KR100709112B1 - Method for coating alumina thin film by using a Atomic Layer Deposition on the surface of Nanowire and Nanotube - Google Patents

Method for coating alumina thin film by using a Atomic Layer Deposition on the surface of Nanowire and Nanotube Download PDF

Info

Publication number
KR100709112B1
KR100709112B1 KR1020030046515A KR20030046515A KR100709112B1 KR 100709112 B1 KR100709112 B1 KR 100709112B1 KR 1020030046515 A KR1020030046515 A KR 1020030046515A KR 20030046515 A KR20030046515 A KR 20030046515A KR 100709112 B1 KR100709112 B1 KR 100709112B1
Authority
KR
South Korea
Prior art keywords
thin film
atomic layer
layer deposition
alumina thin
deposition method
Prior art date
Application number
KR1020030046515A
Other languages
Korean (ko)
Other versions
KR20050006632A (en
Inventor
김상식
민병돈
황주원
이종수
조경아
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020030046515A priority Critical patent/KR100709112B1/en
Publication of KR20050006632A publication Critical patent/KR20050006632A/en
Application granted granted Critical
Publication of KR100709112B1 publication Critical patent/KR100709112B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes

Abstract

본 발명은 나노 크기의 지름을 갖는 반도체 나노선(nanowire)과 나노튜브(nanotube) 표면에 나노 두께의 알루미나(Al2O3) 박막을 균일하게 코팅시킬 수 있도록 하기 위한 방법에 관한 것으로서, 본 발명은 기판상부에 나노선과 나노튜브를 수직 성장시키는 과정; 및 상기 나노선 표면과 나노튜브에 원자층 증착방법을 이용하여 알루미나 박막을 코팅시키는 과정; 으로 이루어진 것을 특징으로 한다.The present invention relates to a method for uniformly coating a nano-thick alumina (Al 2 O 3 ) thin film on the surface of the nanowire (nanowire) and the nanotube having a nano-size diameter, the present invention Vertically growing nanowires and nanotubes on the silver substrate; And coating an alumina thin film on the surface of the nanowires by using an atomic layer deposition method. Characterized in that consisting of.

원자층 증착방법(ALD), 알루미나 박막, 반도체 나노선, 탄소나노튜브Atomic Layer Deposition (ALD), Alumina Thin Film, Semiconductor Nanowires, Carbon Nanotubes

Description

나노선과 나노튜브 표면에 원자층 증착방법을 사용하여 알루미나 박막을 코팅하는 방법{Method for coating alumina thin film by using a Atomic Layer Deposition on the surface of Nanowire and Nanotube}Method for coating alumina thin film by using a Atomic Layer Deposition on the surface of Nanowire and Nanotube}

도 1은 종래 기술에 따른 전기로를 이용해서 탄소나노튜브에 코팅된 알루미나 박막을 나타낸 도면.1 is a view showing an alumina thin film coated on carbon nanotubes using an electric furnace according to the prior art.

도 2a 내지 도 2d는 본 발명의 일실시예인 원자층 증착방법을 이용하여 나노선 표면에 일정한 두께의 알루미나 박막이 코팅되도록 하는 과정을 개략적으로 나타낸 도면.2A to 2D schematically illustrate a process of coating a thin film of alumina having a predetermined thickness on a surface of a nanowire using an atomic layer deposition method of an embodiment of the present invention.

도 3은 본 발명이 적용된 실시예로서, 원자층 증착방법을 이용하여 여러 가지 나노선 표면에 20nm 두께의 알루미나 박막이 코팅된 도면.Figure 3 is an embodiment to which the present invention is applied, a 20 nm thick alumina thin film is coated on the surface of various nanowires using an atomic layer deposition method.

도 4는 본 발명이 적용된 실시예로서, 원자층 증착방법을 이용하여 다중벽 탄소나노튜브 표면과 내부에 40nm 두께의 알루미나 박막이 코팅된 도면.Figure 4 is an embodiment to which the present invention is applied, a 40nm thick alumina thin film coated on the inside and inside of the multi-walled carbon nanotubes using the atomic layer deposition method.

본 발명은 나노선과 나노튜브 표면에 원자층 증착방법을 사용하여 알루미나(Al2O3) 박막을 코팅하는 방법에 관한 것이다.The present invention relates to a method for coating an alumina (Al 2 O 3 ) thin film using the atomic layer deposition method on the surface of the nanowires and nanotubes.

보다 상세하게는 나노 크기의 지름을 갖는 반도체 나노선(nanowire)과 나노튜브(nanotube) 표면에 나노 두께의 알루미나(Al2O3) 박막을 원자층 증착방법을 사용하여 균일하게 코팅시킬 수 있도록 하기 위한 방법에 관한 것이다.And more particularly, to be able to be uniformly coated by the alumina nano thickness (Al 2 O 3) thin film on a semiconductor or a surface line (nanowire) and nanotubes (nanotube) having a diameter of nano size using the atomic layer deposition method It is about a method.

일반적으로 알루미나 박막은 실리콘 옥사이드(SiO2) 박막보다 유전상수가 클 뿐만 아니라, 많은 다른 물질표면에의 뛰어난 부착성과 열적 화학적 안정성으로 인하여 기술적으로 매우 중요한 물질이다. In general, alumina thin films have a higher dielectric constant than silicon oxide (SiO 2 ) thin films, and are technically important because of their excellent adhesion to many other material surfaces and their thermal and chemical stability.

또한, 알루미나는 알칼리 이온이나 다른 불순물의 침투를 막는 보호막으로도 사용된다. 이러한 알루미나는 DRAM이나 metal oxide semiconductor field effect transistor(MOSFET)와 같은 마이크로 전자소자에서 실리콘 옥사이드(SiO2)박막을 대신할 유전체 물질로써 많이 연구되고 있다.Alumina is also used as a protective film to prevent penetration of alkali ions or other impurities. Such alumina has been studied as a dielectric material to replace a silicon oxide (SiO 2 ) thin film in microelectronic devices such as DRAM or metal oxide semiconductor field effect transistor (MOSFET).

기존의 알루미나 박막 성장은 molecular beam epitaxy(MBE), chemical vapor deposition(CVD), plasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD), reactive sputtering 등의 방법으로 이루어지고 있다.Conventional alumina thin film growth is performed by molecular beam epitaxy (MBE), chemical vapor deposition (CVD), plasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD), and reactive sputtering.

그러나, 상기와 같은 알루미나 박막 성장 방법들은 평평한 기판위에 얇은 알루미나 박막을 증착시킬 때 사용하는 방법이므로, 상기와 같은 알루미나 박막 성장 방법을 이용해서 나노선이나 나노입자 등과 같은 임의의 모양을 갖는 물체의 표면을 일정한 두께의 박막으로 증착시키기는 불가능하다.However, since the alumina thin film growth methods are used to deposit a thin alumina thin film on a flat substrate, the surface of an object having an arbitrary shape such as nanowires or nanoparticles using the alumina thin film growth method as described above. It is impossible to deposit a thin film of constant thickness.

그러나 나노선이나 나노입자 등과 같은 임의의 모양을 갖는 물체의 표면에 알루미나 박막을 증착시키기 위한 목적으로 Al, Al2O3 파우더와 전기로를 이용하여 탄소나노튜브 표면에 알루미나 박막을 증착시킨 예가 있었다.However, there was an example in which an alumina thin film was deposited on a surface of a carbon nanotube using Al, Al 2 O 3 powder and an electric furnace for the purpose of depositing an alumina thin film on the surface of an object having an arbitrary shape such as nanowire or nanoparticle.

이때, 상기 탄소나노튜브 표면에 증착된 알루미나 박막의 두께는 첨부 도면 도 1에 도시된 바와 같이 일정하지 않으며, 심지어는 입자들이 덕지덕지 붙어 있는 형태로 나타나고 있다. At this time, the thickness of the alumina thin film deposited on the surface of the carbon nanotubes is not constant as shown in the accompanying drawings, Figure 1, even appear to be in the form of the particles are attached.

그리하여 단차를 갖는 기판에 일정한 두께의 박막을 증착할 목적으로 개발된 박막 증착 방법이 원자층 증착방법(Atomic Layer Deposition; ALD)이다. 그러나 여태까지는 원자층 증착방법에 의한 알루미나 박막의 증착도 평평한 기판과 리소그래피에 의해서 형성된 단차를 갖는 기판 위에서의 일정한 두께의 박막 증착에만 한정되어 있었다.Therefore, an atomic layer deposition method (ALD) is a thin film deposition method developed for depositing a thin film having a predetermined thickness on a substrate having a step difference. Until now, however, deposition of an alumina thin film by an atomic layer deposition method has been limited only to the deposition of a thin film of a constant thickness on a flat substrate and a substrate having a step formed by lithography.

한편, 탄소나노튜브를 비롯한 여러 가지 나노선들은 미래의 나노 전자소자, 나노 광학소자와 센서로서 매우 각광받는 재료이며, 상기와 같은 나노선의 표면을 보호하고, 상기 나노선의 소자로서 기능을 유지시키기 위해 나노선의 표면을 단단하면서도 절연특성을 갖는 알루미나 박막으로 코팅시키며, 이때 코딩되는 두께는 균일해야 한다. Meanwhile, various nanowires including carbon nanotubes are very popular materials for future nano electronic devices, nano optical devices, and sensors, and to protect the surface of such nano wires and maintain their functions as devices of the nano wires. The surface of the nanowires is coated with a thin alumina film having a hard and insulating property, wherein the thickness to be encoded should be uniform.

이에 따라서, 탄소나노튜브와 GaP, InP, Si3N4, SiO2/Si, SiC와 ZnO 나노선에 알루미나 박막을 균일하게 코팅하는 방법이 강하게 요구되고 있는 실정이다.Accordingly, there is a strong demand for a method of uniformly coating an alumina thin film on carbon nanotubes, GaP, InP, Si 3 N 4 , SiO 2 / Si, SiC, and ZnO nanowires.

본 발명의 목적은 상기와 같은 요구에 의해 안출된 것으로서, 나노 크기의 지름을 갖는 반도체 나노선(nanowire)과 나노튜브(nanotube) 표면에 나노 두께의 알루미나(Al2O3) 박막을 코팅시킬 수 있도록 하기 위한 방법을 제공함에 있다.An object of the present invention is to meet the needs of the above, it is possible to coat a nano-thick alumina (Al 2 O 3 ) thin film on the surface of the semiconductor nanowire (nanowire) and nanotube (nanotube) having a nano-size diameter. To provide a way to ensure that.

또한, 본 발명의 목적은 원자층 증착방법(ALD)시 사용되는 전구물질(precusor)로 Trimethyaluminum(TMA)과 물(H2O)을 이용하여 여러 가지 종류의 나노선과 나노튜브의 표면을 일정한 두께의 알루미나 박막으로 코팅할 수 있도록 하기 위한 방법을 제공함에 있다.In addition, an object of the present invention is a precursor used in the atomic layer deposition method (ALD) using a trimethyaluminum (TMA) and water (H 2 O) to the surface of the various types of nanowires and nanotubes a certain thickness The present invention provides a method for coating with an alumina thin film.

또한, 본 발명의 목적은 나노선과 나노튜브들이 향후 나노 광학소자나 나노 전자소자에 사용될 때 나노소자에 필수적인 알루미나 박막을 균일하게 코팅할 수 있도록 하기 위한 방법을 제공함에 있다.It is also an object of the present invention to provide a method for allowing nanowires and nanotubes to uniformly coat alumina thin films essential for nanodevices when they are used in nanooptical devices or nanoelectronic devices.

또한, 본 발명의 목적은 다양한 물질의 나노선과 나노튜브의 표면에 동일한 특성의 알루미나 박막을 코팅시킬 수 있도록 하기 위한 방법을 제공함에 있다.It is also an object of the present invention to provide a method for coating alumina thin films of the same properties on the surface of nanowires and nanotubes of various materials.

상기와 같은 목적을 달성하기 위한 본 발명의 실시예는, 기판상부에 나노선과 나노튜브를 수직 성장시키는 성장과정; 및 상기 나노선 표면과 나노튜브에 원자층 증착방법을 이용하여 알루미나 박막을 코팅시키는 코팅과정; 으로 이루어진 것을 특징으로 하는 나노선과 나노튜브 표면에 원자층 증착방법을 사용하여 알루미나 박막을 코팅하는 방법으로서, 상술한 과제를 해결한다.Embodiments of the present invention for achieving the above object, the growth process of vertically growing nanowires and nanotubes on the substrate; And a coating process of coating the alumina thin film on the nanowire surface and the nanotubes by using an atomic layer deposition method. As a method of coating an alumina thin film by using an atomic layer deposition method on a surface of a nanowire and a nanotube, the above-mentioned problem is solved.

또한, 상기 나노선은, Si, Ge, GaN, InP, GaAs, GaP, Si3N4, SiO2, SiC, ZnO 및 Ga2O3 중 어느 하나의 성분으로 이루어진 것을 특징으로 하는 나노선과 나노튜브 표면에 원자층 증착방법을 사용하여 알루미나 박막을 코팅하는 방법으로서, 상술한 과제를 해결한다.In addition, the nanowires, nanowires and nanotubes, characterized in that any one of the components of Si, Ge, GaN, InP, GaAs, GaP, Si 3 N 4 , SiO 2 , SiC, ZnO and Ga 2 O 3 The above-mentioned problem is solved by the method of coating an alumina thin film on the surface using the atomic layer deposition method.

또한, 다중벽 탄소나노튜브의 외측면 및 내측면에, 알루미나 박막이 소정 두께로 코팅되도록 하는 것을 특징으로 하는 나노선과 나노튜브 표면에 원자층 증착방법을 사용하여 알루미나 박막을 코팅하는 방법으로서, 상술한 과제를 해결한다.In addition, the method of coating the alumina thin film using the atomic layer deposition method on the nanowire and the surface of the nanotube, characterized in that the alumina thin film is coated on the outer side and the inner side of the multi-walled carbon nanotubes to a predetermined thickness, as described above Solve a task.

또한, 상기 탄소나노튜브가, 원통형태의 알루미나 튜브인 것을 특징으로 하는 나노선과 나노튜브 표면에 원자층 증착방법을 사용하여 알루미나 박막을 코팅하는 방법으로서, 상술한 과제를 해결한다.In addition, the above-described problem is solved by a method of coating an alumina thin film by using an atomic layer deposition method on a surface of a nanowire and a nanotube, wherein the carbon nanotubes are cylindrical alumina tubes.

또한, 상기 원자층 증착방법에 이용되는 전구물질은, Trimethyaluminum (TMA) 및 물(H2O)인 것을 특징으로 하는 나노선과 나노튜브 표면에 원자층 증착방법을 사용하여 알루미나 박막을 코팅하는 방법으로서, 상술한 과제를 해결한다.In addition, the precursor used in the atomic layer deposition method, Trimethyaluminum (TMA) and water (H 2 O) characterized in that the coating of the alumina thin film using the atomic layer deposition method on the surface of the nanowires and nanotubes. The above problem is solved.

이하 첨부된 도면을 참조하여 본 발명에 따른 실시 예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a 내지 도 2d는 본 발명의 일실시예인 원자층 증착방법을 이용하여 나노선 표면에 일정한 두께의 알루미나 박막이 코팅되도록 하는 과정을 개략적으로 나타낸 도면이고, 도 3은 본 발명이 적용된 실시예로서, 원자층 증착방법을 이용하여 여러 가지 나노선 표면에 20nm 두께의 알루미나 박막이 코팅된 도면이며, 도 4는 본 발명이 적용된 실시예로서, 원자층 증착방법을 이용하여 다중벽 탄소나노튜브 표면과 내부에 40nm 두께의 알루미나 박막이 코팅된 도면이다.2A to 2D schematically illustrate a process of coating an alumina thin film having a predetermined thickness on a surface of a nanowire using an atomic layer deposition method according to an embodiment of the present invention, and FIG. 3 is an embodiment to which the present invention is applied. , A 20 nm-thick alumina thin film is coated on the surface of various nanowires by using the atomic layer deposition method, Figure 4 is an embodiment to which the present invention is applied, using a multi-walled carbon nanotube surface using an atomic layer deposition method 40 nm thick alumina thin film is coated inside.

먼저, 기판(substrate) 상부에 나노선과 탄소나노튜브를 수직 성장시킨다(첨부 도면 도 2a 참조). 그리고, 상기 기판 상부에 성장된 나노선 표면과 나노튜브에 원자층 증착방법(ALD)에 의해서 알루미나 박막이 균일한 두께로 코팅될 수 있도록 한다(첨부 도면 도 2b 참조). 이때, 상기 나노선은 GaN, InP, Si3N4, SiO2/Si, SiC, ZnO 중 하나의 물질로 이루어지며, 상기 나노튜브에는 탄소나노튜브가 포함된다 할 것이다.First, nanowires and carbon nanotubes are vertically grown on a substrate (see FIG. 2A). The alumina thin film is coated on the surface of the nanowires and the nanotubes grown on the substrate by an atomic layer deposition method (ALD) (see FIG. 2B). In this case, the nanowires are made of one of GaN, InP, Si 3 N 4 , SiO 2 / Si, SiC, ZnO, and the nanotubes may include carbon nanotubes.

그리고, 첨부 도면 도 2의 TEM 사진에서도 알 수 있는 바와 같이, 본 발명에 의한 원자층 증착방법을 이용하게 되는 경우 첨부 도 2에 도시된 기판 상부에 성장된 ZnO 나노선 표면에도 알루미나 박막을 균일하게 코팅시킬 수 있음을 알 수 있다.In addition, as can be seen in the TEM photograph of FIG. 2, when the atomic layer deposition method according to the present invention is used, an alumina thin film is uniformly deposited on the surface of the ZnO nanowires grown on the substrate shown in FIG. 2. It can be seen that it can be coated.

또한, 첨부 도면 도 2c에 도시된 바와 같이 원자층 증착방법에 의하여 ZnO나노선에 알루미나 박막을 코팅하게 되는 경우 나노선의 모양과 크기에 관계없이 일정한 두께의 알루미나 박막이 형성됨을 알 수 있다. 그리고 도 2d는 ZnO 나노선의 표면에 일정한 두께의 알루미나 박막이 형성됨을 보여주는 고배율 TEM 사진으로서, 원자층 증착방법에 의하여 ZnO 나노선에 알루미나 박막을 코팅하게 되는 경우 약 40nm 두께의 알루미나 박막이 ZnO 나노선에 아주 균일하게 증착됨을 알 수 있다. In addition, when the alumina thin film is coated on the ZnO nanowire by the atomic layer deposition method as shown in FIG. 2C, it can be seen that an alumina thin film having a constant thickness is formed regardless of the shape and size of the nanowire. 2D is a high magnification TEM photograph showing that alumina thin film having a constant thickness is formed on the surface of the ZnO nanowire. When the alumina thin film is coated on the ZnO nanowire by the atomic layer deposition method, the alumina thin film having a thickness of about 40 nm is ZnO nanowire. It can be seen that it is deposited very uniformly.

한편, 첨부 도면 도 3a 내지 도 3e는 GaN, InP, Si3N4, SiO2/Si, SiC 물질로 이루어진 나노선 표면에 원자층 증착방법을 사용하여 코팅된 알루미나 박막(도면에 화살표로 도시)을 설명하기 위한 TEM 사진으로서, 모든 종류의 나노선에 20nm의 두 께로 알루미나 박막이 매우 균일하게 코팅되었음을 알 수 있다.Meanwhile, FIGS. 3A to 3E are alumina thin films coated by using an atomic layer deposition method on a nanowire surface made of GaN, InP, Si 3 N 4 , SiO 2 / Si, and SiC materials (indicated by arrows in the drawings). As a TEM photograph for explaining, it can be seen that the alumina thin film is coated very uniformly at a thickness of 20 nm on all kinds of nanowires.

그리고, 첨부 도 4는 다중벽 탄소나노튜브 표면과 나노선 표면에 원자층 증착방법을 사용하여 코팅된 알루미나 박막을 나타내는 TEM 사진으로서, 다중벽 탄소나노튜브 표면에 코팅된 알루미나 박막의 두께는 40nm로써, 매우 균일하게 코팅되어 있음을 알 수 있다. And, Figure 4 is a TEM photograph showing the alumina thin film coated on the surface of the multi-walled carbon nanotubes and the nanowires using the atomic layer deposition method, the thickness of the alumina thin film coated on the surface of the multi-walled carbon nanotubes is 40nm It can be seen that the coating is very uniform.

또한 탄소나노튜브 내부뿐만 아니라 탄소나노튜브의 마디가 있는 부분까지도 알루미나 박막이 매우 균일한 두께로 코팅되어 있음을 알 수 있다. 특히, 탄소나노튜브의 외부 및 내부 전체에 알루미나 박막이 일정한 두께로 코팅되므로, 원통형 모양의 알루미나 튜브가 형성됨을 알 수 있다.In addition, it can be seen that the alumina thin film is coated with a very uniform thickness not only inside the carbon nanotubes but also at the portion where the nodes of the carbon nanotubes are located. In particular, since the alumina thin film is coated with a predetermined thickness all over the outside and inside of the carbon nanotubes, it can be seen that the alumina tube of the cylindrical shape is formed.

상기와 같이 본 발명의 원자층 증착방법에 의해 나노소자에 알루미나 박막을 증착, 코팅시키게 되는 경우 그 증착회수를 조절함으로써 코팅두께를 조절할 수 있으며, 이에 따라 원하는 알루미나 박막 코팅두께를 얻을 수 있다.When the alumina thin film is deposited and coated on the nanodevice by the atomic layer deposition method of the present invention as described above, the coating thickness can be controlled by controlling the number of deposition times, thereby obtaining a desired alumina thin film coating thickness.

따라서, 본 발명에 따른 원자층 증착방법에 의한 나노선 표면에 균일한 두께의 알루미나 박막의 코팅으로 인하여, 나노선을 이용한 나노 메모리 소자에서 알루미나 박막이 캐패시터 유전체 물질과 게이트 옥사이드로서 사용될 수가 있도록 하는 효과가 있다. Therefore, the alumina thin film can be used as a capacitor dielectric material and a gate oxide in a nano memory device using nanowires by coating the alumina thin film with a uniform thickness on the nanowire surface by the atomic layer deposition method according to the present invention. There is.

또한 본 발명은 나노선에 균일하게 증착된 알루미나 박막은 여러 가지 나노 전자소자의 표면을 보호하는 역할을 수행할 수 있도록 하는 효과가 있다.In addition, the present invention has an effect that the alumina thin film uniformly deposited on the nanowires can serve to protect the surface of the various nanoelectronic devices.

Claims (7)

기판상부에 Si, Ge, GaN, InP, GaAs, GaP, Si3N4, SiO2, SiC, ZnO 및 Ga2O3 중 어느 하나의 성분으로 이루어진 나노선과 나노튜브를 수직 성장시키는 성장과정; 및 A growth process of vertically growing nanowires and nanotubes formed of any one of Si, Ge, GaN, InP, GaAs, GaP, Si 3 N 4 , SiO 2 , SiC, ZnO, and Ga 2 O 3 on the substrate; And 상기 나노선 표면과 나노튜브에 원자층 증착방법을 이용하여 알루미나 박막을 코팅시키는 코팅과정;으로 이루어진 것을 특징으로 하는 나노선과 나노튜브 표면에 원자층 증착방법 방법을 사용하여 알루미나(Al2O3) 박막을 코팅하는 방법.Alumina (Al 2 O 3 ) using the atomic layer deposition method method on the nanowires and nanotubes surface, characterized in that the coating process for coating the alumina thin film using the atomic layer deposition method on the nanowires surface and nanotubes; How to coat thin films. 삭제delete 삭제delete 제 1 항에 있어서, 상기 원자층 증착방법에 이용되는 전구물질은,The method of claim 1, wherein the precursor used in the atomic layer deposition method, Trimethyaluminum(TMA) 및 물(H2O)인 것을 특징으로 하는 나노선과 나노튜브 표면에 원자층 증착방법을 사용하여 알루미나 박막을 코팅하는 방법.Trimethyaluminum (TMA) and water (H 2 O) characterized in that the coating of alumina thin film using the atomic layer deposition method on the surface of the nanowires and nanotubes. 다중벽 탄소나노튜브의 외측면 및 내측면에, 알루미나 박막이 소정 두께로 코팅되도록 하여 원통형태의 알루미나 튜브를 형성시키는 것을 특징으로 하는 나노선과 나노튜브 표면에 원자층 증착방법을 사용하여 알루미나 박막을 코팅하는 방법.The alumina thin film was formed by using an atomic layer deposition method on the surface of the nanowire and the nanotube, wherein the alumina thin film was coated to a predetermined thickness on the outer side and the inner side of the multi-walled carbon nanotube. How to coat. 삭제delete 제 5 항에 있어서, 상기 원자층 증착방법에 이용되는 전구물질은,The precursor of claim 5, wherein the precursor is used in the atomic layer deposition method. Trimethyaluminum(TMA) 및 물(H2O)인 것을 특징으로 하는 나노선과 나노튜브 표면에 원자층 증착방법을 사용하여 알루미나 박막을 코팅하는 방법.Trimethyaluminum (TMA) and water (H 2 O) characterized in that the coating of alumina thin film using the atomic layer deposition method on the surface of the nanowires and nanotubes.
KR1020030046515A 2003-07-09 2003-07-09 Method for coating alumina thin film by using a Atomic Layer Deposition on the surface of Nanowire and Nanotube KR100709112B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030046515A KR100709112B1 (en) 2003-07-09 2003-07-09 Method for coating alumina thin film by using a Atomic Layer Deposition on the surface of Nanowire and Nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030046515A KR100709112B1 (en) 2003-07-09 2003-07-09 Method for coating alumina thin film by using a Atomic Layer Deposition on the surface of Nanowire and Nanotube

Publications (2)

Publication Number Publication Date
KR20050006632A KR20050006632A (en) 2005-01-17
KR100709112B1 true KR100709112B1 (en) 2007-04-18

Family

ID=37220417

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030046515A KR100709112B1 (en) 2003-07-09 2003-07-09 Method for coating alumina thin film by using a Atomic Layer Deposition on the surface of Nanowire and Nanotube

Country Status (1)

Country Link
KR (1) KR100709112B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101007057B1 (en) 2009-10-08 2011-01-12 동국대학교 산학협력단 Mim capacitor with nano structure and method for manufacturing the same
US8552631B2 (en) 2008-02-15 2013-10-08 Samsung Display Co., Ltd. Display devices with transparent electrodes containing nanocarbon materials
US9748094B2 (en) 2010-09-03 2017-08-29 Samsung Electronics Co., Ltd. Semiconductor compound structure and method of fabricating the same using graphene or carbon nanotubes, and semiconductor device including the semiconductor compound structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829159B1 (en) * 2006-11-03 2008-05-13 한양대학교 산학협력단 Method for manufacturing nano wire and semiconductor device
US8426224B2 (en) 2006-12-18 2013-04-23 The Regents Of The University Of California Nanowire array-based light emitting diodes and lasers
KR101094077B1 (en) 2010-02-16 2011-12-15 한국에너지기술연구원 Method of making a catalyst by coating cobalt catalyst powder on a metallic foam surface, the cobalt metallic foam catalyst, heat-exchanger typed reactor with the catalyst, and method of liquid oil production in Fischer-Tropsch synthesis using the reactor
KR102218658B1 (en) * 2014-07-02 2021-02-22 베르기쉐 유니버시태트 부퍼탈 Method for concentrating light and light concentrator
CN108394857A (en) * 2018-02-02 2018-08-14 上海理工大学 A kind of preparation method of nucleocapsid GaN nano wire array
CN116519175B (en) * 2023-07-03 2023-11-10 南京邮电大学 Flexible device for growing GaN-based nanowires based on Si substrate and preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040104227A (en) * 2003-06-03 2004-12-10 학교법인 국민학원 Fabrication Method of Nano-tube Using Atomic Layer Deposition And Nano-template
KR20050006635A (en) * 2003-07-09 2005-01-17 학교법인고려중앙학원 Method for manufacturing Nanotube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040104227A (en) * 2003-06-03 2004-12-10 학교법인 국민학원 Fabrication Method of Nano-tube Using Atomic Layer Deposition And Nano-template
KR20050006635A (en) * 2003-07-09 2005-01-17 학교법인고려중앙학원 Method for manufacturing Nanotube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Advanced Materials 2003; 15(12): 1019-1022. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8552631B2 (en) 2008-02-15 2013-10-08 Samsung Display Co., Ltd. Display devices with transparent electrodes containing nanocarbon materials
KR101007057B1 (en) 2009-10-08 2011-01-12 동국대학교 산학협력단 Mim capacitor with nano structure and method for manufacturing the same
WO2011043613A2 (en) * 2009-10-08 2011-04-14 동국대학교 산학협력단 Method for manufacturing an mim capacitor having a nanostructure
WO2011043613A3 (en) * 2009-10-08 2011-07-14 동국대학교 산학협력단 Method for manufacturing an mim capacitor having a nanostructure
US9748094B2 (en) 2010-09-03 2017-08-29 Samsung Electronics Co., Ltd. Semiconductor compound structure and method of fabricating the same using graphene or carbon nanotubes, and semiconductor device including the semiconductor compound structure

Also Published As

Publication number Publication date
KR20050006632A (en) 2005-01-17

Similar Documents

Publication Publication Date Title
Liu et al. CVD growth of MoS2‐based two‐dimensional materials
US7211143B2 (en) Sacrificial template method of fabricating a nanotube
KR101149088B1 (en) Method for the synthesis of filament structures on a nanometre scale and electronic components comprising such structures
JP4662704B2 (en) Method for forming uniform and controlled size semiconductor material nanostructures on dielectric material by CVD method
Dong et al. Application of three-dimensionally area-selective atomic layer deposition for selectively coating the vertical surfaces of standing nanopillars
KR100709112B1 (en) Method for coating alumina thin film by using a Atomic Layer Deposition on the surface of Nanowire and Nanotube
KR20100016725A (en) Nanowire comprising silicon rich oxide and method for producing the same
WO2008013341A1 (en) Alignment of semiconducting nanowires on metal electrodes
US20130285016A1 (en) Epitaxial structure
US20030126742A1 (en) Method of fabrication of ZnO nanowires
CA2509257A1 (en) Sacrificial template method of fabricating a nanotube
Taghavi et al. Synthesizing tubular and trapezoidal shaped ZnO nanowires by an aqueous solution method
KR101410930B1 (en) Method of fabricating metal oxide on carbon nanotube and method of fabricating carbon nanotube transistor using the same
Lee et al. Device fabrication with solid–liquid–solid grown silicon nanowires
JP2000133794A (en) Forming of ultrafine particle construction
KR100544324B1 (en) Manufacturing Method of anoelectronic Device with Cylindrical Gate And Nanoelectronic Device
Lee et al. Comparison of MoS2/p‐GaN Heterostructures Fabricated via Direct Chemical Vapor Deposition and Transfer Method
KR101122129B1 (en) Method for preparing Si/SiOx core/shell nanowire by using Si-rich oxides
Min et al. Semiconductor nanowires surrounded by cylindrical Al 2 O 3 shells
KR102118777B1 (en) Tansparent electrode using graphene and nanowire and method for fabricating the same
CN112899654A (en) Ag2Preparation method of S film
CN106660016B (en) Catalyst particle holding structure for carbon nanotube production and method for producing same
KR102618332B1 (en) P-type multilevel element including Tellurium layers as active layers
KR101494764B1 (en) Nitride compound semiconductor nano structures and method of forming the same
Fronheiser et al. Conformal dielectric films on silicon nanowire arrays by plasma enhanced chemical vapor deposition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130405

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140217

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee