KR100745125B1 - Drug delivery systems loading a bacteriophage for curing infection by a bacteria and method for manufacturing the same - Google Patents

Drug delivery systems loading a bacteriophage for curing infection by a bacteria and method for manufacturing the same Download PDF

Info

Publication number
KR100745125B1
KR100745125B1 KR1020060014376A KR20060014376A KR100745125B1 KR 100745125 B1 KR100745125 B1 KR 100745125B1 KR 1020060014376 A KR1020060014376 A KR 1020060014376A KR 20060014376 A KR20060014376 A KR 20060014376A KR 100745125 B1 KR100745125 B1 KR 100745125B1
Authority
KR
South Korea
Prior art keywords
bacteriophage
infection
drug delivery
phage
chitosan
Prior art date
Application number
KR1020060014376A
Other languages
Korean (ko)
Other versions
KR20060023183A (en
Inventor
이기영
이창문
박지현
최현일
김광윤
정경환
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020060014376A priority Critical patent/KR100745125B1/en
Publication of KR20060023183A publication Critical patent/KR20060023183A/en
Application granted granted Critical
Publication of KR100745125B1 publication Critical patent/KR100745125B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/0033Refuse receptacles; Accessories therefor specially adapted for segregated refuse collecting, e.g. receptacles with several compartments; Combination of receptacles
    • B65F1/0053Combination of several receptacles
    • B65F1/0073Flexible receptacles fixed on a frame or in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/04Refuse receptacles; Accessories therefor with removable inserts
    • B65F1/06Refuse receptacles; Accessories therefor with removable inserts with flexible inserts, e.g. bags or sacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • B65F1/14Other constructional features; Accessories
    • B65F1/141Supports, racks, stands, posts or the like for holding refuse receptacles
    • B65F1/1415Supports, racks, stands, posts or the like for holding refuse receptacles for flexible receptables, e.g. bags, sacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2203/00Decoration means, markings, information elements, contents indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D33/00Details of, or accessories for, sacks or bags
    • B65D33/14Suspension means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F2210/00Equipment of refuse receptacles
    • B65F2210/18Suspending means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F2220/00Properties of refuse receptacles
    • B65F2220/106Collapsible
    • B65F2220/1063Collapsible foldable

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 박테리아 감염증의 치료를 위해 주로 사용되는 항생제로 국한된 치료법을 개선하기 위해 박테리오파지를 감염증 치료제로 이용하는 것에 관한 것이다. 특히, 약물전달시스템을 이용하여 박테리오파지를 제제화 하고 이들을 박테리아 감염증에 사용하는 것으로써 효과적 감염증 치료법으로 기대된다.The present invention relates to the use of bacteriophage as an infectious agent in order to improve the treatment limited to antibiotics mainly used for the treatment of bacterial infections. In particular, bacteriophages are formulated using a drug delivery system and used for bacterial infections.

박테리오파지, 살모넬라증, 약물전달시스템, 박테리아 감염, 항생제 Bacteriophage, Salmonellosis, Drug Delivery System, Bacterial Infection, Antibiotics    

Description

박테리아 감염증을 치료하기 위한 박테리오파지의 제제 및 그 제조방법 {Drug delivery systems loading a bacteriophage for curing infection by a bacteria and method for manufacturing the same}Drug delivery systems loading a bacteriophage for curing infection by a bacteria and method for manufacturing the same

도 1은 본 발명의 박테리오파지를 봉입한 키토산-젤라틴 필름제제의 실시 예를 도시한 개략적 구성도,1 is a schematic configuration diagram showing an embodiment of a chitosan-gelatin film preparation encapsulated bacteriophage of the present invention,

도 2는 본 발명의 박테리오파지를 봉입한 키토산-젤라틴 필름제제 제조 방법의 일시 예에 대한 공정도,Figure 2 is a process chart for a temporary example of the manufacturing method of chitosan-gelatin film preparation containing the bacteriophage of the present invention,

도 3은 본 발명의 박테리오파지를 봉입한 PLA-PEG 미세입자 제조방법의 실시 예에 대한 공정도,Figure 3 is a process diagram for an embodiment of a method for producing PLA-PEG microparticles encapsulated bacteriophage of the present invention,

도 4는 본 발명에서 제조한 PLA-PEG 미세입자의 형태를 나타내는 주사현미경사진이다.Figure 4 is a scanning micrograph showing the form of the PLA-PEG microparticles prepared in the present invention.

박테리오파지를 이용한 감염성 질환의 치료는 1917년 헤렐르에 의해 처음 제시되었다. 박테리오파지는 세균을 파괴하는 용원성(lysogenic) 또는 용균성(lytic) 라이프 싸이클을 특징으로 한다. 따라서, 세균에 의한 감염은 박테리오파지를 이용하여 효과적으로 치료될 수 있을 것으로 기대되었고 파지테라피(Phage therapy)라는 치료법이 소개되기 하였다. 하지만, 파지는 생체 내에서 세균을 죽이는 효과가 시험관 내에서의 세균을 죽이는 효과만큼 효율적이지 못했다. 1940년대에 항생제가 개발됨에 따라 박테리오파지는 감염증을 치료하기 위한 수단으로 제외되기 시작했고, 이에 대한 연구는 내리막길을 걷게 되었다. The treatment of infectious diseases with bacteriophages was first presented by Herler in 1917. Bacteriophages are characterized by lysogenic or lytic life cycles that destroy bacteria. Therefore, bacterial infections were expected to be effectively treated with bacteriophage and phage therapy was introduced. Phage, however, was not as effective in killing bacteria in vivo as the effect of killing bacteria in vitro. With the development of antibiotics in the 1940's, bacteriophages began to be excluded as a means of treating infections, and research on this was going downhill.

최근 들어, 항생제의 남용과 불필요한 처방으로 인해 많은 부작용이 발생하고 있다. 특히, 항생제는 살아 있는 유기물에서 추출한 것으로 다른 미생물의 생장을 억제하거나 죽이는 물질로 자주 사용하면 세균은 새로운 모습으로 자신을 변화시켜 기존 항생제로는 잘 죽지 않는 내성을 갖게 한다. 더욱 심각한 것은 항생제 개발이 내성균의 출현 속도를 따라 잡지 못하고 있다는 점이다. 이렇게 항생제 내성을 가진 일명 '슈퍼박테리아'의 심각성이 큰 문제로 대두되고 있다. 그 결과, 새로운 천연항생제의 개발, 백신 개발, 새로운 방법의 치료법이 요구되고 있다.Recently, many side effects have occurred due to the abuse of antibiotics and unnecessary prescription. In particular, antibiotics are extracted from living organisms and frequently used as substances that inhibit or kill the growth of other microorganisms, and the bacteria change themselves to a new shape, making them resistant to death. More seriously, antibiotic development is not keeping pace with the emergence of resistant bacteria. The seriousness of the antibiotic-resistant so-called 'superbacteria' is emerging as a big problem. As a result, new natural antibiotics, vaccine development, and new methods of treatment are required.

동유럽과 인도 등 몇몇 국가에서는 박테리오파지 및 세균 용해물(bacterial lysate)을 이용한 감염성 질환의 치료에 관한 연구를 꾸준히 이어왔다. 파지테라피는 제 2차 세계대전 이후로 광범위하게 이용되어 왔고, 그 결과 박테리오파지를 이용한 감염증의 치료는 대단히 효과적이다. 실제로 다양한 조직 및 기관에 화농성 감염이 발생된 1473명의 환자에 대해 최근 14년 동안 수행되어 온 파지테라피는 그 고효율성을 보여주었다. 그러나, 이러한 치료효과에도 불구하고 박테리오파지가 갖는 몇 가지 문제점에 의해 그 실용화에 문제점이 있다. 예를 들면 투여된 박테리오파지가 비장에서 쉽게 불활성화 되거나, 반복적으로 투여되었을 경우 체내에서 파지에 대한 항체가 생성되는 등의 문제점이 있다. 최근에는 박테리오파지 펩타이드를 사용하여 여러 문제점들을 극복하고 파지를 감염치료제로 사용하려는 시도가 제시된 바 있다. Several countries, including Eastern Europe and India, have continued to work on the treatment of infectious diseases with bacteriophages and bacterial lysates. Phage therapy has been used extensively since World War II, and as a result, the treatment of bacteriophage infections is extremely effective. Indeed, phagetherapy, which has been performed in the last 14 years for 1473 patients with purulent infections in various tissues and organs, has shown high efficiency. However, in spite of the therapeutic effect, there are problems in practical use due to some problems of bacteriophage. For example, there is a problem that the administered bacteriophage is easily inactivated in the spleen, or the antibody to phage is generated in the body when repeatedly administered. Recently, attempts have been made to overcome various problems using bacteriophage peptides and to use phage as an infection treatment.

본 발명은 위에 제시된 문제점들을 해결하면서 감염치료제로서 박테리오파지를 효과적으로 사용할 수 있도록 약물전달시스템을 이용하는 것에 관한 것이다. The present invention relates to the use of a drug delivery system to effectively use the bacteriophage as an infection treatment while solving the problems presented above.

본 발명은 박테리아 감염증 치료를 위해 효과적인 박테리오파지를 약물전달시스템으로 제제화 하고자 하는 것으로 감염성 질환 치료를 위한 박테리오파지 테라피용 약물전달시스템의 제조한 관한 것을 제공하며 특히 필름제제나 캡슐제제 내에 파지를 생존시킨 채 제제화 하는 것을 목적으로 한다.The present invention intends to formulate a bacteriophage effective drug delivery system for the treatment of bacterial infections, and to provide for the manufacture of a drug delivery system for bacteriophage therapy for the treatment of infectious diseases, and in particular in the film or capsule formulation while surviving phages. It aims to do it.

상기와 같은 목적을 달성하기 위해 본 발명에서는 정제된 박테리오파지를 (a) 키토산과 젤라틴이 혼합된 필름 제제에 봉입하였고, (b) 캡슐제제로 poly lactic acid (PLA)와 poly ethylene glycol (PEG)을 혼합한 미세입자에 박테리오파지를 봉입하였고 생존정도를 측정함으로써 박테리오파지 운반용 필름제제와 캡슐 제제 및 그 제조 방법에 관한 것이다. 본 발명에 사용된 필름제제에는 알긴산, 커들란, 플루란, 펙틴, 스쿨레로글루칸, 덱스트란, 전분 등 다당류와 유청, 콩단백질, 천연단백질 등이 사용될 수 있으며, 캡슐제제로는 앞서 제시한 다당류 또는 Poly lactide-co-glycolide (PLGA), 젤라틴, 리포좀 등이 사용될 수 있다.In order to achieve the above object, in the present invention, the purified bacteriophage (a) was encapsulated in a film formulation in which gechitosan and gelatin were mixed, and (b) poly lactic acid (PLA) and polyethylene glycol (PEG) were used as capsules. The present invention relates to a bacteriophage transport film formulation and a capsule formulation and a method for producing the same by encapsulating bacteriophages in mixed microparticles and measuring survival. In the film preparation used in the present invention, polysaccharides such as alginic acid, curdlan, pullulan, pectin, skuleroglucan, dextran, starch, whey, soy protein, natural protein, and the like may be used. Polysaccharides or Poly lactide-co-glycolide (PLGA), gelatin, liposomes and the like can be used.

박테리오파지는 경구로 투여될 경우 위산에 쉽게 불활성화 되며 정맥을 통해 혈액으로 투여될 경우 비장으로 쉽게 섭취되어 불활성화 되는 단점이 있다. 따라서, 박테리오파지를 위산으로부터 보호하고 혈액에서의 순환시간을 증가시킬 수 있다면 그 치료효과를 현저히 높일 수 있을 것으로 기대할 수 있다.Bacteriophage is easily inactivated in gastric acid when administered orally, and is easily inactivated by the spleen when administered as blood through veins. Thus, if the bacteriophage can be protected from gastric acid and the circulation time in the blood can be increased, the therapeutic effect can be significantly increased.

이하, 실시 예를 통하여 본 발명을 보다 더 구체적으로 설명하지만, 본 발명이 이들 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

[실시 예 1] 박테리오파지가 봉입된 키토산과 젤라틴이 혼합된 필름 제제Example 1 Film Preparation of Chitosan Packed with Bacteriophage and Gelatin

본 발명에서는 Salmonella typhimurium 균주에 특이적인 박테리오파지(P22)를 필름제제와 캡슐제제에 봉입하여 실시하였다. 먼저, Salmonella typhimurium 배양과 파지(P22) 증식은 Lurina-Burtani (LB) 한천 배지를 사용하여 배양한 후 배양액 0.2 ml과 표 1에 나타낸 용액 200 ㎕를 새로운 시험관에 넣고 파지(P22) 5 ㎕를 첨가하여 18시간 동안 37℃ 조건으로 배양하였다. 증식된 파지(P22)를 분리하기 위해 0.1 ml의 chloroform을 배양한 시험관에 첨가하고 1분 정도 격렬하게 교반한 후 5,000 rpm으로 10분간 원심분리 하여 상등액을 여과 제균하여 박테리오파지(P22)를 얻었으며 냉장 보관하였고 모든 실험은 앞서 제시한 방법으로 반복 배양 증식하여 사용하였다. 증식하여 얻은 박테리오파지(P22)는 4.4× 1012 PFU/ml였다.In the present invention, the bacteriophage (P22) specific to Salmonella typhimurium strain was encapsulated in a film preparation and a capsule preparation. First, Salmonella typhimurium culture and phage (P22) growth were incubated using Lurina-Burtani (LB) agar medium, and 0.2 ml of the culture medium and 200 µl of the solution shown in Table 1 were added to a new test tube, and 5 µl of phage (P22) was added. Incubated at 37 ℃ conditions for 18 hours. To isolate the grown phage (P22), 0.1 ml of chloroform was added to a test tube incubated, stirred vigorously for about 1 minute, and centrifuged at 5,000 rpm for 10 minutes to filter and sterilize the supernatant to obtain bacteriophage (P22). All experiments were used by repeat culture propagation by the method described above. Bacteriophage (P22) obtained by growth was 4.4 × 10 12 PFU / ml.

표 1. 박테리오파지(P22)를 형질도입 시키기 위한 배양액Table 1. Cultures for Transducing Bacteriophage (P22)

배양액Culture 부피 (v/v)Volume (v / v) LB 액체배지LB liquid medium 20 ml20 ml 50 × VB*50 × VB * 400 ㎕400 μl 20% (w/w) glucose20% (w / w) glucose 200 ㎕200 μl

*VB의 조성: 증류수 67 ml, MgSO4·7H2O 1 g, citric acid·2H2O 10 g, K2HPO4 50 g, NaNH4HPO4·4H2O 17.5 g. * VB composition: Distilled water 67 ml, MgSO 4 · 7H 2 O 1 g, citric acid · 2H 2 O 10 g, K 2 HPO 4 50 g, NaNH 4 HPO 4 · 4H 2 O 17.5 g.

도 1은 본 발명의 키토산-젤라틴 필름제제를 도시한 개략적 구성도이다. 도 2는 본 발명의 키토산-젤라틴 필름제제 제조 방법의 일시 예에 대한 공정도이다. 필름제조는 10%(w/v) 젤라틴 수용액과 2% (v/v) acetic acid가 포함된 수용액에 4% (w/v) 키토산 (평균분자량 80,000)을 용해하여 혼합하였다. 혼합용액에 500 ㎕ 의 박테리오파지(P22)를 첨가하고 충분히 교반한 다음 플레이트에 캐스팅하여 24시간 건조함으로써 phage를 포함한 키토산-젤라틴 혼합 필름을 제조하였다. 실시 예에서는 장용성 코팅 피막 물질은 사용하지 않고 실험 결과를 얻었다.1 is a schematic configuration diagram showing a chitosan-gelatin film preparation of the present invention. Figure 2 is a process chart for a temporary example of the chitosan-gelatin film production method of the present invention. The film was prepared by dissolving 4% (w / v) chitosan (average molecular weight 80,000) in an aqueous solution containing 10% (w / v) gelatin and 2% (v / v) acetic acid. 500 μl of bacteriophage (P22) was added to the mixed solution, stirred well, and cast on a plate to dry for 24 hours to prepare a chitosan-gelatin mixed film including phage. In the examples, experimental results were obtained without using an enteric coated coating material.

제조된 필름을 phosphate buffered saline (pH 7.4) 용액에서 물리적으로 완전히 용해시킨 후 원심분리 하여 필름에 봉입된 박테리오파지(P22)의 활성을 측정하였으며 그 결과는 형성된 플라그의 수는 4.6 × 107 PFU/ml가 생존하여 존재하였다. 시간경과에 따른 키토산-젤라틴 혼합필름 내에서의 박테리오파지 생존 정도는 표 2에 나타내었다. 시간에 경과 후 필름에 생존한 phage의 수는 변화가 없었으며 6시간에는 5.4 × 107 PFU/ml의 박테리오파지(P22)가 생존하여 필름 내에 존재하였다. The prepared film was physically completely dissolved in a phosphate buffered saline (pH 7.4) solution and centrifuged to measure the activity of the bacteriophage (P22) encapsulated in the film. The result was that the number of formed plaques was 4.6 × 10 7 PFU / ml. Survived and existed. The survival rate of bacteriophage in chitosan-gelatin mixed film with time is shown in Table 2. After the passage of time, the number of surviving phages in the film was not changed. At 6 hours, 5.4 × 10 7 PFU / ml of bacteriophage (P22) survived and remained in the film.

표 2. 키토산-젤라틴 혼합 필름에 봉입된 박테리오파지(P22)의 생존Table 2. Survival of Bacteriophage (P22) Enclosed in Chitosan-Gelatin Mixed Films

시간time 생존 파지 (PFU/ml)Survival Phage (PFU / ml) 00 4.6 × 107 4.6 × 10 7 0.50.5 4.8 × 107 4.8 × 10 7 1One 5.6 × 107 5.6 × 10 7 22 3.5 × 107 3.5 × 10 7 44 5.8 × 107 5.8 × 10 7 66 5.4 × 107 5.4 × 10 7

표 3은 키토산-젤라틴 혼합필름으로부터 박테리오파지(P22)의 방출 결과이다. 제조한 혼합필름으로부터 파지(P22)의 방출실험은 필름을 phosphate buffered saline (pH 7.4)에 담근 후 37 ℃에서 10시간 동안 팽윤시키면서 방출시켰다. 일정 시간 간격으로 방출액을 채취하고 5,000 rpm에서 10분 동안 원심 분리하여 상등액을 취한 후 방출된 파지(P22)는 미리 만들어진 소프트 한천 배지를 이용하여 파지의 활성을 측정하였다. 4시간 이후에 키토산-젤라틴 혼합필름은 팽윤과 가수분해를 통해 생분해될 수 있으며, 본 필름제제는 구강 점막이나 피부에 부착하였을 때 약 4시간에 걸쳐 파지(P22)를 방출함으로써 한차례 도포 또는 투여보다 효과적으로 치료효과를 보일 수 있을 것으로 기대된다. 특히, 키토산은 점막접착성이 우수하므로 구강 내 점막 및 경구 투여 후 장 점막에 부착하는 특성으로 인해 점막에 부착한 세균의 증식을 억제하고 죽이는데 효과적이라고 사료된다. 또한, 도 3과 같이 상기 제조한 필름을 장용성 제제인 유드라짓, 셀룰로스 유도체계인 셀룰로스아세테이트프탈레이트류, 하이드록시프로필에틸셀룰로스류 와 폴리비닐아세테이트프탈레이트류 등과 항산성을 가진 다당류인 알긴산, 커들란, 스클레로글루칸, 펙틴, 덱스트란 등으로 코팅하여 사용하는 것으로 경구 투여 또는 구강 점막 내에서의 비교적 빠른 분해를 막고 위산으로부터 보호함으로써 점막 내에서 서서히 박테리오파지를 방출시킬 수 있는 제제로 유용하다. Table 3 shows the results of the release of bacteriophage (P22) from the chitosan-gelatin mixed film. Release experiment of phage (P22) from the prepared mixed film was immersed in phosphate buffered saline (pH 7.4) and released while swelling at 37 ℃ for 10 hours. The discharged solution was collected at regular time intervals, and the supernatant was collected by centrifugation at 5,000 rpm for 10 minutes, and the released phage (P22) was measured for phage activity using a soft agar medium prepared in advance. After 4 hours, the chitosan-gelatin mixed film can be biodegraded through swelling and hydrolysis. The film formulation releases the phage (P22) over about 4 hours when attached to the oral mucosa or skin. It is expected to be effective treatment. In particular, chitosan has excellent mucoadhesive properties, and therefore, it is thought that chitosan is effective in inhibiting and killing the proliferation of bacteria attached to the mucosa due to its adhesion to the intestinal mucosa after oral administration. In addition, as shown in FIG. 3, the film prepared above is an enteric formulation such as eudragit, cellulose derivative-based cellulose acetate phthalates, hydroxypropylethyl cellulose, polyvinylacetate phthalates, and the like. By coating with scleroglucan, pectin, dextran and the like, it is useful as an agent capable of releasing bacteriophage slowly in the mucosa by preventing oral administration or relatively rapid degradation in the oral mucosa and protecting from gastric acid.

표 3. 키토산-젤라틴 혼합필름으로부터 박테리오파지(P22)의 방출Table 3. Release of Bacteriophage (P22) from Chitosan-Gelatin Mixed Films

방출 시간Release time 총 방출된 파지 (PFU/ml)Total Released Phage (PFU / ml) 10 분10 minutes 1.4 × 1071.4 × 107 30 분30 minutes 2.0 × 1072.0 × 107 1 시간1 hours 2.9 × 1072.9 × 107 2 시간2 hours 3.3 × 1073.3 × 107 3 시간3 hours 3.7 × 1073.7 × 107 4 시간4 hours 4.0 × 1074.0 × 107

[실시 예 2] 박테리오파지(P22)를 포함한 PLA-PEG 미세입자 제조Example 2 Preparation of PLA-PEG Microparticles Including Bacteriophage (P22)

먼저, 미세입자 제조에 사용되는 유기용매에 대한 박테리오파지(P22)의 안정성을 조사하는 것은 매우 중요하므로 에탄올, 디클로로메탄, 이소프로필알코올, 이소옥탄 등에서의 생존률을 측정하였다. First, since it is very important to investigate the stability of the bacteriophage (P22) for the organic solvent used in the preparation of microparticles, the survival rate in ethanol, dichloromethane, isopropyl alcohol, isooctane and the like was measured.

표 4는 유기용매에서 박테리오파지(P22)의 생존률을 나타내는 결과이다. 여러 유기용매에서 박테리오파지는 비교적 안정하였고, 에탄올에서 비교적 안정하였다. PLA-PEG 미세입자 제조에 사용하는 디클로로메탄에서도 비교적 안정하였음을 확인하였고, 박테리오파지를 캡슐화 하는데 사용할 수 있음을 알 수 있다.Table 4 shows the survival rate of the bacteriophage (P22) in the organic solvent. Bacteriophage was relatively stable in various organic solvents and relatively stable in ethanol. It was confirmed that the relative stability in the dichloromethane used for the production of PLA-PEG microparticles, it can be seen that it can be used to encapsulate the bacteriophage.

표 4. 여러 유기용매에서의 박테리오파지(P22)의 안정성 측정Table 4. Measurement of Stability of Bacteriophage (P22) in Various Organic Solvents

(단위: PFU/ml)                                              (Unit: PFU / ml)

시간time 유기 용매Organic solvent 에탄올ethanol 디클로로메탄Dichloromethane 이소프로필알코올Isopropyl Alcohol 이소옥탄Isooctane 00 4.4 × 10124.4 × 1012 4.4 × 10124.4 × 1012 4.4 × 10124.4 × 1012 4.4 × 10124.4 × 1012 1 시간1 hours 9.6 × 1099.6 × 109 1.8 × 1091.8 × 109 2.7 × 1092.7 × 109 2.0 × 1092.0 × 109 2 시간2 hours 9.6 × 1099.6 × 109 1.8 × 1091.8 × 109 2.4 × 1092.4 × 109 1.5 × 1091.5 × 109 4 시간4 hours 9.6 × 1099.6 × 109 0.4 × 1090.4 × 109 1.9 × 1091.9 × 109 1.2 × 1091.2 × 109 8 시간8 hours 5.6 × 1095.6 × 109 0.2 × 1090.2 × 109 1.6 × 1091.6 × 109 1.0 × 1091.0 × 109 12 시간12 hours 4.0 × 1094.0 × 109 0.1 × 1090.1 × 109 1.5 × 1091.5 × 109 0.8 × 1090.8 × 109

도 3은 PLA-PEG 미세입자 제조방법의 실시 예에 대한 공정도이다. 미세입자는 용매증발법을 일부 수정하여 제조하였다. PLA와 PEG를 다양한 비율 (4:1, 4:2, 4:4, weight ratio)로 혼합하였고 각각 비율의 PLA-PEG를 디클로로메탄에 용해한 후 박테리오파지(P22) 용액 1 ml을 첨가하여 교반한 후 미리 제조한 40 ml의 poly vinyl alcohol (PVA, 5% (w/v))에 교반하면서 천천히 혼합하였다. 실온에서 연속으로 교반하면서 용매를 증발시키고, 10,000 rpm에서 5분 동안 원심 분리하고 2-3차례 세척한 후 동결건조 하였다.Figure 3 is a process chart for an embodiment of the PLA-PEG microparticles manufacturing method. Microparticles were prepared by some modification of the solvent evaporation method. PLA and PEG were mixed in various ratios (4: 1, 4: 2, 4: 4, weight ratio), and each ratio of PLA-PEG was dissolved in dichloromethane, and then stirred by adding 1 ml of a bacteriophage (P22) solution. The mixture was slowly mixed with 40 ml of poly vinyl alcohol (PVA, 5% (w / v)). The solvent was evaporated with continuous stirring at room temperature, centrifuged at 10,000 rpm for 5 minutes, washed 2-3 times and lyophilized.

도 4는 본 발명에서 제조한 PLA-PEG 미세입자의 형태를 나타내는 주사현미경사진이다. 제조한 입자를 관찰한 결과, 모두 구형을 이루고 있었으며 입자들은 표면이 매끄럽고 비교적 균일하였다. PEG의 비율이 증가함에 따라 입자의 직경이 작아지고 더욱 균일하게 제조되었음을 확인할 수 있었다. Figure 4 is a scanning micrograph showing the form of the PLA-PEG microparticles prepared in the present invention. As a result of observing the prepared particles, all of them were spherical, and the particles were smooth and relatively uniform. As the ratio of PEG increased, the diameter of the particles was found to be smaller and more uniform.

표 5는 본 발명에서 제조한 PLA-PEG 미세입자의 크기를 측정한 결과이다. 입자의 크기는 PLA:PEG 비율이 4:1인 미세입자의 평균 입자의 크기는 4.98± 0.84 ㎛인 반면 비율이 4:4인 미세입자의 평균 입자 크기는 3.45± 0.25 ㎛ 였다.Table 5 shows the results of measuring the size of the PLA-PEG microparticles prepared in the present invention. The particle size was 4.98 ± 0.84 μm in the PLA: PEG ratio of 4: 1, while the average particle size of 4: 4 in the ratio of 4: 4 was 3.45 ± 0.25 μm.

표 5. 박테리오파지(P22)를 봉입한 PLA-PEG 미세입자의 크기Table 5. Size of PLA-PEG Microparticles Encapsulated Bacteriophage (P22)

PLA:PEG (weight ratio)PLA: PEG (weight ratio) 입자 크기 (㎛)Particle size (μm) 4:44: 4 4.98± 0.844.98 ± 0.84 4:24: 2 4.18± 0.684.18 ± 0.68 4:14: 1 3.45± 0.253.45 ± 0.25

이렇게 제조된 PLA-PEG 미세입자를 phosphate buffered saline (pH 7.4)과 HCl buffer (pH 1.2)가 담긴 튜브에 넣어 37℃에서 방출 실험을 행하였다. 일정시간 간격으로 방출액을 채취하고 5,000 rpm에서 10분 동안 원심 분리하였다. 원심 분리된 파지(P22)는 미리 만들어진 소프트 한천 배지를 이용하여 적정방법을 통해 그 수를 측정하였다. PLA-PEG microparticles thus prepared were put in a tube containing phosphate buffered saline (pH 7.4) and HCl buffer (pH 1.2) to perform a release experiment at 37 ℃. Emissions were taken at regular intervals and centrifuged at 5,000 rpm for 10 minutes. The centrifuged phage (P22) was measured by the titration method using a pre-made soft agar medium.

표 6은 본 발명에서 제조한 PLA-PEG 미세입자로부터 박테리오파지(P22)의 방출 경향을 나타낸 결과이다. PEG 비율이 증가함에 따라 방출 경향에 차이를 보이지 않았다. PLA:PEG 비율이 4:1인 미세입자로부터 박테리오파지(P22)는 10분에 2.8×109 PFU/ml가 방출되었고, 비율이 4:4인 미세입자는 3.1 × 109 PFU/ml의 파지(P22)가 방출되었다. Table 6 shows the results of the release trend of bacteriophage (P22) from the PLA-PEG microparticles prepared in the present invention. There was no difference in the release trend with increasing PEG ratio. Bacteriophage (P22) was released from the microparticles with a PLA: PEG ratio of 4: 1 at 10 minutes, and 2.8 × 10 9 PFU / ml was released at 10 minutes, while microparticles with a ratio of 4: 4 had 3.1 × 10 9 PFU / ml of phage ( P22) was released.

그러므로, 박테리와파지가 봉입된 필름제제와 캡슐제제를 제조할 수 있으며 서방출을 유도함으로써 치료효과를 높일 수 있을 것으로 사료된다.Therefore, it is possible to prepare the film and capsules encapsulated with bacteria and phage and to increase the therapeutic effect by inducing slow release.

표 6. 박테리오파지(P22)가 봉입된 PLA-PEG 미세입자로부터 방출Table 6. Bacteriophage (P22) Release from Embedded PLA-PEG Microparticles

(단위: PFU/ml)                                                     (Unit: PFU / ml)

시간time PLA:PEG 비율PLA: PEG ratio 4:44: 4 4:24: 2 4:14: 1 10 분10 minutes 3.1 × 1093.1 × 109 3.3 × 1093.3 × 109 2.8 × 1092.8 × 109 1 시간1 hours 2.5 × 1092.5 × 109 3.2 × 1093.2 × 109 3.4 × 1093.4 × 109 2 시간2 hours 2.3 × 1092.3 × 109 2.9 × 1092.9 × 109 3.1 × 1093.1 × 109 4 시간4 hours 2.3 × 1092.3 × 109 3.3 × 1093.3 × 109 3.5 × 1093.5 × 109

본 발명에서 제시한 박테리오파지의 제제화 방법은 박테리오파지를 생존한 채 전달시스템에 봉입할 수 있으며, 이러한 전달시스템은 파지를 이용한 감염증의 치료에 있어서 문제점들을 극복하게 할 것으로 사료된다. 일반적으로 약물전달시스템이 갖는 장점을 포함할 뿐 아니라 다량의 파지를 투여할 필요가 없으며 경구 투여 후 점막 부착성을 증가시킬 수 있고, 위산으로부터 파지의 불활성화를 막을 수 있다. 또한 혈액으로 투여된 파지가 비장으로 흡수되어 불활성화 되는 단점을 보완하고 혈액에서의 순환시간을 증가시킬 수 있으며 서방출을 통해 빈번한 파지의 체내 투여를 줄일 수 있다. 그러므로, 이러한 박테리오파지를 포함한 약물전달시스템의 개발은 박테리아 감염증을 치료하기 위해 효과적이라고 사료된다.The method for formulating bacteriophage proposed in the present invention can be enclosed in a delivery system while the bacteriophage is alive, and this delivery system is expected to overcome the problems in the treatment of infection using phage. In addition to the advantages of the drug delivery system in general, it is not necessary to administer large amounts of phage, can increase mucoadhesiveness after oral administration, and prevent inactivation of phage from gastric acid. In addition, the phage administered into the blood can be absorbed into the spleen and inactivated, and the circulation time in the blood can be increased, and the frequent release of phage in the body can be reduced through slow release. Therefore, the development of such drug delivery system including bacteriophage is thought to be effective to treat bacterial infection.

Claims (6)

키토산과 젤라틴으로 이루어진 필름 매트릭스 내에 봉입된 박테리오파지 P22를 포함하는, 살모넬라(Salmonella sp.) 감염증 치료용 제제.A formulation for treating Salmonella sp. Infection comprising bacteriophage P22 enclosed in a film matrix consisting of chitosan and gelatin. 제1항에 있어서, 필름 매트릭스의 표면 상에 장용성 코팅 피막을 추가로 포함하는 제제.The formulation of claim 1 further comprising an enteric coating coating on the surface of the film matrix. 폴리락트산(PLA)과 폴리에틸렌글리콜(PEG)로 이루어진 입자 내에 봉입된 박테리오파지 P22를 포함하는, 살모넬라(Salmonella sp.) 감염증 치료용 제제.A formulation for treating Salmonella sp. Infection comprising bacteriophage P22 encapsulated in particles consisting of polylactic acid (PLA) and polyethylene glycol (PEG). ⑴ 키토산 수용액과 젤라틴 수용액을 혼합하고,⑴ mix chitosan and gelatin aqueous solution, ⑵ 단계 ⑴에서 얻은 혼합액에 박테리오파지 P22 용액을 혼합하고,박 Bacteriophage P22 solution was mixed with the mixture obtained in step ,, ⑶ 단계 ⑵에서 얻은 혼합액을 성형 건조하는:(B) molding and drying the mixed solution obtained in step :: 단계를 포함하는, 제1항에 따른 살모넬라 감염증 치료용 제제의 제조방법.A method of preparing a preparation for treating Salmonella infection according to claim 1, comprising the step. 제4항에 있어서, ⑷ 단계 ⑶에서 얻은 산물을 장용성 코팅제로 코팅한 후 건조하는 단계를 추가로 포함하는 방법.5. The method of claim 4, further comprising coating the product obtained in step (iii) with an enteric coating and then drying. ⑴ 폴리락트산과 폴리에틸렌글리콜을 에탄올, 디클로로메탄, 이소프로필알코올 및 이소옥탄으로 구성된 그룹으로부터 선택되는 유기용매에 용해시키고;(B) dissolving polylactic acid and polyethylene glycol in an organic solvent selected from the group consisting of ethanol, dichloromethane, isopropyl alcohol and isooctane; ⑵ 단계 ⑴에서 얻은 용액에 박테리오파지 P22 용액을 혼합하고,Mix the bacteriophage P22 solution with the solution obtained in step ⑵, ⑶ 단계 ⑵에서 얻은 혼합액을 유화시킨 후 용매를 증발시키고:Emulsify the mixture obtained in step iii and evaporate the solvent: ⑷ 단계 ⑶에서 얻은 산물로부터 입자를 분리하고 동결건조하는:To separate and lyophilize particles from the product obtained in step ⑶: 단계를 포함하는, 제3항에 따른 살모넬라 감염증 치료용 제제의 제조방법.Method for producing a preparation for treating Salmonella infection according to claim 3, comprising the step.
KR1020060014376A 2006-02-14 2006-02-14 Drug delivery systems loading a bacteriophage for curing infection by a bacteria and method for manufacturing the same KR100745125B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060014376A KR100745125B1 (en) 2006-02-14 2006-02-14 Drug delivery systems loading a bacteriophage for curing infection by a bacteria and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060014376A KR100745125B1 (en) 2006-02-14 2006-02-14 Drug delivery systems loading a bacteriophage for curing infection by a bacteria and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20060023183A KR20060023183A (en) 2006-03-13
KR100745125B1 true KR100745125B1 (en) 2007-08-02

Family

ID=37129441

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060014376A KR100745125B1 (en) 2006-02-14 2006-02-14 Drug delivery systems loading a bacteriophage for curing infection by a bacteria and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR100745125B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949389B1 (en) 2007-10-08 2010-03-25 재단법인서울대학교산학협력재단 Preparation containing bacteriophage KCTC 11120BP to inhibit or kill bacteria

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101070938B1 (en) 2008-12-02 2011-10-06 씨제이제일제당 (주) Novel bacteriophage and antibacterial composition comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440409A (en) * 1987-08-06 1989-02-10 Fuji Spinning Co Ltd Molded chitosan product containing immobilized bacteriophage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440409A (en) * 1987-08-06 1989-02-10 Fuji Spinning Co Ltd Molded chitosan product containing immobilized bacteriophage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949389B1 (en) 2007-10-08 2010-03-25 재단법인서울대학교산학협력재단 Preparation containing bacteriophage KCTC 11120BP to inhibit or kill bacteria

Also Published As

Publication number Publication date
KR20060023183A (en) 2006-03-13

Similar Documents

Publication Publication Date Title
Ling et al. Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era
Fernandes et al. Current and novel approaches for control of dental biofilm
WO2019169873A1 (en) Nano antibacterial gel for treating wound infection and promoting healing and preparation method therefor
Chhibber et al. Application of therapeutic phages in medicine
do Céu Teixeira et al. Delivery of antimicrobials by chitosan-composed therapeutic nanostructures
Durr et al. Advancements in bacteriophage therapies and delivery for bacterial infection
Meng et al. Antimicrobial peptide nanoparticles coated with macrophage cell membrane for targeted antimicrobial therapy of sepsis
KR100745125B1 (en) Drug delivery systems loading a bacteriophage for curing infection by a bacteria and method for manufacturing the same
Zhao et al. Amoxicillin encapsulated in the N-2-hydroxypropyl trimethyl ammonium chloride chitosan and N, O-carboxymethyl chitosan nanoparticles: Preparation, characterization, and antibacterial activity
Royam et al. Isolation, characterization, and efficacy of bacteriophages isolated against Citrobacter spp. an in vivo approach in a zebrafish model (Danio rerio)
Khullar et al. Exploring the therapeutic potential of staphylococcal phage formulations: Current challenges and applications in phage therapy
CA2463827C (en) Methods and compositions for controlled release of bioactive compounds
CN113181345A (en) Probiotic gel for recovering and stabilizing vaginal microbial flora and preparation method thereof
CN111518187B (en) Antibacterial peptide DN6NH2 and application thereof
CN116172978A (en) Composite cell membrane bionic targeted antibacterial nano drug delivery system and preparation method thereof
Wang et al. Multifunctional phytochemical nanoplatform for comprehensive treatment of all-stage MRSA biofilm associated infection and its accompanying inflammation
Khwaza et al. Polymeric beads for targeted drug delivery and healthcare applications
CN109966491B (en) Antibacterial nano micelle capable of releasing photosensitizer and preparation method and application thereof
KR101978865B1 (en) Vaccine composition comprising PLGA encapsulated inactivated microbial cell and method for preparing the same
KR101115501B1 (en) Multiparticle of ciprofloxacin-HCl encapsulated low molecular weight water-soluble chitosan microspheres coated with polymer and preparation method thereof
EP3015109B1 (en) Biological barrier with simethicone for the use in the treatment of naso-pharyngo-tubal infections
RU2232808C1 (en) Biopreparation based upon bacteriophages for preventing and treating salmonellosis in animals
Zu et al. Extracellular Vesicles from Nanomedicine‐Trained Intestinal Microbiota Substitute for Fecal Microbiota Transplant in Treating Ulcerative Colitis
JPS6069022A (en) Immunoregulator and manufacture
Bolsan et al. Phage Formulations and Delivery Strategies: Unleashing the Potential Against Antibiotic-Resistant Bacteria

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20120702

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130515

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee