KR100764983B1 - 반도체 공정 챔버 내의 입자 잔여물을 감소시키는 장치 - Google Patents

반도체 공정 챔버 내의 입자 잔여물을 감소시키는 장치 Download PDF

Info

Publication number
KR100764983B1
KR100764983B1 KR1020010060636A KR20010060636A KR100764983B1 KR 100764983 B1 KR100764983 B1 KR 100764983B1 KR 1020010060636 A KR1020010060636 A KR 1020010060636A KR 20010060636 A KR20010060636 A KR 20010060636A KR 100764983 B1 KR100764983 B1 KR 100764983B1
Authority
KR
South Korea
Prior art keywords
chamber
platform
slit valve
inlet port
valve door
Prior art date
Application number
KR1020010060636A
Other languages
English (en)
Other versions
KR20020025823A (ko
Inventor
루돌프 구저
톰케이 조
마이클피 카라짐
테츠야 이시가와
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20020025823A publication Critical patent/KR20020025823A/ko
Application granted granted Critical
Publication of KR100764983B1 publication Critical patent/KR100764983B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4409Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber characterised by sealing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

본 발명은 챔버 및 상기 챔버의 측면벽을 통해 연장되는 챔버 슬롯을 포함하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물을 감소시키기 위한 장치에 관한 것이다. 적어도 하나의 측면벽을 갖는 처리 플랫폼은 상기 챔버와 연결되어 있고 웨이퍼 채널은 상기 웨이퍼 채널이 상기 챔버 슬롯과 교차하도록 상기 챔버 측면벽과 적어도 하나의 처리 플랫폼 측면벽을 통해 연장된다. 챔버 슬릿 밸브는 상기 웨이퍼 채널 내의 입자 잔여물들을 조절하기 위해 상기 챔버 슬롯을 통해 연장된다.

Description

반도체 공정 챔버 내의 입자 잔여물을 감소시키는 장치{APPARATUS FOR REDUCING PARTICLE RESIDUES IN A SEMICONDUCTOR PROCESSING CHAMBER}
본 발명은 다음의 상세한 설명과 첨부된 도면에 의해 용이하게 이해될 것이다. 이해를 돕기 위하여, 도면에 공통한 동일 부재를 지시하는 곳은 가능한 동일한 참조 번호를 사용하였다.
도 1은 본 발명의 반도체 처리 시스템의 부분적인 횡단면도를 도시한다.
도 2는 도 1의 실시예에서 기판 입구 포트의 횡단면도를 도시한다.
* 도면의 주요부분에 대한 부호의 설명 *
100:기판 처리 시스템 106:공정 챔버
120:처리 플랫폼 128:처리 영역
129:플랫폼 채널 131:웨이퍼 채널
190:챔버 슬릿 밸브 192:플랫폼 슬릿 밸브
202:플랫폼 밸브 도어 208:플랫폼 액추에이터 어셈블리
209:제어 시스템 218:챔버 액추에이터 어셈블리
본 발명은 반도체 웨이퍼들을 처리하기 위한 장치에 관한 것으로, 특히, 반도체 웨이퍼 공정 동안 공정 챔버 내의 잔여 입자 증착물을 감소시키기 위한 장치에 관한 것이다.
통상적으로 반도체 공정은 웨이퍼들이 단일 환경 내에서 반도체 재료의 증착과 다양한 복수층 처리에 의하여 처리되는 복수의 챔버들로 구성된 특정 장치 내에서 수행된다. 상기 장치에서, 다수의 공정 챔버와 예비 챔버들은 클러스터 내에 배치되고, 각각은 로봇 이동 장치가 제공된다. 따라서, 상기 장치는 통상적으로 클러스터 툴(cluster tool)로 불리어진다. 상기 클러스터 툴은 집적 회로를 생산하기 위하여 다수의 연속 단계들을 통해 반도체 웨이퍼들을 처리한다.
반도체 공정 장치가 상기 설명처럼 구성되거나 또는 당업자에게 공지된 다른 장치로 구성되는 것과 관계없이, 목적은 단위 시간동안 가장 많은 수의 웨이퍼들을 처리하는 것이다. 그러나, 활성 챔버들은, 즉, 반도체 재료가 증착되거나 또는 에칭과 같은 다른 방식으로 처리되는 챔버들은, 상기 처리동안 형성된 잔여물들이 주기적으로 세척되어야 하는 것이 상기 모든 장치들의 특징이다.
세척 싸이클 동안 한 가지 특별한 중요점은, 반도체 웨이퍼를 처리 플랫폼에서 공정 챔버로 이동시키도록 기판 입구 포트로서 사용되는, 채널이 세척 싸이클동안 사용되는 세척 가스들에 노출되지 않는다는 것이다. 특히, 각 증착 처리의 잔여 입자들은 기판 입구 포트 채널 내에서 증가할 수 있다. 상기 잔여물의 플레이킹(flaking)은 연속된 반도체 웨이퍼 처리 동안 기판 웨이퍼들의 오염을 유발할 수 있다. 또 다른 중요한 점은 처리 플랫폼과 챔버 사이에서 분리된 챔버 환경을 유지하는 것이다. 일단 웨이퍼가 증착 챔버로 이동되면, 처리 플랫폼은 처리 플랫폼을 메우는 슬릿 밸브(slit valve)를 갖는다. 게다가, 슬릿 밸브는 처리 플랫폼과 챔버 사이에서 채널을 밀폐하는 O-링을 가지며, 따라서 증착과 세척 싸이클 동안 증착 챔버로부터의 누출을 방지한다. 증착이 반복된 후에, 잔여 입자들은 O-링의 침식을 유발할 수 있다.
따라서, 증착 처리동안 기판 입구 포트 내에서 잔여물이 증가되는 것을 방지할 필요가 있다. 게다가, 반도체 웨이퍼 처리 또는 세척 싸이클동안 처리 가스 또는 세척 가스 각각의 누출이 없는 것을 보장하기 위하여 챔버들의 분리된 환경을 유지할 필요가 있다. 잔여물이 세척되기 전에 증착 챔버 내에서 수행된 동작 품질의 손상없이 가능한 높은 스루풋을 갖는 것이 바람직하다는 것을 더욱 인식할 것이다.
본 발명은 증착 처리동안 기판 입구 포트 내에서 잔여물이 증가되는 것을 방지하고, 반도체 웨이퍼 처리 또는 세척 싸이클동안 처리 가스 또는 세척 가스의 누출을 방지하기 위하여 챔버들의 분리된 환경을 유지하는 것이다.
종래 기술과 관련한 단점은 반도체 기판 처리 시스템의 본 발명에 의하여 극복된다. 특히, 본 발명은 챔버와 챔버의 측면을 통해 확장되는 챔버 슬롯을 구성 하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물을 감소시키기 위한 장치에 관한 것이다. 적어도 하나의 측면벽을 갖는 처리 플랫폼은 챔버에 연결되어 있고 웨이퍼 채널은 웨이퍼 채널이 챔버 슬롯과 교차하도록 챔버 측면벽과 적어도 하나의 처리 플랫폼 측면벽을 통해 연장된다. 챔버 슬릿 밸브는 챔버 슬롯을 통해 웨이퍼 채널 내의 입자 잔여물들을 조절하도록 연장된다.
본 발명은 통상적으로 반도체 기판 처리를 위한 장치를 제공한다. 본 발명은 캘리포니아, 산타 클라라 소재의 어플라이드 머티어리얼스 인코포레이션사로부터 이용가능한, ULTIMA® 고밀도 플라즈마 화학 기상 증착(HDP-CVD) 챔버와 같은, 화학 기상 증착 시스템의 부분으로써 예시적으로 하기 설명된다. 그러나, 본 발명은 물리 기상 증착 챔버, 에칭 챔버, 이온 주입 챔버 및 다른 반도체 처리 챔버와 같은 다른 챔버 구성에서 구체화될 수 있다.
도 1은 통상적으로 챔버 몸체(102)와 기판 처리를 수행하기 위한 배출 챔버(106)로 한정되는 리드 어셈블리(lid assembly)(104)를 구성하는 예시적인 HDP-CVD 시스템(시스템)을 도시한다. 시스템(100)은 어플라이드 머티어리얼스사에서 이용가능한 CENTURA®처리 플랫폼과 같은 처리 플랫폼(120)에 결합되는 다수의 기판 처리 시스템 중의 하나이다. 통상적으로, 몇몇 단일-웨이퍼 처리 챔버는 처리 플랫폼(120)에 부착되어 있고, 그리고 그것에 의하여 단일 웨이퍼는 각 공정 챔버(106)와 처리 플랫폼(120) 사이에 배치된 기판 입구 포트(132)를 통해 로딩 및 언로딩된다.
챔버 몸체(102)는 통상적으로 알루미늄으로 제조된 단일의, 기계적인 구조이다. 챔버 몸체(102)는 단면도에서 사각형 외부 표면(124)을 갖는 접지된 측면벽(122), 환상의 내부 표면(126), 그리고 처리 영역(128)을 한정하는 챔버 바닥(142)을 갖는다. 처리 영역(128)은 통상적으로 처리 가스들의 추출을 위하여 배출 포트(도시 안됨)를 통해 러프 펌프(rough pump)(도시 안됨)로 보내는 원형 배출 통로(130)를 한정하기 위하여 끝이 얇아진다. 게다가 처리 플랫폼(120)에 인접한 챔버(102)의 측면벽(122)은 챔버 슬릿 밸브(190)의 하우징을 위해 챔버 슬롯(196)을 포함한다.
기판 입구 포트(132)는 챔버(102)의 측면벽(122) 중의 하나를 통과하는 채널이다. 또한 처리 플랫폼(120)은 처리 플랫폼 측면벽(121)을 통해 연장되는 기판 입구 포트(132)와 일직선을 이루고 같은 크기의 플랫폼 채널(129)을 갖는다. 플랫폼 채널(129)과 결합한 기판 입구 포트(132)는, 집합하여 웨이퍼 채널(131)을 이루며, 처리 플랫폼(120)과 챔버(102) 사이의 웨이퍼를 위한 통로를 제공한다. 더욱이, 기판 입구 포트(132)는 챔버 슬롯(196)과 교차되어 있다. 바람직한 실시예에서, 기판 입구 포트(132)는 챔버 바닥(142)에 대하여 수평으로 위치하고, 반면에 챔버 슬롯(196)은 기판 입구 포트(132)에 수직으로 위치한다.
플랫폼 슬릿 밸브(192)는 플랫폼 채널(129)을 통과하여 접근 가능하도록 플랫폼 채널(129) 상에 배치되어 있다. 차단된 상태에서, 플랫폼 슬릿 밸브(192)는 연장되고 플랫폼 채널(129)의 단부를 덮는다. 개방 상태에서, 플랫폼 슬릿 밸브(192)는 플랫폼 채널(129)에서 수축된다. 마찬가지로, 챔버 슬롯(196) 내에 둘러싸인, 챔버 슬릿 밸브(190)는 차단된 포트 상태에서 선택적으로 기판 입구 포트(132)를 통과하여 연장된다. 더욱이, 챔버 슬릿 밸브(190)는 개방 포트 상태에서 기판 입구 포트(132)에서 수축된다. 웨이퍼(160)는 개방 위치에서 플랫폼과 챔버 슬릿 밸브(192, 190)를 갖는 웨이퍼 채널(131)을 통하여 처리 플랫폼(120)에서 챔버(102) 내로 로딩된다. 웨이퍼(160)가 공정 챔버(106) 내로 로딩된 후에, 플랫폼과 챔버 슬릿 밸브(192, 190)는 차단된 위치로 연장되고 그럼으로써 공정 챔버(106)는 처리 플랫폼(120)으로부터 차단된다. 상기 방식으로, 바람직하지 않은 반도체 웨이퍼 처리 가스와 입자 잔여물들이 기판 입구 포트(132) 내에 접촉되고 축적되는 것을 방지한다.
통상적으로 측면벽(122)의 제 1 표면(134)은 차단 위치일 때 리드 어셈블리(104)가 지지되는 플랫 랜딩 영역(flat landing area)을 한정한다. O-링 홈(136)은 챔버 몸체(102)와 리드 어셈블리(104) 사이의 기밀을 형성하는 O-링(138)을 수용하도록 측면벽(122)의 제 1 표면(134) 내에 형성되어 있다. 통상적으로, O-링(138)은 플루오로폴리머 또는 CHEMREZTM 와 같은 처리 환경에 적합한 다른 재료로 제조된다.
리드 어셈블리(104)와 O-링(138)의 상호 접속에 의하여 유발되는 미립자들의 발생을 최소화하기 위하여, 두 개의 피봇 힌지 어셈블리 쌍(제 1 힌지 어셈블리(170)는 도시됨)은 리드 어셈블리(104)를 챔버 몸체(102)에 바람직하게 연결한다. 힌지 어셈블리들은 미세한 절단(shear)과 침식(abrasion) 또는 O-링(138) 의 "핀칭(pinching)" 으로 O-링(138) 상에 리드 어셈블리(104)를 설치하는 두 개의 피봇점을 제공한다. 통상적으로 리드 어셈블리(104)는 리드(172), 돔(174)을 제한하는 가스 분배 링(176)을 갖는 돔(174)를 갖는다. 돔(174)과 가스 분배 링(176)은 리드(172)의 상부에서 지지된다. 통상적으로 리드(172)는 알루미늄으로 제조된다. 돔(174)은 RF 에너지에 투과되는 도전 재료로, 예컨대, 알루미늄 산화물(Al2O3)과 같은 세라믹으로, 제조된다. 온도 제어 어셈블리(도시 안됨)는 다양한 처리 싸이클동안, 즉, 증착 싸이클과 세척 싸이클 동안, 돔(174)의 온도를 조절한다. 통상적으로, 돔(174)은 세척 싸이클 동안 가열되고 처리 싸이클 동안 냉각된다.
가스 분배 링(176)은 돔(174)과 챔버 몸체(102) 사이에 배치되어 있다. 통상적으로 가스 분배 링(176)은 가스 패널(도시 안됨)과 소통되는 수용 노즐(178)들을 위해 내부에 형성된 다수의 포트들을 갖는 알루미늄 또는 다른 적합한 재료로 제조된 환상 링을 포함한다. 가스 패널은 선택적으로 샤워헤드 또는 상부에 노출되고 돔(174)을 통해 돌출된 제 2 노즐(180)을 통하여 챔버(106)에 연결될 수 있다. 선택적으로, 제 2 노즐(180)과 가스 분배 링(176) 모두는 상호간에 결합되어 사용될 수 있다. 가스 패널은 처리 가스 및 다른 가스들을 챔버(106)에 제공한다. 적어도 하나의 안테나 또는 코일(182)은 유전체 돔(174)의 외부에 감겨 있다. 코일(182)은 가변 주파수 RF 전력원(183)에 의해 전력 공급된다. RF 전력원(183)은 처리 영역(128) 내에 생성된 플라스마에 전력을 전달하도록 RF 매칭 네트워크(도시 안됨)를 포함한다.
기판 지지 어셈블리(148)는 하나 이상의 지지 암(142)에 의하여 측면벽(122)에 연결되어 있다. 각각의 지지 암(142)은 기판 지지 어셈블리(148)와 챔버 측면벽(122) 사이에서 방사형으로 연장되어 있고, 챔버(106)의 중심 내에 기판 지지 어셈블리(148)를 위치시킨다. 지지 암(142)은 기판 지지 어셈블리(148)와 배출 통로(130)에 면하는 제 2 표면(146)을 지지하기 위하여 제 1 표면(144)를 포함한다.
기판 지지 어셈블리(148)는 가열기, 진공 척(vacuum chuck), 또는 처리 동안 기판 또는 웨이퍼(160)가 위치하는 정전기 척이 될 수도 있다. 기판 지지 어셈블리(148)는 통상적으로 내부에 내장된 전력원(143)에 연결된 가열기(141)를 갖는 금속 몸체를 포함한다. 정전기 척(150)은 폴리마이드와 같은 두 개의 유전체 층(147) 사이에 매립된 바이어싱 전극(145)를 포함한다. 정전기 척(150)은 기판 지지 어셈블리(148)의 상부에 배치되어 있다. 바이어싱 전극(145)은 웨이퍼(160)와 정전기 척(150)의 상부 기판 사이에서 반대 전하들을 생성하도록 바이어싱 전력 공급부(도시 안됨)에 연결되어 있다. 상기 방식으로, 반대 전하들 사이의 쿨롱의 힘은 반도체 처리 싸이클 동안 웨이퍼(160)를 척(148)의 웨이퍼 지지 표면(152)에 유지시킨다. 게다가, 다수의 리프트 핀(158)들은 기판 지지 어셈블리(148)와 정전기 척(150)을 통해 뻗은 핀 보어(156)에 일치하여 배치되어 있다. 리프트 핀(158)들은 웨이퍼 처리의 마지막에 웨이퍼(160)를 정전기 척(150)에서 들어올려 떨어뜨리도록 리프트 핀 암(162)의 하부 단부에 각각 연결되어 있다.
도 2는 도 1의 실시예의 챔버 슬릿 밸브(190)의 단면도를 도시한다. 반도체 웨이퍼(160)의 로딩은, 공정 챔버(102)의 부근에 위치한, 처리 플랫폼(120) 내에서 시작된다. 특히, 로봇 이동 장치(도시 안됨)는 웨이퍼 채널(131)을 통해, 기판 지지 어셈블리(148)의 상부 표면(152)에 대하여 수평 방향으로 웨이퍼(160)가 정전기 척(150) 상에 놓여지는 곳으로 웨이퍼(160)를 이동시킨다(도 1 참조). 특히, 플랫폼 슬릿 밸브(192)와 챔버 슬릿 밸브(190)는 개방 위치에서 웨이퍼 채널(131)을 통해 웨이퍼(160)가 이동가능하도록 수축된다. 플랫폼 슬릿 밸브(192)는 선택적으로 처리 플랫폼(120)의 플랫폼 측면벽(121) 내에 위치한 플랫폼 구멍(233)을 통해 통로 흐름(access flow)을 제어한다. 플랫폼 구멍(233)은 웨이퍼 채널(131)의 플랫폼 채널(129) 부분을 위한 포트로서 제공된다. 챔버 슬릿 밸브(192)는, 처리 플랫폼(120)과 공정 챔버(106) 사이에서 근접하게, 웨이퍼 채널(131)의 기판 입구 포트(132) 부분을 통해 통로 흐름을 제어한다.
플랫폼 슬릿 밸브(192)는 플랫폼 밸브 도어(202), 플랫폼 액추에이터 어셈블리(208), 그리고 제어 시스템(209)을 포함한다. 플랫폼 액추에이터 어셈블리(208)는 수압식, 전기식, 공압식, 기타 유사한 것들이 될 수 있고, 처리 플랫폼(120)의 바닥(210)에 배치되어 있다. 제어 시스템(209)은 플랫폼 액추에이터(208)와 밸브 도어(202) 사이에 연결된 플랫폼 연결 로드(rod)(207)의 선택적인 연장 또는 수축에 의해 밸브 도어(202)의 위치(즉, 개방 또는 차단)를 제어한다. 더욱이, 당업자는 또한 제어 시스템(209)이 플랫폼과 챔버 슬릿 밸브 모두 동시에 또는 비동시적으로 선택적인 제어를 위하여 단일 제어 시스템(209)이 될 수도 있다는 것을 알 수 있다.
플랫폼 슬릿 밸브(192)의 플랫폼 밸브 도어(202)는 O-링 홈(205) 내에 삽입된 O-링(203)을 갖는 밸브 도어 표면(204)를 포함한다. 밸브 도어(202)의 표면(204)은 밸브 시트(valve seat)(201)에 대면하고, 그것으로 인하여 플랫폼 슬릿 밸브(192)의 밸브 시트(201)는 처리 플랫폼(120)의 측면벽(121)과 일체를 이루며 플랫폼 채널(129)의 플랫폼 구멍(233)을 한정한다. 플랫폼 슬릿 밸브 액추에이터(208)는 연결 로드(207)가 플랫폼 구멍(233)에 대하여 거의 수직을 유지하도록 연결 로드(207)를 연장 및 수축한다. 일 실시예에서, 플랫폼 슬릿 밸브(192)의 액추에이터(208)는 처리 플랫폼(120)의 바닥(210)에 대하여, 45°와 같은, 각도로 고정되어 있다. 그럼으로써, 플랫폼 구멍(233)은 차단 위치에서 플랫폼 밸브 도어 표면(204)을 수용할 수 있는 각도로 위치되어 있다. 따라서, 플랫폼 밸브 도어 표면(204)은 기판 플랫폼 구멍(233)과 밸브 시트(201)에 평행하게 되어 있다. 더욱이, 플랫폼 밸브 슬릿(290)이 차단 위치에 있는 경우에, O-링(203)은 밸브 시트(201)에 대하여 미끄러짐 없이 밸브 시트(201)를 압축한다.
따라서, 플랫폼 채널(129)의 플랫폼 구멍(233)을 제한하는 시트 밸브(291)에 대하여 플랫폼 슬릿 밸브(192)의 구성은 밸브 도어 링 표면의 O-링(203)이 밸브 도어(202)의 차단에 따라 외관 손상에 영향을 받지 않는 것을 보장한다. 따라서, 처리 싸이클 또는 세척 싸이클 동안 챔버(106)의 외부에서 처리 기판 입구 포트(132)를 통해 처리 플랫폼(120) 내로의 임의의 가스 누출은 방지된다. 교대로, 플랫폼 슬릿 밸브(192)가 개방 위치에 있는 경우에, 플랫폼 채널(129)의 플랫폼 구멍(233) 은 웨이퍼(160)의 로딩 또는 언로딩이 가능하도록 완전히 노출된다.
상기 언급에 따라서, 챔버 슬릿 밸브(190)는 처리 플랫폼(120)과 공정 챔버(106) 사이에 노출되어 있다. 일 실시예에서, 챔버 슬릿 밸브(190)는 챔버 측면벽(122) 내로 뻗은 챔버 슬롯(196) 내에 노출되어 있다. 챔버 슬롯(196)은 기판 입구 포트(132)와 사실상 수직으로 되어 있고 기판 입구 포트(132)와 교차한다.
챔버 슬릿 밸브(190)는 챔버 밸브 도어(212), 챔버 액추에이터 어셈블리(218), 그리고 제어 시스템(209)을 포함한다. 챔버 액추에이터 어셈블리(218)는 수압식, 전기식, 공압식, 그리고 유사한 것들이 될 수 있고, 챔버(102)의 챔버 슬롯(196)의 하부 부분에 노출되어 있다. 제어 시스템(209)은 챔버 액추에이터(218)과 챔버 밸브 도어(212) 사이에 연결된 챔버 연결 로드(217)를 선택적으로 연장 또는 수축함으로써 챔버 밸브 도어(212)의 위치(즉, 개방 또는 차단)를 제어한다. 챔버 밸브 도어(212)는 기판 입구 포트(132)의 직경보다 더 큰 직경을 갖는다. 그럼으로써, 챔버 슬릿 밸브(190)의 밸브 도어(212)는 제어 시스템(209)에 의해 제어됨으로써 챔버 슬롯(196)을 통해 활주가능하게 연장되고 수축된다. 챔버 슬릿 밸브(190)가 (플랫폼 슬릿 밸브(192)가 개방 됨에 따라) 개방 위치에 있는 경우에, 웨이퍼 채널(131)의 전체 길이는 웨이퍼(160)를 로딩 및 언로딩하기 위한 채널로써 이용가능하다. 챔버 슬릿 밸브(190)가 차단된 위치에 있는 경우에, 챔버 슬릿 밸브(190)의 밸브 도어(212)의 표면(214)은 챔버 슬롯(196)의 원주 주위에 노출되어 있다. 그럼으로써, 챔버 밸브 도어 표면(214)은 밸브 시트(211)에 안착되고 그 지점에서 기판 입구 포트(132)의 길이는 기판 입구 포트(132)의 외부 부분(235)만이 공정 챔버(106)에 노출되도록 나누어진다. 따라서, 챔버 슬릿 밸브(190)의 밸브 도어(212)가 차단 위치에 있을때, 입자들이 공정 챔버(106)에 노출되지 않는 기판 입구 포트(132)의 내부 부분(237) 상에 증착되는 것을 방지한다. 상기 방식으로, 입자 잔여물은 웨이퍼 채널(131)의 기판 입구 포트(132)의 경계부 내에서 현저하게 감소된다. 더욱이, 플랫폼 밸브 도어 표면(204)의 홈 내에 안착된 O-링(203)은 또한 입자 잔여물의 노출로부터 방지되고, 따라서 상기 O-링(203)의 수명은 연장된다.
비록 본 발명이 여기에서 상세하게 설명되었지만, 당업자들은 본 발명의 사상에 벗어나지 않고 용이하게 다른 다양한 실시예들을 구현할 수 있다.
본 발명의 실시에 의하여 반도체 웨이퍼 처리 또는 세척 싸이클동안 처리 가스 또는 세척 가스 각각의 누출을 방지하고, 증착 처리동안 기판 입구 포트 내에서 잔여물이 증가되지 않게 함으로써 잔여물들의 플레이킹에 의한 기판 웨이퍼들의 오염 및 증착이 반복된 후에, 잔여 입자들에 의한 O-링의 침식을 방지한다.

Claims (19)

  1. 반도체 웨이퍼 처리동안 입자 잔여물을 감소시키기 위한 장치로서,
    챔버;
    상기 챔버의 측면벽을 통해 연장되어 있는 챔버 슬롯;
    상기 챔버의 상기 측면벽을 통해 연장되어 있고, 상기 챔버 슬롯과 교차되어 있는 기판 입구 포트; 및
    상기 챔버 슬롯을 통해 연장되는 챔버 슬릿 밸브
    를 포함하는 반도체 웨이퍼 처리동안 입자 잔여물을 감소시키기 위한 장치.
  2. 제 1 항에 있어서, 상기 챔버 슬릿 밸브는 상기 챔버 슬롯을 통해 활주가능하게 이동가능한 챔버 슬릿 밸브 도어를 포함하는 것을 특징으로 하는 반도체 웨이퍼 처리동안 입자 잔여물을 감소시키기 위한 장치.
  3. 제 2 항에 있어서, 상기 챔버 슬릿 밸브 도어는 차단 위치에서 상기 기판 입구 포트를 통해 연장되고; 개방 위치에서 상기 기판 입구 포트로부터 수축되는 것을 특징으로 하는 반도체 웨이퍼 처리동안 입자 잔여물을 감소시키기 위한 장치.
  4. 제 3 항에 있어서, 상기 차단 위치에서 상기 챔버 슬릿 밸브 도어는 상기 입자 잔여물들에 노출되지 않는 상기 기판 입구 포트의 내부 부분을 한정하는 것을 특징으로 하는 반도체 웨이퍼 처리동안 입자 잔여물을 감소시키기 위한 장치.
  5. 제 1 항에 있어서, 상기 챔버 슬롯은 상기 측면벽을 통해 수직으로 연장되어 있는 것을 특징으로 하는 반도체 웨이퍼 처리동안 입자 잔여물을 감소시키기 위한 장치.
  6. 제 1 항에 있어서, 상기 챔버 슬릿 밸브는 챔버 액추에이터와 연결 로드를 통해 연결되어 있는 챔버 밸브 도어를 더 포함하는 것을 특징으로 하는 반도체 웨이퍼 처리동안 입자 잔여물을 감소시키기 위한 장치.
  7. 제 6 항에 있어서, 상기 챔버 슬롯은 상기 기판 입구 포트를 한정하는 챔버 밸브 시트를 더 포함하고; 상기 챔버 밸브 도어는 평면(face)을 더 포함하며, 상기 챔버 슬릿 밸브 도어 평면은 상기 챔버 밸브 도어가 차단 위치에 있는 경우에 상기 챔버 밸브 시트에 안착되는 것을 특징으로 하는 반도체 웨이퍼 처리동안 입자 잔여물을 감소시키기 위한 장치.
  8. 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치로서,
    챔버;
    상기 챔버의 측면벽을 통해 연장되는 챔버 슬롯;
    상기 챔버에 연결되고 적어도 하나의 측면벽을 갖는 처리 플랫폼;
    상기 챔버 측면벽과 상기 적어도 하나의 처리 플랫폼 측면벽을 통해 연장되어 있고, 상기 챔버 슬롯과 교차되어 있는 웨이퍼 채널; 및
    상기 챔버 슬롯을 통해 연장되는 챔버 슬릿 밸브
    를 포함하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치.
  9. 제 8 항에 있어서, 상기 웨이퍼 채널은 기판 입구 포트와 정렬된 플랫폼 채널에 의하여 한정되는 것을 특징으로 하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치.
  10. 제 9 항에 있어서, 상기 기판 입구 포트는 상기 챔버 슬롯과 교차되어 있는 것을 특징으로 하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치.
  11. 제 10 항에 있어서, 상기 챔버 슬릿 밸브는 상기 챔버 슬롯을 통해 활주가능하게 이동가능한 챔버 밸브 도어를 포함하는 것을 특징으로 하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치.
  12. 제 11 항에 있어서, 상기 챔버 슬릿 밸브 도어는 차단 위치에서 상기 기판 입구 포트를 통해 연장되고; 개방 위치에서 상기 기판 입구 포트로부터 수축되는 것을 특징으로 하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치.
  13. 제 12 항에 있어서, 상기 차단 위치에서 상기 챔버 슬릿 밸브 도어는 상기 입자 잔여물들에 노출되지 않는 상기 기판 입구 포트의 내부 부분을 한정하는 것을 특징으로 하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치.
  14. 제 8 항에 있어서, 상기 챔버 슬롯은 상기 측면벽을 통해 수직으로 연장되어 있는 것을 특징으로 하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치.
  15. 제 8 항에 있어서, 상기 챔버 슬릿 밸브는 챔버 액추에이터와 연결 로드를 통해 연결된 챔버 밸브 도어를 더 포함하는 것을 특징으로 하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치.
  16. 제 11 항에 있어서, 상기 챔버 슬롯은 상기 기판 입구 포트를 한정하는 챔버 밸브 시트를 더 포함하고; 상기 챔버 밸브 도어는 평면을 더 포함하며, 상기 챔버 슬릿 밸브 도어 평면은 상기 챔버 밸브 도어가 차단 위치에 있을 때 상기 챔버 밸브 시트에 안착되는 것을 특징으로 하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치.
  17. 제 9 항에 있어서, 상기 처리 플랫폼은 상기 플랫폼 채널의 플랫폼 구멍에 가깝게 노출되어 있는 플랫폼 슬릿 밸브를 더 포함하는 것을 특징으로 하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치.
  18. 제 17 항에 있어서, 상기 플랫폼 슬릿 밸브는 상기 플랫폼 구멍에 대하여 활주가능하게 이동가능한 플랫폼 밸브 도어를 포함하는 것을 특징으로 하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치.
  19. 제 17 항에 있어서, 상기 챔버 슬릿 밸브 도어와 상기 플랫폼 슬릿 밸브 도어는, 차단 위치에서, 상기 입자 잔여물들에 노출되지 않는 상기 기판 입구 포트의 내부 부분을 한정하는 것을 특징으로 하는 반도체 웨이퍼 처리 시스템 내의 입자 잔여물들을 감소시키기 위한 장치.
KR1020010060636A 2000-09-29 2001-09-28 반도체 공정 챔버 내의 입자 잔여물을 감소시키는 장치 KR100764983B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67599000A 2000-09-29 2000-09-29
US09/675,990 2000-09-29

Publications (2)

Publication Number Publication Date
KR20020025823A KR20020025823A (ko) 2002-04-04
KR100764983B1 true KR100764983B1 (ko) 2007-10-09

Family

ID=24712758

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010060636A KR100764983B1 (ko) 2000-09-29 2001-09-28 반도체 공정 챔버 내의 입자 잔여물을 감소시키는 장치

Country Status (4)

Country Link
EP (1) EP1193326A3 (ko)
JP (1) JP2002170779A (ko)
KR (1) KR100764983B1 (ko)
TW (1) TW511126B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101310763B1 (ko) * 2011-09-16 2013-09-25 주식회사 에스에프에이 화학기상증착장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10252543A1 (de) * 2002-11-08 2004-05-27 Applied Films Gmbh & Co. Kg Beschichtung für ein Kunststoffsubstrat

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010027040A (ko) * 1999-09-10 2001-04-06 윤종용 스피너 설비의 냉각용 이송시스템 운용방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278380A (en) * 1979-04-30 1981-07-14 Varian Associates, Inc. Lock and elevator arrangement for loading workpieces into the work chamber of an electron beam lithography system
GB8332394D0 (en) * 1983-12-05 1984-01-11 Pilkington Brothers Plc Coating apparatus
US4828224A (en) * 1987-10-15 1989-05-09 Epsilon Technology, Inc. Chemical vapor deposition system
US5363872A (en) * 1993-03-16 1994-11-15 Applied Materials, Inc. Low particulate slit valve system and method for controlling same
US5997588A (en) * 1995-10-13 1999-12-07 Advanced Semiconductor Materials America, Inc. Semiconductor processing system with gas curtain

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010027040A (ko) * 1999-09-10 2001-04-06 윤종용 스피너 설비의 냉각용 이송시스템 운용방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101310763B1 (ko) * 2011-09-16 2013-09-25 주식회사 에스에프에이 화학기상증착장치

Also Published As

Publication number Publication date
JP2002170779A (ja) 2002-06-14
KR20020025823A (ko) 2002-04-04
EP1193326A3 (en) 2004-01-14
EP1193326A2 (en) 2002-04-03
TW511126B (en) 2002-11-21

Similar Documents

Publication Publication Date Title
KR101731003B1 (ko) 플라즈마 처리 장치
TWI670389B (zh) 允許低壓汰換工具之原子層沉積處理腔室及具有其之處理系統
JP3162607B2 (ja) 区画化された基板処理チャンバ
US8475623B2 (en) Substrate processing method, system and program
US7628864B2 (en) Substrate cleaning apparatus and method
KR100563227B1 (ko) 연속 웨이퍼 핸들링 장치
KR102396430B1 (ko) 기판 처리 장치 및 기판 처리 방법
CN108807141B (zh) 腔室清洁方法、基板处理方法和基板处理装置
KR100573833B1 (ko) 상반부 및 하반부를 분리할 수 있는 웨이퍼 처리 챔버
US20090301516A1 (en) Substrate transfer device and cleaning method thereof and substrate processing system and cleaning method thereof
KR20200022682A (ko) 버퍼 유닛, 그리고 이를 가지는 기판 처리 장치 및 방법
KR102175089B1 (ko) 버퍼 유닛, 그리고 이를 가지는 기판 처리 장치 및 방법
KR101892958B1 (ko) 플라즈마 처리 장치
KR100621804B1 (ko) 디퓨저 및 그를 구비한 반도체 제조설비
KR100764983B1 (ko) 반도체 공정 챔버 내의 입자 잔여물을 감소시키는 장치
JP7345289B2 (ja) 基板処理装置、基板処理システム及び基板搬送方法
JP2006310883A (ja) プラズマ処理装置およびそのクリーニング方法
JP2006253733A (ja) プラズマ処理装置およびそのクリーニング方法
KR20210008549A (ko) 버퍼 유닛, 그리고 이를 가지는 기판 처리 장치 및 방법
KR100851237B1 (ko) 기판 처리 방법
US20070281447A1 (en) Method of loading and/or unloading wafer in semiconductor manufacturing apparatus
KR102548570B1 (ko) 기판 처리 장치 및 도어 어셈블리 구동 방법
CN118263083A (en) Wafer deposition apparatus and wafer de-electrification method using the same
KR20240104846A (ko) 웨이퍼 증착 설비 및 이를 이용한 웨이퍼 제전 방법
KR20230032622A (ko) 기판 처리 장치 및 유전체 판 정렬 방법

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110929

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20120927

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee