KR100717132B1 - Hollow diamond shells filled composite materials - Google Patents

Hollow diamond shells filled composite materials Download PDF

Info

Publication number
KR100717132B1
KR100717132B1 KR1020050104587A KR20050104587A KR100717132B1 KR 100717132 B1 KR100717132 B1 KR 100717132B1 KR 1020050104587 A KR1020050104587 A KR 1020050104587A KR 20050104587 A KR20050104587 A KR 20050104587A KR 100717132 B1 KR100717132 B1 KR 100717132B1
Authority
KR
South Korea
Prior art keywords
diamond
composite
shell
thermal interface
thermal
Prior art date
Application number
KR1020050104587A
Other languages
Korean (ko)
Inventor
이재갑
박재관
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020050104587A priority Critical patent/KR100717132B1/en
Priority to PCT/KR2005/004305 priority patent/WO2007052860A1/en
Application granted granted Critical
Publication of KR100717132B1 publication Critical patent/KR100717132B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron

Abstract

본 발명은 중공형 다이아몬드 쉘이 고분자 수지 등의 모재에 충전된 복합재에 관한 것이다. 반도체 소자의 핵심 소재 중의 하나인 열계면물질(thermal interface material: TIM)의 충전재로서 수 내지 수 십 마이크로미터 크기의 중공형 다이아몬드 쉘 입자를 사용하여 기존 재료의 한계를 뛰어 넘는 고성능 열계면물질 복합재를 제공한다. 이 복합재는 플립 칩(Flip chip) 등의 언더필(underfill) 또는 밀봉(encapsulation) 충전물질로 사용될 수 있으며, 우주선 등의 경량 고강도 재료로 사용될 수 있다.The present invention relates to a composite material in which a hollow diamond shell is filled in a base material such as a polymer resin. As a filler of thermal interface material (TIM), one of the core materials of semiconductor devices, hollow diamond shell particles of several tens to several tens of micrometers are used to overcome high-performance thermal interface composites that exceed the limitations of conventional materials. to provide. This composite can be used as an underfill or encapsulation filler material, such as flip chip, and can be used as a lightweight, high strength material such as spacecraft.

반도체, 열계면물질, 복합재, 충전재, 다이아몬드 쉘, CVD 다이아몬드, 다공성, 마이크로, 나노, 열방산 Semiconductor, Thermal Interface Material, Composites, Fillers, Diamond Shell, CVD Diamond, Porous, Micro, Nano, Heat Dissipation

Description

중공형 다이아몬드 쉘이 충전된 복합재{HOLLOW DIAMOND SHELLS FILLED COMPOSITE MATERIALS}Composite filled with hollow diamond shells {HOLLOW DIAMOND SHELLS FILLED COMPOSITE MATERIALS}

도 1은 본 발명의 다이아몬드 쉘 충전 열계면물질 층의 단면 모식도를 나타낸 것이다.Figure 1 shows a cross-sectional schematic diagram of the diamond shell filled thermointerface layer of the present invention.

*** 도면의 주요부분에 대한 부호 설명 ****** Explanation of symbols on main parts of drawing ***

1: 열계면물질 층(복합재) 1-1: 다이아몬드 쉘1: Thermal interface layer (composite) 1-1: Diamond shell

1-2: 에폭시 2: 열원1-2: epoxy 2: heat source

3: 방열판 4: 열흐름3: heat sink 4: heat flow

본 발명은 고성능 반도체 소자 및 다중 칩 모듈(Multi chip module : MCM) 등의 열계면물질(thermal interface material: TIM)용 및 경량 고강도 구조재료용 복합재에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to composites for thermal interface materials (TIM) and lightweight high strength structural materials, such as high performance semiconductor devices and multi chip modules (MCM).

무어(Moore)의 법칙처럼 반도체 산업의 마이크로칩의 집적도는 12-18개월 사이에 2배로 증가하고 있다. 이러한 소자의 성능향상을 위해서는, 미세 선폭의 제작, 저항이 작은 전도체의 개발, 저유전박막의 개발등 집적 소자제작기술의 개발과 함께, 소자에서 발생하는 열 문제 해결 및 저유전율 충전재의 사용이 요구된다. Like Moore's law, the density of microchips in the semiconductor industry is doubling in 12-18 months. To improve the performance of these devices, the development of integrated device fabrication technologies such as the production of fine line widths, the development of low resistance conductors, and the development of low dielectric thin films, along with the development of integrated device fabrication technologies, requires the use of low dielectric constant fillers. do.

반도체 소자(열원)에서 발생된 열은, 일반적으로, 소자 상면에 열접촉된 방열판(thermal spreader)을 거쳐 제거된다. 이 열접촉을 이루는 것이 열계면 물질이다. 이 열계면 물질층은, 에폭시 등 고분자 수지에 40-60 %의 세라믹 입자(충전재)가 충전된 것인데, 소자로부터 방열판까지 열전달을 원활하도록 하는 역할을 한다. 따라서, 열계면물질은 열전달 특성이 양호하여야 한다. Heat generated in the semiconductor element (heat source) is generally removed via a thermal spreader in thermal contact with the upper surface of the element. This thermal contact is a thermal interface material. The thermal interface material layer is filled with 40-60% of ceramic particles (filler) in a polymer resin such as epoxy, and serves to facilitate heat transfer from the device to the heat sink. Therefore, the thermal interface material should have good heat transfer characteristics.

열계면 물질층의 열전달 특성은, 이 층의 열저항(mm2K/W)(레진 및 충전물의 벌크 열저항 및 상하 계면에서의 접촉 열저항의 합)으로 나타내는데, 이 열저항 값이 작을수록 열전달 특성이 좋다. 열저항(R)은 다음 식으로 표현된다. The heat transfer characteristics of the thermal interface material layer are expressed as the thermal resistance (mm 2 K / W) of this layer (the sum of the bulk thermal resistance of the resin and the charge and the contact thermal resistance at the top and bottom interfaces). Good heat transfer characteristics The thermal resistance R is expressed by the following equation.

R = L/kA ---------------- (식 1)R = L / kA ---------------- (Equation 1)

L: 열계면물질 층 두께L: thermal interface layer thickness

k: 열계면물질 층 열전도도k: thermal conductivity of the thermal interface layer

A: 열계면물질의 면적A: area of thermal interface material

이 식에서 알 수 있듯이, 일정한 열계면 물질층의 규격에서 열저항은 열계면 물질층의 열전도도에 반비례하여 증가한다. 열계면 물질층의 열전도는 구성물질인 충전재 및 에폭시 모재의 열전도도에 의존한다. 일반적으로 사용되는 에폭시의 열전도도가 0.5 W/mK 이하로 매우 낮기 때문에, 열계면 물질층의 열전도도를 높이기 위해서는, 열전도도가 높은 충전재를 사용하여야 한다.As can be seen from this equation, in the specification of a constant thermal interface material layer, the thermal resistance increases in inverse proportion to the thermal conductivity of the thermal interface material layer. The thermal conductivity of the thermal interface material layer depends on the thermal conductivity of the constituent filler and epoxy base material. Since the thermal conductivity of epoxy generally used is very low, below 0.5 W / mK, in order to increase the thermal conductivity of the thermal interface material layer, a high thermal conductivity filler should be used.

반도체 소자인 플립칩 등에서 사용되는 일반적인 충전물은 구상의 실리카 (SiO2)이다. 그러나 실리카의 열전도도가 낮기 때문에 높은 열전달이 요구되는 경우에는 보론나이트라이드(BN), 알루미늄나이트라이드(AlN) 및 알루미나(Al2O3) 등 상대적으로 열전도도가 양호한 충전재가 사용된다. 이러한 열전도도 외에 충전물의 요구물성은, 높은 전기저항, 낮은 유전상수, 낮은 유전손실, 작은 선열팽창계수, 낮은 밀도, 높은 경도이다. 주요 충전재의 물성을 표 1에 나타내었다. Common fillers used in semiconductors, such as flip chips, are spherical silica (SiO 2 ). However, when silica is low in thermal conductivity and high heat transfer is required, relatively good thermal fillers such as boron nitride (BN), aluminum nitride (AlN) and alumina (Al 2 O 3 ) are used. Besides these thermal conductivity, the required properties of the filler are high electrical resistance, low dielectric constant, low dielectric loss, small coefficient of linear thermal expansion, low density and high hardness. Physical properties of the main fillers are shown in Table 1.

[표 ] 주요 충전재의 특성 비교[Table] Comparison of characteristics of main fillers

DiamondDiamond BNBN AlNAlN Al2O3 Al 2 O 3 용융 SiO2 Molten SiO 2 열전도도 (W/mK) @25 ℃Thermal Conductivity (W / mK) @ 25 ℃ 2,0002,000 300300 260260 3030 1.41.4 전기저항 (ohm-cm)Electrical resistance (ohm-cm) 1015 10 15 1015 10 15 1014 10 14 1014 10 14 1014 10 14 유전상수Dielectric constant 5.75.7 3.93.9 8.88.8 9.79.7 3.83.8 유전손실 (x10-3)@ 1 MhzDielectric loss (x10 -3 ) @ 1 Mhz 0.10.1 0.20.2 0.40.4 0.10.1 0.20.2 선열팽창계수 (x10-6/℃)Coefficient of thermal expansion (x10 -6 / ℃) 1One <1<1 4.44.4 6.76.7 0.50.5 밀도 (g/cc)Density (g / cc) 3.523.52 2.252.25 3.263.26 3.983.98 2.202.20 Knoop 경도 (kg/mm2)Knoop Hardness (kg / mm 2 ) 10,00010,000 1111 1,2001,200 1,5001,500 500500

표 1에서 알 수 있는 바와 같이, 기존에 사용되고 있는 열전달용 충전재(보론나이트라이드, 알루미늄나이트라이드 및 알루미나)는, 열전도도는 실리카보다 양호하지만, 충전재의 중요한 요구 특성인 유전상수 및 열팽창계수가 높은 문제가 있다. 이러한 문제는 과도한 에너지 손실을 일으키거나 열계면물질 층의 열파괴의 원인이 될 수 있다. 또한, 이러한 기존 충전재로 달성할 수 있는 열전달에는 한계가 있다.As can be seen from Table 1, conventionally used heat transfer fillers (boron nitride, aluminum nitride and alumina) have better thermal conductivity than silica, but have high dielectric constant and thermal expansion coefficient, which are important characteristics of the filler. there is a problem. This problem may cause excessive energy loss or thermal breakdown of the thermal interface layer. In addition, there is a limit to heat transfer that can be achieved with these conventional fillers.

따라서, 본 발명의 목적은 유전율이 낮으며, 물리적 특성이 뛰어난 열계면물질용 새로운 복합재를 제공하는데 있다. Accordingly, an object of the present invention is to provide a new composite material for thermal interface materials having low dielectric constant and excellent physical properties.

이와 같은 목적을 달성하기 위하여, 본 발명은, 속이 빈 중공형 마이크로 크기의 다이아몬드 쉘을, 에폭시 등 고분자 수지 모재에 혼합한 열계면 물질용 복합재를 제공한다.In order to achieve such an object, this invention provides the composite material for thermal interface materials which mixed the hollow hollow micro size diamond shell with the polymeric resin base material, such as an epoxy.

상기 다이아몬드 쉘의 크기는 예를 들어 1 ~ 5,000 ㎛ 의 범위로 형성할 수 있고, 상기 모재는 에폭시, 실리콘, 유리질 본드 중에서 선택되는 어느 하나를 사용할 수 있다.The size of the diamond shell can be formed in the range of 1 to 5,000 ㎛, for example, the base material may be any one selected from epoxy, silicon, glassy bond.

본 발명에 따른 복합재는 고분자 수지에 혼합된 기하학적 형태의 다이아몬드 쉘 내부에 미세 공기층(micro air space)으로 인하여 복합재의 물성을 변화시킬 수 있다. Composite according to the present invention can change the physical properties of the composite due to the micro air space (micro air space) inside the diamond shell of the geometric shape mixed in the polymer resin.

도 1은 열계면 물질로 사용된 본 발명의 복합재의 단면 구조를 모식적으로 나타낸 것이다. 본 발명의 복합재(1)는 충전재인 다이아몬드 쉘(1-1)과 고분자 수지(1-2)가 혼합되어 있고, 열원(2)과 방열판(3) 사이에 형성된다. 열원은 반도체 소자 등이 될 수 있으며, 열흐름(4)은 열원에서 방열판으로 일어난다. Figure 1 schematically shows the cross-sectional structure of the composite of the present invention used as a thermal interface material. In the composite material 1 of the present invention, a diamond shell 1-1, which is a filler, and a polymer resin 1-2 are mixed, and are formed between the heat source 2 and the heat sink 3. The heat source may be a semiconductor element or the like, and the heat flow 4 takes place from the heat source to the heat sink.

표 1에 나타낸 바와 같이, 다이아몬드는, 유전상수 및 밀도를 제외하고는, 다른 물질에 비해 탁월한 특성을 갖는다. 또한, 유전상수 및 밀도는 본 발명의 중공형 다이아몬드 쉘을 사용함으로써 감소시킬 수 있다.As shown in Table 1, diamond has superior properties to other materials except for dielectric constant and density. In addition, the dielectric constant and density can be reduced by using the hollow diamond shell of the present invention.

공기의 유전율은 1이기 때문에, 쉘 내부가 비어 있는 다이아몬드 쉘의 유전 상수는 감소한다. 감소의 정도는, 일정한 쉘의 크기에서 쉘 벽 두께가 감소할수록, 일정한 쉘 벽의 두께에서 쉘의 크기가 클수록 (즉, 공기의 부피가 클수록), 더 작아질 것이며, 가능한 유전상수의 범위는 다이아몬드의 유전상수인 5.7과 공기의 유전상수인 1 사이의 값이 될 것이다. 여기서, 다이아몬드 쉘 개개의 유전상수 측정은 불가능하며, 복합재에 충전된 전체 다이아몬드 쉘의 유전상수를 구할 수 있다. 또한, 쉘 벽의 두께를 쉘 크기(직경 100 ㎛)의 5% 및 10%로 가정할 경우 다이아몬드 쉘의 밀도는 0.51 - 1.84 g/cc로 매우 낮으며, 이 밀도는 쉘 벽의 두께를 변화시킴에 의해 제어될 수 있다.Since the dielectric constant of air is 1, the dielectric constant of the diamond shell which is empty inside the shell decreases. The degree of reduction will be smaller as the shell wall thickness decreases at a constant shell size, the larger the shell size at the constant shell wall thickness (ie, the larger the volume of air), and the range of possible dielectric constants is diamond. It will be between the dielectric constant of 5.7 and the dielectric constant of air 1. Here, it is impossible to measure the dielectric constant of each diamond shell, and the dielectric constant of the entire diamond shell filled in the composite can be obtained. Also, assuming that the shell wall thickness is 5% and 10% of the shell size (100 μm in diameter), the diamond shell has a very low density of 0.51-1.84 g / cc, which changes the shell wall thickness. Can be controlled by

다이아몬드 쉘은, CVD 다이아몬드 합성 및 모재 에칭기술을 조합하여 준비된다. 즉, 다이아몬드 쉘의 제조는, 소정 크기를 갖는 구형의 다공성 실리카 입자의 표면에 CVD 법으로 다이아몬드 막을 증착하여 미세 공극을 갖는 다이아몬드 막을 형성한다. 제조된 다이아몬드막/실리카 복합체에서, 복합체 내부의 다공성 실리카 입자를 에칭하여 제거함으로써 내부가 빈 다공성 다이아몬드 쉘을 얻는다. 다이아몬드 막에 공극의 형성 및 크기의 제어는, 다이아몬드 막 증착을 위한 전처리 및 합성과정 중에 이루어 질 수 있다. 에칭은, 복합체의 모재를 예를 들어 끓는 무라카미 용액에 약 10분간 산처리함으로써 이루어진다. 여기서 에칭 용액이 다이아몬드 막에 형성된 미세한 틈을 통해 실리카 모재에 도달할 수 있으며, 이 후 다공성 모재의 모세관 현상으로, 모재가 용액을 스스로 빨아들여 녹아 없어진다. 이러한 과정을 거쳐 속이 비어 있는 다공성 다이아몬드 쉘을 제조할 수 있다. 다이아몬드 쉘의 제조방법은 상기의 방법에 한정되는 것은 아니다.A diamond shell is prepared by combining a CVD diamond synthesis and a base material etching technique. That is, in the manufacture of a diamond shell, a diamond film is deposited on the surface of spherical porous silica particles having a predetermined size by CVD to form a diamond film having fine pores. In the prepared diamond film / silica composite, an porous hollow diamond shell is obtained by etching and removing porous silica particles inside the composite. Control of the formation and size of the voids in the diamond film can be made during pretreatment and synthesis for diamond film deposition. Etching is performed by acid-processing the base material of a composite_body | complex, for example in boiling Murakami solution. Here, the etching solution may reach the silica base material through the minute gap formed in the diamond film, and then, due to the capillary phenomenon of the porous base material, the base material sucks the solution and melts away. Through this process, the hollow porous diamond shell can be manufactured. The method for producing the diamond shell is not limited to the above method.

준비된 다이아몬드 쉘은, 에폭시 모재와 혼합되어 열계면 물질용 복합재를 구성한다. 복합재에서 차지하는 다이아몬드 쉘의 부피는 40-60%, 복합재의 두께는 50-200 ㎛ 정도이며, 충전재인 다이아몬드 쉘의 크기는 수 ㎛에서 상기 복합재의 두께의 1/2 범위 (즉, 수 ㎛∼100 ㎛)이나, 이들 범위에 한정되는 것은 아니다. 또한, 충전재는 다이아몬드 쉘과 보론나이트라이드, 알루미나, 알루미늄나이트라이드 및 실리카 등을 함께 섞어 사용될 수 있다. The prepared diamond shell is mixed with an epoxy base material to constitute a composite for thermal interface material. The volume of diamond shell in the composite is 40-60%, the thickness of the composite is about 50-200 μm, and the size of the diamond shell as a filler ranges from several μm to 1/2 of the thickness of the composite (ie, several μm to 100 μm). Μm), but is not limited to these ranges. In addition, the filler may be used by mixing a diamond shell and boron nitride, alumina, aluminum nitride, silica and the like together.

이러한 중공형 다이아몬드 쉘 충전 복합재는 플립 칩(Flip chip) 등의 언더필(underfill) 또는 밀봉(encapsulation) 재료 및 우주선 등의 경량 고강도 재료로도 사용될 수 있다.Such hollow diamond shell filled composites may also be used as underfill or encapsulation materials such as flip chips and lightweight high strength materials such as spacecraft.

실시예 1.Example 1.

직경 30-40 ㎛, 벽두께 3-5 ㎛이며, 하나 또는 여러 개의 나노크기(1-1,000 ㎚) 공극을 갖는 다이아몬드 쉘을 준비하였다. 이 다이아몬드 쉘은, 다음극 직류전원플라즈마 다이아몬드 합성장치를 이용하여 직경 20-30 ㎛의 다공성 실리카 모재입자 위에 다이아몬드 막을 증착하고, 모재를 끓는 무라카미 용액에서 제거하여 제조되었다. 다이아몬드의 합성조건은 투입전력 15 kW, 수소가스 내 메탄조성 10%, 압력 100 Torr, 가스유량 200 sccm이었다. 합성시간은 1 시간이었다. 다이아몬드 쉘 개개의 유전상수 측정은 불가능하므로 상기 다이아몬드 쉘 합성 조건과 동일한 조건에서 얻어지는 자유막 형태의 다이아몬드의 유전상수를 측정하여 다이아몬드 쉘의 유전상수를 예측하기로 한다. 이 다이아몬드 합성조건에서 얻어지는 두께 500 ㎛의 자유막 다이아몬드(크기 1 cm2)의 유전상수는 5.9, 유전손실은 0.0067이다. 따라서 상기의 다이아몬드 쉘을 구성하고 있는 다이아몬드 막의 유전특성은 이와 비슷할 것으로 예측할 수 있다.Diamond shells having a diameter of 30-40 μm, a wall thickness of 3-5 μm and having one or several nanosize (1-1,000 nm) pores were prepared. This diamond shell was prepared by depositing a diamond film on porous silica matrix particles having a diameter of 20-30 µm using a next pole DC power plasma plasma synthesizer, and removing the substrate from a boiling Murakami solution. The synthesis conditions of diamond were 15 kW input power, 10% methane composition in hydrogen gas, 100 Torr pressure, and 200 sccm gas flow rate. Synthesis time was 1 hour. Since the dielectric constant of each diamond shell cannot be measured, the dielectric constant of the diamond in the free film form obtained under the same conditions as the diamond shell synthesis conditions is measured to predict the dielectric constant of the diamond shell. The dielectric constant of the free-film diamond (size 1 cm 2 ) having a thickness of 500 μm obtained under these diamond synthesis conditions is 5.9, and the dielectric loss is 0.0067. Therefore, the dielectric properties of the diamond film forming the diamond shell can be expected to be similar.

실시예 2.Example 2.

실시예 1에서 제조된 다이아몬드 쉘을 유전특성을 갖는 에폭시 모재(밀도 1.5 g/cm2, 열전도도 0.2 W/mK)와 혼합하여 복합재(열계면물질)를 만들었다. 규격은 10 mm x 10 mm, 높이는 5 mm이었다. 다이아몬드 쉘의 부피밀도는 50 %이었다. 비교를 위해 같은 부피 및 규격의 실리카(입자 크기: 3-20 ㎛), 알루미나(1-40 ㎛) 및 보론나이트라이드(입자 크기: 50 ㎛) 입자를 이용한 복합재를 제조하였다. 이들 복합재의 특성은 표 2와 같다. 다이아몬드 쉘 복합재가 열전도도가 가장 높으며, 유전상수 및 밀도가 가장 낮게 났다. 이는 다이아몬드 쉘 복합재가 다른 복합재에 비해 특성이 훨씬 뛰어난 것을 보여준다.The diamond shell prepared in Example 1 was mixed with an epoxy base material (density 1.5 g / cm 2 , thermal conductivity 0.2 W / mK) having dielectric properties to make a composite material (thermal interface material). The size was 10 mm x 10 mm and the height was 5 mm. The bulk density of the diamond shell was 50%. For comparison, composites were prepared using silica (particle size: 3-20 μm), alumina (1-40 μm) and boron nitride (particle size: 50 μm) particles of the same volume and specification. The properties of these composites are shown in Table 2. Diamond shell composites have the highest thermal conductivity and the lowest dielectric constant and density. This shows that diamond shell composites are much better than other composites.

[표 2] 열계면 물질의 특성 비교[Table 2] Comparison of properties of thermal interface materials

에폭시Epoxy 실리카 복합재Silica composites 알루미나 복합재Alumina Composite 보론나이트라이드 복합재Boron Nitride Composites 다이아몬드 쉘 복합재Diamond shell composite 열전도도 (W/mK)Thermal Conductivity (W / mK) 0.20.2 1.21.2 1.61.6 2.02.0 2.92.9 유전상수Dielectric constant 3.53.5 3.73.7 8.18.1 3.93.9 3.53.5 밀도 (g/cc)Density (g / cc) 1.51.5 1.91.9 3.13.1 2.02.0 1.11.1

이상에서 알 수 있는 바와 같이, 본 발명은 고분자 수지에 마이크로 다이아몬드 쉘이 충전된 복합재를 반도체 소자의 열계면물질로 사용함으로써, 기존 물질의 한계를 뛰어 넘는 우수한 열적 유전적 특성을 갖는 열계면물질을 제공할 수 있 었다. 본 발명은, 차세대 고성능 CPU 및 MCM 등 열문제가 발생될 수 있는 소자의 열계면물질로 사용될 수 있다. 또한 이 복합재는 플립 칩(Flip chip) 등의 언더필 또는 밀봉 충전물질로 사용될 수 있으며, 우주선 등의 경량 고강도 재료로 사용될 수 있다.As can be seen from the above, the present invention uses a composite material filled with a micro diamond shell in a polymer resin as a thermal interface material of a semiconductor device, thereby providing a thermal interface material having excellent thermal dielectric properties that exceed the limits of existing materials. Could provide. The present invention can be used as a thermal interface material of a device that can cause thermal problems such as next-generation high-performance CPU and MCM. The composite can also be used as an underfill or sealing filler material, such as flip chips, or as a lightweight, high strength material such as spacecraft.

Claims (4)

고분자 수지 모재에 중공형 다이아몬드 쉘이 충전된 열계면물질용 복합재.Composite for thermointerface materials filled with a hollow diamond shell in a polymer resin matrix. 제1항에 있어서, 상기 다이아몬드 쉘의 외경은 1 ~ 5,000 ㎛ 인 것을 특징으로 하는 복합재.The composite material of claim 1, wherein an outer diameter of the diamond shell is 1 to 5,000 μm. 제1항에 있어서, 상기 모재는 에폭시, 실리콘, 유리질 본드 중에서 선택되는 어느 하나인 복합재.The composite of claim 1, wherein the base material is any one selected from epoxy, silicone, and glassy bonds. 제1항에 있어서, 다이아몬드 쉘과 함께, 실리카, 알루미나, 보론나이트라이드, 알루미늄나이트라이드 입자를 추가로 충전하는 복합재.The composite of claim 1, further comprising silica, alumina, boron nitride, aluminum nitride particles together with a diamond shell.
KR1020050104587A 2005-11-02 2005-11-02 Hollow diamond shells filled composite materials KR100717132B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020050104587A KR100717132B1 (en) 2005-11-02 2005-11-02 Hollow diamond shells filled composite materials
PCT/KR2005/004305 WO2007052860A1 (en) 2005-11-02 2005-12-14 Hollow diamond shells filled compostte materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050104587A KR100717132B1 (en) 2005-11-02 2005-11-02 Hollow diamond shells filled composite materials

Publications (1)

Publication Number Publication Date
KR100717132B1 true KR100717132B1 (en) 2007-05-11

Family

ID=38005998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050104587A KR100717132B1 (en) 2005-11-02 2005-11-02 Hollow diamond shells filled composite materials

Country Status (2)

Country Link
KR (1) KR100717132B1 (en)
WO (1) WO2007052860A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110870A (en) 2000-09-27 2002-04-12 Japan Science & Technology Corp Circuit board and its producing method
JP2002289604A (en) 2001-03-27 2002-10-04 Japan Science & Technology Corp Circuit board and its manufacturing method
KR20050095716A (en) * 2004-03-27 2005-09-30 최진영 Diamond-powdered heat sink grease
KR20060022039A (en) * 2004-09-06 2006-03-09 엘지전자 주식회사 Adhesive for precise fixing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354692A (en) * 1998-06-10 1999-12-24 Sumitomo Electric Ind Ltd Semiconductor apparatus material, its manufacture, and semiconductor device using the material
US6815052B2 (en) * 2000-12-01 2004-11-09 P1 Diamond, Inc. Filled diamond foam material and method for forming same
JP2002317064A (en) * 2001-04-20 2002-10-31 Sekisui Chem Co Ltd Thermoconductive material
JP2004146413A (en) * 2002-10-22 2004-05-20 Sumitomo Electric Ind Ltd Package for housing semiconductor element and semiconductor device
JP4412578B2 (en) * 2003-05-09 2010-02-10 富士通株式会社 Thermally conductive material, thermally conductive joined body using the same, and manufacturing method thereof
CN1823406B (en) * 2003-07-17 2011-04-20 日商乐华股份有限公司 Low-permittivity film, and production method therefor, and electronic component using it
JP4407509B2 (en) * 2004-01-20 2010-02-03 三菱マテリアル株式会社 Insulated heat transfer structure and power module substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110870A (en) 2000-09-27 2002-04-12 Japan Science & Technology Corp Circuit board and its producing method
JP2002289604A (en) 2001-03-27 2002-10-04 Japan Science & Technology Corp Circuit board and its manufacturing method
KR20050095716A (en) * 2004-03-27 2005-09-30 최진영 Diamond-powdered heat sink grease
KR20060022039A (en) * 2004-09-06 2006-03-09 엘지전자 주식회사 Adhesive for precise fixing

Also Published As

Publication number Publication date
WO2007052860A1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP6351585B2 (en) Resin-impregnated boron nitride sintered body and use thereof
CN100378974C (en) Radiator and semiconductor element using such radiator and semiconductor packing body
KR102030180B1 (en) High efficiency heat transfer adhesive materials and manufacturing thereof
JP6262522B2 (en) Resin-impregnated boron nitride sintered body and use thereof
US20070194440A1 (en) Substrate for semiconductor device and semiconductor device
CN104672785A (en) Epoxy molding compound and preparation method thereof
Chowdhry et al. Ceramic substrates for microelectronic packaging
CN1654427A (en) Method for preparing high thermal conduction silicon nitride ceramic with magnesium silicon nitride as sintering aid
JP2014152299A (en) Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same
JP7217391B1 (en) Composite and its manufacturing method, and laminate and its manufacturing method
CN112447634B (en) Thermal interface material with low Young&#39;s modulus and high thermal conductivity as well as preparation method and application thereof
Li et al. An improvement of thermal conductivity of underfill materials for flip-chip packages
KR100717132B1 (en) Hollow diamond shells filled composite materials
CN107473774B (en) Method for preparing copper-ceramic substrate
CN110117484B (en) Preparation method of heat-conducting silicone gel composite sheet with directionality
KR101355542B1 (en) Ceramic composite and preparing method of the same
US6982206B1 (en) Mechanism for improving the structural integrity of low-k films
CN205752140U (en) A kind of aluminising silicon carbide substrate
KR20000009734A (en) Microwave semiconductor heat dissipator coated with diamond film and fabrication method thereof
CN107540378A (en) A kind of preparation method of carborundum/aluminium composite material
Wang et al. The influence of casting‐calendering process on the microstructure of pure Al2O3 ceramic substrate
JPH05152471A (en) Electronic package using hole closing composite body
TWI799297B (en) Porous ceramic heat spreader and manufacturing method thereof
EP4131363A1 (en) Copper base substrate
KR101419740B1 (en) Bi-layer ceramic substrate for heat dissipation and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120502

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee