KR100688710B1 - Method for etching anti-reflective coating - Google Patents

Method for etching anti-reflective coating Download PDF

Info

Publication number
KR100688710B1
KR100688710B1 KR1020020061421A KR20020061421A KR100688710B1 KR 100688710 B1 KR100688710 B1 KR 100688710B1 KR 1020020061421 A KR1020020061421 A KR 1020020061421A KR 20020061421 A KR20020061421 A KR 20020061421A KR 100688710 B1 KR100688710 B1 KR 100688710B1
Authority
KR
South Korea
Prior art keywords
etching
reflection film
film
gas
metal
Prior art date
Application number
KR1020020061421A
Other languages
Korean (ko)
Other versions
KR20040032328A (en
Inventor
이완기
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020020061421A priority Critical patent/KR100688710B1/en
Publication of KR20040032328A publication Critical patent/KR20040032328A/en
Application granted granted Critical
Publication of KR100688710B1 publication Critical patent/KR100688710B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

0.01㎛ 이하의 CD를 갖는 금속 배선을 형성할 수 있고, 기판의 에치 부분이나 다른 국소적인 부분에서 발생되는 마이크로 브리지 현상을 막을 수 있는 본 발명에 따른 반사 방지막 식각 방법은 반도체 기판의 상부에 금속막 및 반사 방지막을 적층하여 형성하는 단계와, 반사 방지막의 상부에 금속 배선을 정의하는 DUV 포토레지스트 패턴을 형성하는 단계와, Cl2 가스를 포함한 식각가스를 이용하여 상기 반사 방지막 및 금속막을 동일한 챔버에서 인시튜 식각하는 단계를 포함한다.The anti-reflection film etching method according to the present invention can form a metal wiring having a CD of 0.01 μm or less, and can prevent the microbridge phenomenon occurring at the etched portion or other localized portions of the substrate. Stacking and forming an anti-reflection film; forming a DUV photoresist pattern defining a metal wiring on the anti-reflection film; and identifying the anti-reflection film and the metal film in the same chamber by using an etching gas containing Cl 2 gas. Tu etching.

Description

반사 방지막 식각 방법{METHOD FOR ETCHING ANTI-REFLECTIVE COATING}Anti-reflective film etching method {METHOD FOR ETCHING ANTI-REFLECTIVE COATING}

도 1a 내지 도 1c는 종래 기술에 의한 금속 배선 형성 과정을 도시한 공정 단면도이다.1A to 1C are cross-sectional views illustrating a metal wire forming process according to the prior art.

도 2는 본 발명에 따른 금속 배선 형성을 위해 반사 방지막을 식각하는 과정을 도시한 흐름도이다.2 is a flowchart illustrating a process of etching an anti-reflection film to form a metal line according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>

10 : 반도체 기판 12 : 금속막10 semiconductor substrate 12 metal film

14 : 반사 방지막 16 : 포토레지스트 패턴14 antireflection film 16 photoresist pattern

본 발명은 반도체 소자 제조 방법에 관한 것으로, 특히 미세한 크기를 갖는 금속 배선을 형성할 수 있는 반사 반사막 식각 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of forming a reflective reflective film capable of forming a metal wiring having a fine size.

반도체 장치 제조 분야에서, 종래의 소위 I-라인 포토레지스트로 가능한 것 보다 더 소형의 전자 및 광 디바이스의 패터닝을 가능하게 하도록 자외선 방사의 단파장을 위한 DUV(Deep Ultra Violet)가 개발되어 왔다. 일반적으로, 포토레지스트는 여러 가지 재로의 적층 위에 도포되어 후속 처리 단계에서 패터닝된다. 적층 내의 일부 층은 기능 디바이스의 일부가 되는 하부 층을 패터닝하는 동안에 소모된다. 포토레지스트의 공각 해상도를 이용하기 위해서는, 포토레지스트의 아래에 있는 반사 방지막(ARC : Anti-Reflective Coating)을 이용하여 포토레지스트 노출 중에 적층 내의 다른 층들의 반사를 억제해야할 필요가 있다. 따라서 반사 방지막에 의해 포토레지스트의 패터닝은 정확한 패턴 복사를 제공할 수 있다.In the field of semiconductor device manufacturing, deep ultra violet (DUV) has been developed for short wavelengths of ultraviolet radiation to enable the patterning of smaller electronic and optical devices than is possible with conventional so-called I-line photoresists. In general, the photoresist is applied onto a stack of various materials and patterned in subsequent processing steps. Some layers in the stack are consumed during patterning the underlying layer that becomes part of the functional device. In order to take advantage of the conformal resolution of the photoresist, it is necessary to use an anti-reflective coating (ARC) under the photoresist to suppress reflection of other layers in the stack during photoresist exposure. Therefore, the patterning of the photoresist by the antireflective film can provide accurate pattern copying.

가장 흔희 사용되는 반사 방지막의 재료는 티타늄 질화물이지만, DUV 포토레지스트와 조합하여 잘 기능하는 반사막로서는 실리콘 산화 질화물(SiNO)을 들 수 있다.The most commonly used antireflective film is titanium nitride, but silicon oxynitride (SiNO) is mentioned as a reflective film that functions well in combination with a DUV photoresist.

이하, 첨부된 도면을 참조하여 반사 방지막을 이용한 금속 배선 형성 과정을 설명한다. 도 1a 내지 도 1c는 반사 방지막을 이용한 금속 배선을 형성하는 과정을 도시한 공정 단면도이다.Hereinafter, a metal wiring forming process using an antireflection film will be described with reference to the accompanying drawings. 1A to 1C are cross-sectional views illustrating a process of forming a metal wiring using an antireflection film.

도 1a에 도시된 바와 같이, 반도체 기판(10)의 상부 전면에 금속막(12)을 형성하고, 금속막(12)의 상부에 실리콘 산화 질화물로 이루어진 반사 방지막(14)을 형성한다.As shown in FIG. 1A, the metal film 12 is formed on the entire upper surface of the semiconductor substrate 10, and the anti-reflection film 14 made of silicon oxynitride is formed on the metal film 12.

이후, 도 1b에 도시된 바와 같이, 반사 방지막(14)의 상부에 DUV 포토레지스트를 이용하여 포토레지스트 패턴(16)을 형성한다.Thereafter, as shown in FIG. 1B, the photoresist pattern 16 is formed on the anti-reflection film 14 by using the DUV photoresist.

그리고 나서, 도 1c에 도시된 바와 같이, 포토레지스트 패턴(16)에 맞춰서 반사 방지막(14) 및 금속막(12)을 식각한 후에 포토레지스트 패턴(16)을 제거함으로서, 패터닝된 반사 방지막(14 ) 및 금속막(12 )으로 이루어진 금속 배선을 형성시킨다.Then, as shown in FIG. 1C, the patterned anti-reflection film 14 is removed by etching the anti-reflection film 14 and the metal film 12 in accordance with the photoresist pattern 16 and then removing the photoresist pattern 16. ) And the metal film 12 formed of the metal film 12 is formed.

최근, 반도체 디바이스의 공정 선폭이 갈수록 줄어듦에 따라 반도체 소자 제조에서 식각하는 방법이 중요하고, 임의의 공정 한계 조건 내에서 최소의 CD 값을 얻을 수 있는 식각 방법 개발이 진행 중이다. 그중에서 포토레지스트 패턴의 CD 보다 식각 후에 금속 배선의 CD가 더 작은 역 바이어스 공정이 있다.Recently, as the process line width of semiconductor devices decreases, etching methods in semiconductor device manufacturing are important, and etching methods for obtaining a minimum CD value within an arbitrary process limit condition are under development. Among them, there is a reverse bias process in which the CD of the metal wiring is smaller after etching than the CD of the photoresist pattern.

그러나, 역 바이어스 공정을 금속 배선 형성 공정에 적용한 경우에, 역 바이어스 공정은 불안한 금속 프로파일을 형성하는 문제점이 있다. 다시 말해서, 반도체 소자가 고집적화됨에 따라 회로의 선폭이 좁아지면서 금속막을 식각한 후에 극소적인 부분 도는 기판의 에지 부분에서 마이크로 브리지(micro bridge) 현상이 발생되는 문제점이 있다. However, when the reverse bias process is applied to the metal wiring forming process, the reverse bias process has a problem of forming an unstable metal profile. In other words, as the semiconductor device is highly integrated, the line width of the circuit is narrowed, and there is a problem in that a micro bridge phenomenon occurs in a very small portion or an edge portion of the substrate after etching the metal film.

본 발명의 목적은 이와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 0.01㎛ 이하의 CD를 갖는 금속 배선을 형성할 수 있을 뿐만 아니라 마이크로 브리지 현상을 억제시킬 수 있는 반사 방지막 식각 방법을 제공하고자 한다.An object of the present invention is to solve the problems of the prior art, and to provide a method of anti-reflection film etching that can not only form a metal wiring having a CD of 0.01㎛ or less, but also can suppress the microbridge phenomenon.

상기와 같은 목적을 달성하기 위하여 본 발명은, 반도체 기판의 상부에 금속막 및 반사 방지막을 적층하여 형성하는 단계와, 상기 반사 방지막의 상부에 금속 배선을 정의하는 DUV 포토레지스트 패턴을 형성하는 단계와, Cl2 가스를 포함한 식각가스를 이용하고, 상기 포토레지스트 패턴을 식각 마스크로 상기 반사 방지막 및 금속막을 동일한 챔버에서 인시튜 식각하는 단계를 포함한다.In order to achieve the above object, the present invention, the step of forming a metal film and the anti-reflection film laminated on top of the semiconductor substrate, and forming a DUV photoresist pattern defining a metal wiring on the top of the anti-reflection film and And etching the anti-reflection film and the metal film in the same chamber using the etching gas including the Cl 2 gas and using the photoresist pattern as an etching mask.

본 발명의 실시 예는 다수개가 존재할 수 있으며, 이하에서 첨부한 도면을 참조하여 바람직한 실시 예에 대하여 상세히 설명하기로 한다. 이 기술 분야의 숙련자라면 이 실시 예를 통해 본 발명의 목적, 특징 및 이점들을 잘 이해할 수 있을 것이다.There may be a plurality of embodiments of the present invention, and a preferred embodiment will be described in detail below with reference to the accompanying drawings. Those skilled in the art will be able to better understand the objects, features and advantages of the present invention through this embodiment.

도 2는 본 발명의 바람직한 실시 예에 따른 금속 배선 형성을 위해 반사 방지막의 식각 과정을 도시한 공정 흐름도이다.2 is a process flowchart illustrating an etching process of an anti-reflection film for forming metal wirings according to a preferred embodiment of the present invention.

도 2를 참조하여 본 발명의 금속 배선 형성 과정을 설명하면, 먼저 종래의 기술과 동일하게 반도체 기판(10)의 상부에 금속막(12) 및 실리콘 산화 질화물로 이루어진 반사 방지막(14)을 순차 증착하고, 반사 방지막(14)의 상부에 DUV 포토레지스트를 패턴(16)을 형성한다(S100, S102).Referring to FIG. 2, a process of forming a metal wiring according to the present invention will be described. First, the antireflection film 14 made of the metal film 12 and the silicon oxynitride is sequentially deposited on the semiconductor substrate 10 in the same manner as the conventional art. A DUV photoresist pattern 16 is formed on the antireflection film 14 (S100 and S102).

이후, DUV 포토레지스트 패턴(16)에 맞춰서 반사 방지막(14) 및 금속막(12)을 식각하는 공정은 동일한 챔버에서 이루어지는 인시츄(In-situ) 건식 식각 공정이다(S104). Thereafter, the process of etching the anti-reflection film 14 and the metal film 12 in accordance with the DUV photoresist pattern 16 is an in-situ dry etching process performed in the same chamber (S104).

이러한 인시츄 식각 공정에서 반사 방지막(14)을 식각할 때 사용되는 가스로는 Cl2, CHF3, Ar 등이 주로 사용된다.Cl2, CHF3, Ar, etc. are mainly used as the gas used to etch the anti-reflection film 14 in the in situ etching process.

이때, 반사 방지막 식각 공정시 식각 가스인 Cl2 가스량은 따라 금속 배선의 CD에 영향을 준다. 다시 말해서, Cl2 가스량이 많으면 금속 배선의 CD가 줄고, Cl2 가스량이 적으면 금속 배선의 CD가 늘어난다. 이러한 현상이 유발되려면 반사 방지막(14)을 식각할 때 반사 방지막(14)의 두께가 50% 정도 과도 식각되어야 한다.At this time, the amount of Cl 2 gas, which is an etching gas, is affected by the anti-reflection film etching process. In other words, when the amount of Cl2 gas is large, the CD of the metal wiring decreases, and when the amount of Cl2 gas is small, the CD of the metal wiring increases. In order to cause this phenomenon, the thickness of the anti-reflection film 14 must be excessively etched by about 50% when the anti-reflection film 14 is etched.

그러나, 인시튜 식각 공정 시에 Cl2 가스량이 챔버로 너무 많이 플로우된 상 태에서 반사 방지막(14)이 식각될 때 DUV 포토레지스트 패턴이 많이 소모되어 계속되는 금속막(12) 식각의 여유를 떨어뜨린다. 이러한 이유로 인하여 무한정으로 Cl2의 양을 증가시킬 수 없다. 이에 인시튜 식각 공정에서 적절한 Cl2 가스양은 40sccm∼90sccm이다. 이러한 Cl2 가스량의 범위에서 Cl2 가스량이 많을수록 작은 CD를 갖는 금속 배선이 형성된다.However, when the anti-reflection film 14 is etched while the Cl 2 gas flows too much into the chamber during the in-situ etching process, a large amount of DUV photoresist pattern is consumed, thereby reducing the margin of the subsequent etching of the metal film 12. For this reason, the amount of Cl2 cannot be increased indefinitely. In the in situ etching process, a suitable amount of Cl2 gas is 40 sccm to 90 sccm. As the amount of Cl2 gas increases in the range of such Cl2 gas amount, a metal wiring having a small CD is formed.

이때, 반사 방지막(14)을 식각하는 식각 조건에서 소스 전력은 1000∼16000W이고, 바이어스 전력은 50∼100W이고, 공정 챔버의 압력은 8∼10mT이고, 공정 챔버에 공급되는 CHF3의 가스량은 10∼20sccm이고, Ar 가스량은 0∼20sccm이고, 반도체 기판(10)의 뒷면에 공급되는 헬륨(He) 가스의 압력은 10∼12Torr이다.At this time, the source power is 1000 to 16000 W, the bias power is 50 to 100 W, the pressure in the process chamber is 8 to 10 mT, and the amount of CHF3 gas supplied to the process chamber is 10 to 1 in etching conditions for etching the antireflection film 14. 20 sccm, Ar gas amount is 0-20 sccm, and the pressure of helium (He) gas supplied to the back surface of the semiconductor substrate 10 is 10-12 Torr.

이상 설명한 바와 같이, 본 발명은 Cl2 가스를 포함한 식각가스를 이용하여 반사 방지막 및 금속막을 동일한 챔버에서 인시튜 식각함으로써, 0.01㎛ 이하의 CD를 갖는 금속 배선을 형성할 수 있고, 기판의 에치 부분이나 다른 국소적인 부분에서 발생되는 마이크로 브리지 현상을 막을 수 있다.As described above, the present invention can in-situ etch the antireflection film and the metal film in the same chamber using an etching gas containing Cl2 gas, thereby forming a metal wiring having a CD of 0.01 μm or less, It can prevent the micro bridge phenomenon occurring at other local parts.

Claims (6)

반도체 기판의 상부에 금속막 및 반사 방지막을 적층하여 형성하는 단계와,Stacking and forming a metal film and an anti-reflection film on the semiconductor substrate; 상기 반사 방지막의 상부에 금속 배선을 정의하는 DUV 포토레지스트 패턴을 형성하는 단계와,Forming a DUV photoresist pattern defining a metal wiring on the anti-reflection film; Cl2 가스를 포함한 식각가스를 이용하고, 상기 포토레지스트 패턴을 식각 마스크로 상기 반사 방지막 및 금속막을 동일한 챔버에서 인시튜 식각하는 단계를 포함하는 반사 방지막 식각 방법.And etching the anti-reflection film and the metal film in the same chamber using an etching gas including Cl 2 gas and using the photoresist pattern as an etching mask. 제 1항에 있어서,The method of claim 1, 상기 식각 가스는,The etching gas is, Ar, CHF3을 포함하는 것을 특징으로 하는 반사 방지막 식각 방법An anti-reflection film etching method comprising Ar, CHF3 제 1항에 있어서,The method of claim 1, 상기 반사 방지막 및 금속막을 식각하는 단계는,Etching the anti-reflection film and the metal film, 상기 반사 방지막이 50%의 두께로 과도 식각되는 것을 특징으로 하는 반사 방지막 식각 방법.The anti-reflection film etching method, characterized in that the over-etched to a thickness of 50%. 제 1항에 있어서,The method of claim 1, 상기 식각 가스 Cl2의 양은,The amount of the etching gas Cl 2, 40sccm∼90sccm의 범위를 가지는 것을 특징으로 하는 반사 방지막 식각 방 법.An anti-reflection film etching method having a range of 40 sccm to 90 sccm. 제 1항에 있어서,The method of claim 1, 상기 반사 방지막은,The anti-reflection film, 실리콘 산화 질화물인 것을 특징으로 하는 반사 방지막 식각 방법.An anti-reflection film etching method, characterized in that the silicon oxynitride. 제 1항에 있어서,The method of claim 1, 상기 식각 조건은,The etching condition is, CHF3 가스량을 10∼20sccm으로 하고, 압력을 8∼10mT로 하고, 상기 반도체 기판의 뒷면에 공급되는 헬륨 가스압을 10∼20Torr로 하는 것을 특징으로 하는 반사 방지막 식각 방법. An antireflection film etching method characterized in that the amount of CHF3 gas is 10 to 20 sccm, the pressure is 8 to 10 mT, and the helium gas pressure to be supplied to the back side of the semiconductor substrate is 10 to 20 Torr.
KR1020020061421A 2002-10-09 2002-10-09 Method for etching anti-reflective coating KR100688710B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020061421A KR100688710B1 (en) 2002-10-09 2002-10-09 Method for etching anti-reflective coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020061421A KR100688710B1 (en) 2002-10-09 2002-10-09 Method for etching anti-reflective coating

Publications (2)

Publication Number Publication Date
KR20040032328A KR20040032328A (en) 2004-04-17
KR100688710B1 true KR100688710B1 (en) 2007-02-28

Family

ID=37332238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020061421A KR100688710B1 (en) 2002-10-09 2002-10-09 Method for etching anti-reflective coating

Country Status (1)

Country Link
KR (1) KR100688710B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568302B1 (en) * 2004-05-17 2006-04-05 삼성전기주식회사 Method of fabricating saw device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980026094A (en) * 1996-10-07 1998-07-15 김광호 Pattern Formation Method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980026094A (en) * 1996-10-07 1998-07-15 김광호 Pattern Formation Method

Also Published As

Publication number Publication date
KR20040032328A (en) 2004-04-17

Similar Documents

Publication Publication Date Title
US5986344A (en) Anti-reflective coating layer for semiconductor device
US6524964B2 (en) Method for forming contact by using ArF lithography
KR100598105B1 (en) Method of forming semiconductor patterns
US5670298A (en) Method of forming a metal pattern in manufacturing a semiconductor device
US6764946B1 (en) Method of controlling line edge roughness in resist films
US20030213968A1 (en) Imageable bottom anti-reflective coating for high resolution ligthography
US5948598A (en) Anti-reflective silicon nitride film using in-situ deposition
US6627387B2 (en) Method of photolithography
KR100688710B1 (en) Method for etching anti-reflective coating
KR100280137B1 (en) Material for antireflection film to be formed on workpiece disposed on semiconductor substrate and method of manufacturing semiconductor device using said material
JP3047832B2 (en) Method for manufacturing semiconductor device
JP5532201B2 (en) Manufacturing method of semiconductor device
KR100591133B1 (en) Gate pattern forming method using arf photoresist
KR100586531B1 (en) Method for settlement of etching time of pattern by pattern density
KR100752172B1 (en) Method for Forming of Contact Hole
KR20080022879A (en) Trench layer photo process
KR20080018433A (en) Method for forming a metal line pattern of the semiconductor device
KR100876873B1 (en) Method for forming conductive pattern of semiconductor device
KR100380277B1 (en) Method of defining micropatterns
KR100853461B1 (en) Method for forming patterns in semiconductor device using ArF light source
KR20040054340A (en) Fabrication method of semiconductor device
TW445532B (en) Method to enhance etching selectivity between photo resist layer and etched layer
KR100546721B1 (en) Method For Manufacturing Semiconductor Device
EP1069478A2 (en) Resist processing for integrated circuit manufacture
US20040029394A1 (en) Method and structure for preventing wafer edge defocus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100121

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee