여 시스템 튜닝 및 최적화와 관련된 냉매 상태량을 계산하고 데이터베이스화된 정보와의 비교를 통하여 지열 열펌프 시스템의 운전상태를 분석하고 튜닝 방향을 설정하는 제2 단계(S2)와; 그리고 상기 제2 단계에서의 분석 결과 및 튜닝방향을 가시화하여 출력 화면으로 출력하는 제3 단계(S3)를 포함하는 것을 특징으로 한다. 이러한 구성에 의해서 대용량의 지열 열펌프 시스템의 설치 지역 및 히트 싱크 또는 열원과 지중 열교환기 타입에 따른 다양한 운전 부하 조건에서 현장에서 취득이 용이한 데이터를 이용하여 시스템의 성능 및 운전 특성을 진단 및 평가하고 튜닝 방향을 제시할 수 있다.
이하, 첨부된 도면을 참조하여 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝 방법에 대해서 보다 상세하게 설명한다. 도 3은 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝방법을 나타내는 도면이며, 도 4는 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝방법의 입력화면을 나타내는 도면이다.
도 3을 참조하면, 본 발명은 지열 열펌프 시스템에서 사용자가 손쉽게 얻을 수 있는 데이터를 입력하는 제1 단계(S1)와, 시스템 튜닝 및 최적화와 관련된 주요 냉매 상태량을 계산하고 데이터베이스화된 정보와의 비교를 통하여 지열 열펌프 시스템의 운전상태를 분석하고 튜닝 방향을 설정하는 제2 단계(S2)와, 그리고 분석 결과 및 튜닝방향을 가시화하여 화면으로 출력하는 제3 단계(S3)를 포함한다.
<제1 단계>
먼저, 제1 단계(S1)에서는 지열 열펌프 시스템으로부터 사용자가 용이하게 취할 수 있는 데이터를 입력한다. 상기 데이터의 입력은 도 4에 도시한 것과 같이 입력화면을 통해서 입력된다. 도 4의 입력화면은, 냉매의 종류를 선택하는 냉매선택부(212)와, 압축기 소비동력 및 팽창장치의 종류 등의 시스템 정보를 입력하는 시스템정보 입력부(214)와, 그리고 실내열교환기에서의 2차 유체의 유량, 실외열교환기에서의 2차 유체의 유량 및 열펌프 각 구성들(압축기, 실내열교환기, 팽창장치 및 실외열교환기, 이하 설명의 편의상 '열펌프의 각 구성들'이라 함)의 입, 출구에서의 온도 또는 압력을 입력하는 데이터 입력부(213)를 포함한다.
상기 냉매선택부(212)에 입력되는 냉매는, 현재 대부분의 지열 열펌프 시스템에서 사용하는 R22의 HCFC계 냉매와, 향후 교토의정서 등의 발효로 인한 지구 온난화를 일으키는 냉매의 사용이 제한될 것이므로 이에 대한 대비를 위하여 현재 냉매로서 활용 가능할 것으로 예상되는 모든 종류의 HFC계 순수 냉매와 혼합 냉매 및 자연 냉매가 선택될 수 있다.
또한 상기 시스템정보 입력부(214)에서 입력되는 팽창장치(130)는 모세관, 오리피스, 온도감응 팽창밸브 및 전자팽창밸브 등이 있다. 팽창장치(130)는 그 종류에 따라서 지열 열펌프 시스템의 고압 및 저압 조절 방향 및 냉매 순환 유량 조절 방향을 다르게 할 수 있기 때문에 성능을 분석할 경우에 고려되기 때문에 입력데이터로서 입력된다.
도 2에 도시한 것과 같이 일반적으로 열펌프의 압축기(110) 입, 출구에는 각각 압력센서(111, 112) 및 온도센서(113, 114)가 설치되어 있으며, 팽창장치(130)의 입, 출구에도 온도센서(131, 132)가 설치되어 있다. 또한 실내열교환기(120) 및 실외열교환기(140)에도 역시 입, 출구 온도를 측정하기 위해 온도센서(121, 122)와 온도센서(141, 142)가 설치되어 있으며, 아울러 실내열교환기(120) 및 실외열교환기(140)의 2차 유체의 유량을 측정하기 위한 유량계 등이 설치되어 있다. 따라서 일반적인 열펌프의 시스템으로부터 사용자는 데이터 입력부(213)에서 요구되는 데이터를 손쉽게 취득할 수 있다. 아울러 냉매의 종류, 압축기 소비동력 및 팽창장치의 종류 등 냉매선택부(212) 및 시스템정보 입력부(214)에서 요구되는 데이터는 시스템 단품 정보와 관련된 것이므로 사용자가 쉽게 취득할 수 있다.
압축기(110) 및 팽창장치(130)에서 입, 출구의 개념은 냉, 난방에 따른 냉매의 순환방향에 따라서 서로 반대가 된다. 여기서는 설명의 편의상 냉방시(도 2의 화살표 A방향으로 냉매가 순환)를 기준으로 한다.
<제2 단계>
상기 제2 단계(S2)에서는 입력된 데이터를 열역학적 상태 방정식에 대입하여 열펌프(100)의 구성들인 압축기(110), 실내열교환기(120), 팽창장치(130) 및 실외열교환기(140)의 입, 출구에서의 분석에 필요한 냉매 상태량을 계산하는 제2a 단계(S2a), 계산된 냉매상태량을 데이터베이스화된 정보와의 비교를 통하여 지열 열펌프 시스템의 운전상태를 분석하고 튜닝 방향을 설정하는 제2b 단계(S2b) 및 압축기의 소비동력, 그리고 실외열교환기(120) 및 실외열교환기(140)를 흐르는 2차 유체의 입, 출구 온도와 유량을 사용하여 지열 열펌프 시스템의 용량 및 성적 계수(COP)를 계산하고 이를 근거로 하여 튜닝 방향을 설정하는 제2c 단계(S2c)를 포함한다.
상기 제2 단계(S2)는, 먼저 제1 단계(S1)에서 입력된 데이터를 열역학적 상태 방정식을 사용하여 분석에 필요한 냉매 상태량을 계산한다(S2a). 구체적으로, 지열 열펌프 시스템의 운전상태를 용이하게 분석할 수 있는 것이 몰리에르선도 상에 냉매 상태량 중 열펌프의 각 구성들의 입, 출구에서의 엔탈피값을 도시하는 것이다. 도 5는 본 발명에 따르는 지열 열펌프 시스템의 몰리에르선도를 나타내는 도면이다. 몰리에르선도는 P-h(압력-엔탈피)선도라고도 불려지며, 사용되는 냉매의 포화액선 및 포화증기선과 함께 각 구성의 입출구에서의 압력 및 엔탈피값을 나타내는 도면이다. 도 5에서 임계점을 중심으로 좌측의 곡선이 포화액선이며, 우측의 곡선이 포화증기선이다.
제2a 단계(S2a)에서는, 냉매 상태량 중에서 열펌프(100)의 각 구성들의 입, 출구에서의 냉매의 엔탈피값은 h = f(T, P) 형태의 열역학적 상태 방정식으로부터 구한다. 상기 열역학적 상태 방정식은 냉매의 종류에 따라서 달라지며, 각종 실험데이터와 실험식에 근거하여 만들어진 방정식이다. 상기 열역학적 상태 방정식은 온도 및 압력의 종속변수이기 때문에, 열펌프의 각 구성들의 입, 출구에서의 온도 및 압력이 제시되면 냉매의 엔탈피값들이 계산된다. 예를 들면, 상기 제1 단계(S1)에서 입력된 압축기 입, 출구 온도 및 압력 데이터에 의해서 압축기(110)의 입, 출구의 엔탈피값(A, B)을 얻게 된다. 또한 팽창장치(130) 입구에서의 엔탈피값(C)은 압축기(110) 출구의 압력 데이터와 입력된 팽창장치(130) 입구 온도 데이터를 이용하여 구한다. 또한 팽창장치(130)는 단열된 상태에서 팽창하기 때문에 등엔탈피과정으로 진행되기 때문에 팽창장치(130)의 출구 엔탈피값(D)은 팽창장치(130)의 입 구 엔탈피값과 동일하다.
이러한 과정에 의해서 압축기(110)의 입, 출구 엔탈피값(A, B)및 팽창장치(130)의 입, 출구 엔탈피값(C, D)은 도 5에 도시한 것과 같이 몰리에르(Mollier) 선도상에 표시될 수 있다. 상기 제2a 단계(S2a)에서 계산된 압축기(110)의 입, 출구 엔탈피값(A, B) 및 팽창장치(130)의 입, 출구 엔탈피값(C, D)은 압축기(110)의 입, 출구 압력에 대해서 도 5와 같이 도시된다. 사용자는 도 5와 같이 몰리에르선도상에 표시된 열펌프의 각 구성들의 입, 출구에서의 엔탈피값을 통해서 운전상태를 용이하게 알 수 있게 된다.
상기 제2 단계(S2)는 지열 열펌프 시스템의 계산된 냉매 상태량을 데이터베이스화된 시스템 정보와 비교하여 지열 열펌프 시스템의 운전상태를 분석하고 튜닝방향을 설정하는 제2b 단계(S2b)를 포함한다.
전술한 바와 같이, 지열 열펌프 시스템은 설치 지역, 지중열교환기의 형태, 열원 또는 히트 싱크의 종류에 따라서 다양한 2차 유체의 부하 특성을 가지므로 다양한 2차 유체의 부하 특성에 따라 지열 열펌프 시스템의 운전점이 변화된다. 다양한 운전 부하에서 지열 열펌프 시스템이 최적으로 운전되고 신뢰성을 갖기 위해서는 지열 열펌프 시스템의 고압 및 저압과, 과냉도 및 과열도 등 열펌프의 각 구성들의 입, 출구에서의 냉매 상태량을 복합적으로 고려하여 튜닝방향을 설정하여야 한다.
제2b 단계(S2b)에서는 냉매 상태량 중 앞서 제2a 단계에서 계산한 엔탈피값 이외에 과열도 및 과냉도가 고려될 수 있다. 과열도란, 압축기(110) 입구의 냉매가 액체를 함유하게 되면 압축기(110)를 손상시키기 때문에 통상 압축기(110) 입구온도는 포화 온도보다 높게 설정하게 되는데, 압축기(110) 입구의 냉매 온도(도 5에서의 A지점에서의 온도)와 포화상태의 온도(도 5에서의 F지점의 온도)의 차이를 말한다. 제2b 단계에서 과열도 계산에 필요한 압축기(110) 입구에서 냉매의 포화상태 온도(도 5에서 F지점의 온도)는 압축기(110) 입구 압력 데이터를 사용하여 열역학적 상태 방정식(Tsat = f(P), 여기서 Tsat는 냉매의 포화상태의 온도, P는 압력)을 이용하여 계산되며, 또한 압축기 입구온도(도 2에서 A지점의 온도)는 제1 단계(S1)에서 입력된 데이터가 사용된다.
과냉도란, 팽창장치(130)에 기체가 함유된 냉매가 유입되면 팽창장치(130)의 정상적인 작동을 방해하고, 냉동능력을 급감시키기 때문에 일반적으로 열펌프에서 팽창장치(130) 입구의 냉매는 포화상태보다 낮은 온도로 설정되어 액체상태를 유지하게 하는데, 팽창장치(130) 입구의 냉매 온도(도 5에서 C지점의 온도)와 포화상태의 온도(도 5에서 E지점의 온도)의 차이를 말한다. 제2b 단계에서 과냉도 계산에 필요한 팽창장치(130) 입구의 포화상태의 온도(도 5에서 E지점의 온도)는 압축기(110) 출구 압력을 사용하여 열역학적 상태 방정식을 이용하여 계산되며, 팽창장치(130) 입구의 실제 온도는 제1 단계에서 입력된 데이터를 사용한다.
또한 상기 제2b 단계(S2b)에서는 지열 열펌프 시스템의 고압 및 저압과, 과냉도 및 과열도 등 열펌프의 각 구성들의 냉매 상태량과 그리고 2차 유체의 상태량을 복합적으로 고려하여 튜닝방향을 설정한다. 일예로서, 입력된 실외열교환 기(140)와 실내열교환기(120)로 유입되는 2차 유체의 입구 온도와, 실외열교환기(140) 및 실내열교환기(120)를 흐르는 냉매의 포화온도가 최소한 10℃ 이상의 차이를 나타낼 때 실외열교환기(140)와 실내열교환기(120)에서 운전모드에 따라 충분한 열흡수 및 열방출이 가능하다. 하지만, 실내열교환기(120)와 실외열교환기(140)에서 냉매의 포화온도와 2차 유체와의 온도차이가 10℃ 이상의 차이를 갖는 경우에도 계산된 과열도가 5℃ 이하로 작은 경우가 발생할 수 있으며, 이는 압축기(110)에 습압축을 유발하여 압축기 손상과 함께 성능 저하를 유발한다. 이 경우 제2b 단계(S2b)에서는, 냉방 또는 난방의 운전모드를 확인하고 과열도와 함께 과냉도 및 압축기(110) 출구온도를 함께 검토한 후, 과냉도가 작고 압축기(110) 출구온도가 높지 않은 경우(80℃ 이하)에는 지열 열펌프 시스템의 팽창장치(130)의 저항을 증가시키는 방향으로 튜닝방향을 설정한다. 한편, 과냉도가 크고 압축기(110) 출구온도가 높은 경우에는 실내열교환기(120) 또는 실외열교환기(140) 중 증발기 역할을 하는 열교환기의 2차 유체의 유량을 증가시키거나 냉매 충전량을 증가시키는 방향으로 튜닝방향을 설정한다.
이상과 같이 제2b 단계(S2b)에서는 냉방 또는 난방의 운전모드에 관한 정보, 과열도 및 과냉도의 상태에 따른 운전조건에 관한 정보 및 위 운전조건을 조절하기 위한 시스템의 튜닝 방향에 대한 정보 등 각각의 냉매 상태량들을 기준으로 하여 발생할 수 있는 모든 운전 조건 및 이들 운전조건에 대응하기 위하여 조절되어야 하는 변수들 및 이들 변수들의 튜닝방향에 관련된 데이터베이스화된 정보를 가지고 있으며, 계산된 냉매 상태량을 복합적으로 고려하기 위해서 계산된 냉매 상태량을 상기 데이터베이스화된 정보와 비교하여 지열 열펌프 시스템의 운전상태를 분석하고 튜닝방향을 설정하게 된다.
상기 제2 단계(S2)는 또한 제1 단계(S1)에서 입력된 압축기의 소비동력, 그리고 실외열교환기 및 실외열교환기를 흐르는 2차 유체의 입출구 온도와 유량을 사용하여 지열 열펌프 시스템의 용량 및 성적 계수(COP)를 계산하고 이를 근거로 하여 튜닝 방향을 설정하는 제2c 단계(S2c)를 포함한다. 지열 열펌프 시스템의 용량은 제1 단계(S1)에서 입력된 실내열교환기(120) 또는 실외열교환기(140) 입, 출구 온도 데이터와 2차 유체의 유량을 사용하고, 방정식
Figure 112006088835439-pat00001
(여기서,
Figure 112006088835439-pat00002
은 2차 유체의 유량이며, Tin 및 Tout는 열교환기의 입출구 온도이며, 그리고 Cp는 2차 유체의 비열)을 이용하여 계산한다. 또한 성적 계수는 상기 계산된 용량을 제1 단계에서 입력된 압축기의 소비전력으로 나누어 계산된다.
상기 제3 단계(S3)는 제2a 단계(S2a), 제2b 단계(S2b) 및 제2c 단계(S2c)에서 분석된 분석 결과 및 튜닝 방향을 도 6에 도시한 출력 화면으로 가시화하여 출력한다. 도 6은 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝방법의 출력화면을 나타내는 도면이다. 도 6을 참조하면 상기 출력화면은 제2a 단계에서의 냉매 상태량의 분석 결과를 몰리에르선도로 나타내는 상태량 가시화부(236)와, 제1 단계에서 입력된 데이터를 출력하는 입력데이터부(231)와, 과열도 및 과냉도, 열펌프의 고압, 저압을 출력하는 분석데이터부(232)와, 제2b 단계에서의 분석결과를 출력하는 분석결과부(233)와, 제2b 단계에서 설정된 튜닝방향을 출력하는 튜닝방향출력 부(234)와, 그리고 제2c 단계에서 계산된 시스템의 용량 및 성능을 출력하는 성능출력부(235)를 포함한다.
사용자는 출력화면에 출력된 분석결과 및 튜닝방향을 고려하여 지열 열펌프 시스템의 운전상태를 확인하게 되며, 튜닝방향에 따라서 운전 상태를 변화하여 시스템을 튜닝하게 된다. 일예로, 도 5에 도시한 것과 같이 상태량 가시화부(236)에 도시된 몰리에르선도에서 압축기(110) 입구의 엔탈피값(A)이 포화증기선보다 좌측에 A'지점에 위치할 경우 압축기(110) 입구의 냉매 상태가 액상임을 사용자는 A'지점을 포화증기선의 우측으로 이동시키기 위한 여러 가지 조치를 취하게 되며, 이때 분석데이터부(232), 분석결과부(233) 및 튜닝방향출력부(234) 및 성능출력부(235)를 통해서 출력된 분석 결과 및 튜닝방향을 참조할 수 있다.
도 4를 참조하면 입력화면에는 튜닝모드를 선택할 수 있는 튜닝 모드 선택부(211)를 구비하며, 튜닝 모드에는 단순튜닝모드, 세부튜닝모드, 세부튜닝 및 성능튜닝모드로 나뉠 수 있다. 단순튜닝모드는 제2a 단계를 수행한 결과인 몰리에르선도 즉 상태량 가시화부(236)를 출력화면에 출력하며, 세부튜닝모드는 제2a 단계 및 제2b 단계를 수행한 결과를 상태량 가시화부(236), 분석데이터부(232), 분석결과부(233) 및 튜닝방향출력부(234)를 출력화면에 출력한다. 또한 세부튜닝 및 성능튜닝모드는 제2a 단계, 제2b 단계 및 제2c 단계를 수행한 결과를 상태량 가시화부(236), 분석데이터부(232), 분석결과부(233), 튜닝방향출력부(234) 및 성능출력부(235)를 통해서 출력한다.
한편 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝 방법은 프로그램화 되어 컴퓨터, 노트북이나 휴대가 편리한 PDA 또는 PMP 등의 휴대용 전자기기에서 실행될 수 있다. 이렇게 됨으로써 사용자는 현장에서 용이하게 지열 열펌프 시스템의 운전상태를 파악하여 튜닝을 수행할 수 있다. 도 7은 본 발명에 따르는 지열 열펌프 시스템의 최적화 튜닝방법이 구현된 전자기기의 구성을 나타내는 도면이다. 도 7을 참조하면 휴대용 전자기기는 제1 단계에서의 데이터를 입력하기 위한 입력화면을 제시하는 입력부(210)와, 데이터베이스화된 정보를 저장하고 있는 데이터베이스 저장부(240)와, 상기 입력부(210)에서 입력된 데이터를 사용하여 제2 단계에서 요구되는 냉매 상태량을 계산하고 이를 데이터베이스 저장부(240)에 저장된 데이터베이스화된 정보와 비교하여 지열 열펌프 시스템의 운전상태를 분석하고 튜닝방향을 설정하는 분석부(220)와, 분석된 결과는 출력화면으로 출력하는 출력부(230)를 구비하고 있다.
이러한 구성에 의해서 휴대용 전자기기를 통해서 사용자가 손쉽게 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝 방법을 이용하여 최적의 운전상태에 필요한 운전조건을 튜닝할 수 있게 된다.
상기 살펴본 바와 같이 본 발명에 따르는 지열 열펌프 시스템 최적화 튜닝 방법은 대용량의 지열 열펌프 시스템의 설치 지역 및 히트 싱크 또는 열원과 지중 열교환기 타입에 따른 다양한 운전 부하 조건에서 현장에서 취득이 용이한 데이터를 이용하여 시스템의 성능 및 운전 특성을 진단 및 평가하고 튜닝 방향을 제시할 수 있다.

Claims (9)

  1. 냉매를 압축하는 압축기, 실내와 열교환하는 실내열교환기, 냉매를 팽창시키는 팽창장치 및 후술하는 지중열교환기를 순환하는 2차 유체와 열교환하는 실외열교환기를 구비하는 열펌프와, 상기 실외열교환기에서 열교환된 2차 유체가 지중과 열교환하는 지중열교환기를 구비하는 지열 열펌프 시스템의 최적화 튜닝 방법으로,
    지열 열펌프 시스템에서 사용자가 손쉽게 얻을 수 있는 데이터를 입력화면으로 입력하는 제1 단계(S1)와;
    상기 제1 단계에서 입력된 데이터를 사용하여 시스템 튜닝 및 최적화와 관련된 냉매 상태량을 계산하고 데이터베이스화된 정보와의 비교를 통하여 지열 열펌프 시스템의 운전상태를 분석하고 튜닝 방향을 설정하는 제2 단계(S2)와; 그리고
    상기 제2 단계에서의 분석 결과 및 튜닝방향을 가시화하여 출력 화면으로 출력하는 제3 단계(S3)를 포함하는 것을 특징으로 하는 지열 열펌프 시스템 최적화 튜닝 방법.
  2. 제1항에 있어서,
    상기 제2 단계는,
    냉매상태량으로서, 열펌프의 각 구성들의 입, 출구에서의 엔탈피값을 계산하는 제2a 단계(S2a)를 포함하는 것을 특징으로 하는 지열 열펌프 시스템 최적화 튜닝 방법.
  3. 제1항에 있어서,
    상기 제2 단계는,
    냉매 상태량으로서 열폄프의 각 구성들의 입, 출구에서의 엔탈피값 및 시스템의 과열도 및 과냉도를 계산하고, 데이터베이스화된 정보와의 비교를 통하여 지열 열펌프 시스템의 운전상태를 분석하고 튜닝 방향을 설정하는 제2b 단계(S2b)를 포함하는 것을 특징으로 하는 지열 열펌프 시스템 최적화 튜닝 방법.
  4. 제3항에 있어서,
    상기 제2 단계는,
    지열 열펌프 시스템의 용량 및 성적 계수(COP)를 계산하고 이를 근거로 하여 튜닝 방향을 설정하는 제2c 단계(S2c)를 더 포함하는 것을 특징으로 하는 지열 열펌프 시스템 최적화 튜닝 방법.
  5. 제1항에 있어서,
    상기 제1 단계에서의 입력화면은:
    냉매의 종류를 선택하는 냉매선택부와;
    시스템 성능 분석에 필요한 압축기 소비동력 및 팽창장치의 종류를 선택하는 시스템정보 입력부와; 그리고
    상기 실내열교환기에서의 2차 유체 유량, 상기 실외열교환기에서의 2차 유체 유량, 그리고 열펌프의 각 구성들의 입, 출구에서의 온도 또는 압력을 입력하는 데이터 입력부를 포함하는 것을 특징으로 하는 지열 열펌프 시스템 최적화 튜닝 방법.
  6. 제2항에 있어서,
    상기 제3 단계에서의 출력화면은:
    상기 제1 단계에서 입력된 데이터를 출력하는 입력데이터부와;
    상기 제2a 단계에서 계산된 열펌프 각 구성들의 입, 출구에서의 엔탈피값을 몰리에르선도로 나타내는 상태량 가시화부를 포함하는 것을 특징으로 하는 지열 열펌프 최적화 튜닝 방법.
  7. 제3항에 있어서,
    상기 제3 단계에서의 출력화면은:
    상기 제1 단계에서 입력된 데이터를 출력하는 입력데이터부와;
    상기 제2a 단계에서 계산된 열펌프 각 구성들의 입, 출구에서의 엔탈피값을 몰리에르선도로 나타내는 상태량 가시화부와;
    상기 제2b 단계에서 계산된 시스템의 과열도 및 과냉도를 출력하는 분석데이터부와;
    상기 제2b 단계에서 분석된 분석결과를 출력하는 분석결과부와; 그리고
    상기 제2b 단계에서 설정된 튜닝방향을 출력하는 튜닝방향출력부를 포함하는 것을 특징으로 하는 지열 열펌프 최적화 튜닝 방법.
  8. 제4항에 있어서,
    상기 제3 단계에서의 출력화면은:
    상기 제1 단계에서 입력된 데이터를 출력하는 입력데이터부와;
    상기 제2a 단계에서 계산된 열펌프 각 구성들의 입, 출구에서의 엔탈피값을 몰리에르선도로 나타내는 상태량 가시화부와;
    상기 제2b 단계에서 계산된 시스템의 과열도 및 과냉도를 출력하는 분석데이터부와;
    상기 제2b 단계에서 분석된 분석결과를 출력하는 분석결과부와;
    상기 제2b 단계에서 설정된 튜닝방향을 출력하는 튜닝방향출력부와; 그리고
    상기 제2c 단계에서 계산된 시스템의 용량 및 성능을 출력하는 성능출력부를 포함하는 것을 특징으로 하는 지열 열펌프 최적화 튜닝 방법.
  9. 제1항 내지 제5항의 어느 하나의 항에 기재된 지열 열펌프 시스템의 최적화 튜닝 방법을 구현한 휴대용 전자기기로서,
    사용자가 데이터를 입력하기 위한 입력화면을 제시하는 입력부와;
    데이터베이스화된 정보를 저장하는 데이터베이스 저장부와;
    상기 입력부에서 입력된 데이터를 사용하여 냉매 상태량을 계산하고 이를 데이터베이스 저장부에 저장된 데이터베이스화된 정보와 비교하여 지열 열펌프 시스 템의 운전상태를 분석하고 튜닝방향을 설정하는 분석부와; 그리고
    상기 분석부에서의 분석 결과 및 설정된 튜닝방향을 출력화면으로 출력하는 출력부를 구비하는 것을 특징으로 하는 지열 열펌프 시스템의 최적화 튜닝 방법을 구현한 휴대용 전자기기.
KR1020060119541A 2006-11-30 2006-11-30 지열 열펌프 시스템 최적화 튜닝방법 및 이를 구현한휴대용 전자기기 KR100776583B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060119541A KR100776583B1 (ko) 2006-11-30 2006-11-30 지열 열펌프 시스템 최적화 튜닝방법 및 이를 구현한휴대용 전자기기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060119541A KR100776583B1 (ko) 2006-11-30 2006-11-30 지열 열펌프 시스템 최적화 튜닝방법 및 이를 구현한휴대용 전자기기

Publications (1)

Publication Number Publication Date
KR100776583B1 true KR100776583B1 (ko) 2007-11-15

Family

ID=39062038

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060119541A KR100776583B1 (ko) 2006-11-30 2006-11-30 지열 열펌프 시스템 최적화 튜닝방법 및 이를 구현한휴대용 전자기기

Country Status (1)

Country Link
KR (1) KR100776583B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955393B1 (ko) * 2008-04-07 2010-04-29 한밭대학교 산학협력단 지열 열펌프 시스템 최적화 방법
KR101455189B1 (ko) 2013-02-28 2014-10-28 한국에너지기술연구원 Ict 기반 지열원 히트펌프 시스템 및 그 성능 진단 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506488B1 (ko) 2005-02-21 2005-08-09 가진기업(주) 지열을 이용한 히트펌프시스템 및 그 제어장치
JP2006118851A (ja) 2004-09-22 2006-05-11 Hokkaido Univ 土壌熱源ヒートポンプシステムの性能予測プログラムおよび性能予測システム
JP2006292310A (ja) 2005-04-13 2006-10-26 Nippon Steel Engineering Co Ltd 地中熱利用ヒートポンプ装置、これを備えた地中熱利用装置、および地中熱利用ヒートポンプ装置の制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118851A (ja) 2004-09-22 2006-05-11 Hokkaido Univ 土壌熱源ヒートポンプシステムの性能予測プログラムおよび性能予測システム
KR100506488B1 (ko) 2005-02-21 2005-08-09 가진기업(주) 지열을 이용한 히트펌프시스템 및 그 제어장치
JP2006292310A (ja) 2005-04-13 2006-10-26 Nippon Steel Engineering Co Ltd 地中熱利用ヒートポンプ装置、これを備えた地中熱利用装置、および地中熱利用ヒートポンプ装置の制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955393B1 (ko) * 2008-04-07 2010-04-29 한밭대학교 산학협력단 지열 열펌프 시스템 최적화 방법
KR101455189B1 (ko) 2013-02-28 2014-10-28 한국에너지기술연구원 Ict 기반 지열원 히트펌프 시스템 및 그 성능 진단 방법

Similar Documents

Publication Publication Date Title
Wang et al. Two-stage heat pump system with vapor-injected scroll compressor using R410A as a refrigerant
Navarro et al. Characterization of a vapor injection scroll compressor as a function of low, intermediate and high pressures and temperature conditions
US8555703B2 (en) Leakage diagnosis apparatus, leakage diagnosis method, and refrigeration apparatus
Ozgener et al. Exergoeconomic analysis of an underground air tunnel system for greenhouse cooling system
US20070271936A1 (en) Refrigerator and Air Conditioner
Choi et al. Performance analysis of vapor injection heat pump system for electric vehicle in cold startup condition
Minetto et al. Performance assessment of an off-the-shelf R744 heat pump equipped with an ejector
Afshari et al. Thermodynamic analysis of a system converted from heat pump to refrigeration device
Afshari et al. Influence of refrigerant properties and charge amount on performance of reciprocating compressor in air source heat pump
Bastani et al. Experimental characterization of a transcritical CO2 direct expansion ground source heat pump for heating applications
Hu et al. Impacts of common faults on an air conditioner with a microtube condenser and analysis of fault characteristic features
Barta et al. Experimental analyses of different control strategies of an R-410A split-system heat pump by employing a turbomachinery expansion recovery device
Kim et al. Novel optimized operating strategies of two-phase injection heat pumps for achieving best performance with safe compression
Deutz et al. Detailed and dynamic variable speed air source heat pump water heater model: Combining a zonal tank model approach with a grey box heat pump model
Mansour et al. Thermodynamic analysis of a transcritical CO2 heat pump integrating a vortex tube
KR100776583B1 (ko) 지열 열펌프 시스템 최적화 튜닝방법 및 이를 구현한휴대용 전자기기
Sánta Comparative Analysis of Heat Pump System with IHX Using R1234yf and R134a
KR20100108056A (ko) 지열 열펌프 시스템의 실시간 성능평가방법 및 이를 구현한평가기기
JP5369953B2 (ja) 多室型空気調和装置の性能計算装置
KR101162746B1 (ko) 현장설치 교육용 지열 실험장비
CN210108717U (zh) 一种制冷阀件制冷容量测试装置
Ismael et al. Experimental Investigation of Performance of Conventional Vapor Compression Refrigeration Cycle Using Geothermal Cooling in Extreme Hot Weather Conditions
Lawrence Experimental and numerical investigation of the design and control of vapor-compression systems with integration of two-phase ejectors for performance enhancement through expansion work recovery
Direk et al. Experimental performance analysis of ejector heat pump water heater under transient conditions
Adriansyah Combined Air Conditioning and Tap Water Heating Plant, Using CO2 as Refrigerant for Indonesian Climate Condition

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131107

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141104

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161102

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171102

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181101

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191105

Year of fee payment: 13