KR100660212B1 - Metal interconnection material for solid oxide fuel cell having cobalt/lanthanum coating layers and method for preparing the cobalt/lanthanum coating layers - Google Patents

Metal interconnection material for solid oxide fuel cell having cobalt/lanthanum coating layers and method for preparing the cobalt/lanthanum coating layers Download PDF

Info

Publication number
KR100660212B1
KR100660212B1 KR1020050126935A KR20050126935A KR100660212B1 KR 100660212 B1 KR100660212 B1 KR 100660212B1 KR 1020050126935 A KR1020050126935 A KR 1020050126935A KR 20050126935 A KR20050126935 A KR 20050126935A KR 100660212 B1 KR100660212 B1 KR 100660212B1
Authority
KR
South Korea
Prior art keywords
coating layer
cobalt
lanthanum
fuel cell
thickness
Prior art date
Application number
KR1020050126935A
Other languages
Korean (ko)
Inventor
전재호
박치록
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020050126935A priority Critical patent/KR100660212B1/en
Application granted granted Critical
Publication of KR100660212B1 publication Critical patent/KR100660212B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

Provided are a metallic connecting material for a solid oxide fuel cell which is excellent in oxidation resistance and high temperature conductivity, and a method for coating the metallic connecting material. The metallic connecting material is a ferrite-based stainless steel sheet whose surface is coated on a cobalt coating layer having a thickness of 1-10 micrometers and a lanthanum coating layer having a thickness of 50-1,000 Angstrom. The method comprises the steps of forming a cobalt coating layer on the surface of a ferrite-based stainless steel sheet by an electron beam vapor deposition; and forming a lanthanum coating layer on the cobalt coating layer by an electron beam vapor deposition.

Description

코발트/란탄 코팅층이 형성된 고체산화물 연료전지용 금속연결재 및 그 코팅방법{Metal interconnection material for solid oxide fuel cell having cobalt/lanthanum coating layers and method for preparing the cobalt/lanthanum coating layers} Metal interconnection material for solid oxide fuel cell having cobalt / lanthanum coating layers and method for preparing the cobalt / lanthanum coating layers}

본 발명은 코발트/란탄 코팅층이 형성된 고체산화물 연료전지용 금속연결재 및 그 코팅방법에 관한 것으로, 보다 상세하게는 기 상업화된 페라이트계 스테인레스 강판위에 코발트/란탄 코팅을 실시함으로써 내고온산화성 및 고온전도성이 향상된 고체산화물 연료전지용 금속연결재 및 그 코팅방법에 관한 것이다. The present invention relates to a metal connection material for a solid oxide fuel cell having a cobalt / lanthanum coating layer and a coating method thereof, and more particularly, to high temperature oxidative resistance and high temperature conductivity by performing cobalt / lanthanum coating on a commercially available ferritic stainless steel sheet. A metal connection material for a solid oxide fuel cell and a coating method thereof.

일반적으로, 고체산화물 연료전지 연결재는 기본적으로 한 셀의 양극과 이웃하는 셀의 음극을 전기적으로 연결하며, 공기가스와 연료가스를 물리적으로 차단하는 역할을 담당하는 재료로서, 그 요구특성에 비추어 볼 때 금속연결재는 세라믹 연결재에 비하여 가공성, 경제성, 전기전도성, 열전도성 측면에서 우수한 특성을 가진다. In general, the solid oxide fuel cell connection material is basically a material that electrically connects the anode of one cell and the cathode of a neighboring cell and physically blocks air gas and fuel gas. Metal connectors have superior properties in terms of processability, economy, electrical conductivity, and thermal conductivity compared to ceramic connectors.

지금까지 고체산화물 연료전지 금속연결재로 사용된 여러 가지 합금에는 크 게 Cr를 기본으로 하는 Cr-베이스 합금, Fe를 기본으로 하는 페라이트계 Fe-Cr 합금, 및 Ni을 기본으로 하는 Ni-베이스 초합금 등이 있다. The various alloys that have been used as solid oxide fuel cell metal interconnects so far include Cr-based alloys based largely on Cr, ferritic Fe-Cr alloys based on Fe, and Ni-based superalloys based on Ni. There is this.

이들 합금중 가동온도가 800℃ 이하인 평탄형 고체산화물 연료전지에서는 Cr계 합금이나 Ni계 합금보다는 페라이트계 Fe-Cr 합금이 경제성 및 가공성 측면에서 더 유리하다. Among these alloys, ferritic Fe—Cr alloys are more advantageous in terms of economy and processability in flat solid oxide fuel cells having an operating temperature of 800 ° C. or lower than Cr-based alloys or Ni-based alloys.

이러한 대표적인 페라이트계 Fe-Cr 합금에는 "ZMG232"와 "Crofer22APU"가 있으며, 이들은 Cr성분의 농도가 22중량%로 동일하고, Mn성분을 0.5중량%로 함유하고 있으며, La을 미량 함유하고 있다. Such representative ferritic Fe-Cr alloys include "ZMG232" and "Crofer22APU", which have the same Cr concentration of 22 wt%, 0.5 wt% of Mn, and trace amounts of La.

그런데, 금속연결재는 고체산화물 연료전지 작동환경에서 표면에 산화물을 형성하기 때문에 저항이 증가하여 전기전도성이 감소하게 된다. 즉, 금속연결재의 전기전도성은 금속 자체가 가지는 전기전도성보다는 표면에 형성된 산화물의 전기전도성에 의존하게 된다. 따라서, 표면에 전도성이 우수한 산화물을 형성하는 것이 중요하다. 고체산화물 연료전지용 금속연결재가 대부분 Cr2O3-former를 바탕으로 설계하는 이유가 바로 이것 때문이다. However, since the metal connecting material forms an oxide on the surface in the solid oxide fuel cell operating environment, the resistance is increased to decrease the electrical conductivity. That is, the electrical conductivity of the metal connecting material is dependent on the electrical conductivity of the oxide formed on the surface rather than the electrical conductivity of the metal itself. Therefore, it is important to form an oxide having excellent conductivity on the surface. This is why most metal connectors for solid oxide fuel cells are designed based on Cr 2 O 3 -formers.

하지만, Cr2O3-former형 금속연결재는 고체산화물 연료전지 가동 환경에서 휘발성의 Cr(VI)를 만들게 되고, 이들 Cr(VI)는 전지의 정상적인 전기화학반응을 방해하여 전지의 성능을 감소시키는 요인으로 작용한다. However, Cr 2 O 3 -former type metal interconnects form volatile Cr (VI) in the solid oxide fuel cell operating environment. These Cr (VI) interferes with the normal electrochemical reaction of the cell and decreases the cell's performance. Act as a factor.

결국, 연료전지용 금속연결재는 이와 같은 두 가지의 모순점 때문에 그 개발에 어려움이 있다. As a result, the metal connecting material for the fuel cell has difficulty in developing due to these two contradictions.

최근에는 금속연결재용 합금 자체를 개발하려는 시도와 표면특성을 제어하기 위한 표면처리 기술을 개발하려는 시도가 병행되고 있다. Recently, attempts have been made to develop alloys for metal interconnects and surface treatment techniques for controlling surface characteristics.

특히, 표면처리에 관한 코팅물질로는 기존 제품의 내산화성 및 전기전도성을 증가시키고 Cr 증발을 방지하기 위하여, LSM, LSC, LSCF 같은 페로브스카이트(Perovskite) 구조의 산화물을 스프레이 피로시스(Spray pyrosis), PVD, 용사, 슬러리 코팅 등과 같이 다양한 방식으로 코팅하고 있다. In particular, the coating material for surface treatment is sprayed with a perovskite structure oxide such as LSM, LSC, LSCF to increase oxidation resistance and electrical conductivity of existing products and to prevent Cr evaporation. pyrosis), PVD, thermal spraying, slurry coating, etc. in various ways.

그러데, 이와 같은 페로브스카이트 세라믹 코팅의 경우 그 코팅층은 전자전도성이 우수하여야 하고, 열팽창계수가 이웃하는 구성요소와 유사하여야 하며, 밀착성이 우수하여 박리가 일어나지 않아야 한다. However, in the case of such a perovskite ceramic coating, the coating layer should have excellent electron conductivity, similar thermal expansion coefficient to neighboring components, and excellent adhesion, so that peeling should not occur.

뿐만 아니라, 고온에서 장시간 노출하였을 때 코팅층과 기판의 계면에서 스피넬 구조의 MnCr2O4, CoCr2O3, CoFe2O4 같은 산화물이 형성되는 것이 유리하다. 왜냐하면, 이들 산화물은 비절연성이기 때문에 계면에서의 접촉저항을 크게 증가시키지는 않는다. 반면, 절연성의 SrCrO4나 La2O3 같은 산화물이 반응물로 형성되면 코팅층의 전기전도성을 크게 저하시키게 되는 점을 간과해서는 안된다. In addition, MnCr 2 O 4 , CoCr 2 O 3 , CoFe 2 O 4 of spinel structure at the interface between the coating layer and the substrate after prolonged exposure at high temperature It is advantageous for the same oxide to be formed. Because these oxides are non-insulating, they do not significantly increase the contact resistance at the interface. On the other hand, if an oxide such as SrCrO 4 or La 2 O 3 is formed as a reactant, it should not be overlooked that the electrical conductivity of the coating layer is greatly reduced.

나아가, 코팅층의 조직이 치밀하여야 한다. 이는 외부로부터 코팅층을 통해 안쪽으로 확산하는 산소의 이동을 방지하고, 기판으로부터 Cr성분의 외부확산을 방지할 수 있기 때문이다. 따라서 코팅층이 같은 페로브스카이트상을 갖는다 하더라도 코팅층의 성분, 코팅층의 조직 및 구성에 따라 다른 특성을 가질 수 있다. Furthermore, the texture of the coating layer should be dense. This is because it is possible to prevent the movement of oxygen diffused inward through the coating layer from the outside, and to prevent the external diffusion of the Cr component from the substrate. Therefore, even if the coating layer has the same perovskite phase, it may have different properties depending on the components of the coating layer, the structure and composition of the coating layer.

따라서, 코팅층의 조직제어는 코팅공정과 밀접한 관계를 가지기 때문에 경제 성이 있으면서 우수한 물성의 코팅층을 가지는 적절한 코팅방법이 요구된다. Therefore, since the control of the coating layer has a close relationship with the coating process, an appropriate coating method having an economical coating layer having excellent properties is required.

본 발명은 상술한 바와 같은 종래 기술상의 한계성을 감안하여 이를 해결하고자 창출한 것으로, 고체산화물 연료전지용으로 사용되는 기존의 페라이트계 스테인레스 강판 표면에 적당한 금속을 코팅하여, 고체산화물 연료전지용의 가동 중에 고온의 산화분위기에서 내고온산화성 및 전기전도성이 우수한 산화물을 형성시킴으로써 기존 페라이트계 금속연결재의 활용도를 극대화시킨 고체산화물 연료전지 금속연결재를 제공함에 그 주된 목적이 있다.The present invention has been made in view of the limitations of the prior art as described above, and has been developed to solve this problem, by coating a suitable metal on the surface of a conventional ferritic stainless steel sheet used for a solid oxide fuel cell, the high temperature during operation of the solid oxide fuel cell The main object of the present invention is to provide a solid oxide fuel cell metal interconnect material that maximizes the utilization of the existing ferrite metal interconnect material by forming an oxide having excellent high temperature oxidation resistance and electrical conductivity in an oxidation atmosphere of.

또한 본 발명은 내산화성 및 고온전도성이 우수한 상기 고체산화물 연료전지용 금속연결재의 코팅방법을 제공함에 그 주된 목적이 있다. In another aspect, the present invention is to provide a coating method of the metal connection material for a solid oxide fuel cell excellent in oxidation resistance and high temperature conductivity.

본 발명은 상기한 기술적 과제를 달성하기 위하여, 페라이트계 스테인레스 강판 표면에 1-10㎛ 두께의 코발트 코팅층 및 그 상부에 50-1000Å 두께의 란탄 코팅층이 형성된 고체산화물 연료전지용 금속연결재가 제공된다.In order to achieve the above technical problem, there is provided a metal connection material for a solid oxide fuel cell in which a cobalt coating layer having a thickness of 1-10 μm and a lanthanum coating layer having a thickness of 50-1000 μs are formed on a ferritic stainless steel surface.

또한 본 발명에 의하면, 페라이트계 스테인레스 강판 표면에, 전자빔 증착법을 이용하여 코발트 코팅층을 형성하는 단계, 및 전자빔 증착법을 이용하여 상기 코발트 코팅층 상부에 란탄 코팅층을 형성하는 단계를 포함하는 내산화성 및 고온전도성이 우수한 고체산화물 연료전지용 금속연결재의 코팅방법이 제공된다.In addition, according to the present invention, the oxidation resistance and high temperature conductivity comprising the step of forming a cobalt coating layer on the surface of the ferritic stainless steel sheet using an electron beam deposition method, and forming a lanthanum coating layer on the cobalt coating layer using an electron beam deposition method Provided is a coating method of the metal interconnect material for an excellent solid oxide fuel cell.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

기존의 상품화된 "SUS444"와 같은 페라이트계 스테인레스 강판을 코팅하지 않고 그대로 사용하면 표면에 스피넬 구조의 MnCr2O4와 강옥(鋼玉)(Corundum) 구조의 Cr2O3산화물이 형성된다. When the ferritic stainless steel sheet such as "SUS444", which is conventionally commercialized, is used without being coated, spinel structured MnCr 2 O 4 and corundum structured Cr 2 O 3 oxide are formed.

이들 산화물의 상(像) 만을 비교하면, 고체산화물 연료전지 금속연결재로 개발된 "Crofer22APU" 합금이나 "ZMG232"와 동일하다. Comparing only the phases of these oxides, it is the same as the "Crofer22APU" alloy or "ZMG232" developed as the solid oxide fuel cell metal coupling material.

그러나, "SUS444"와 같은 페라이트계 스테인레스 강판은 Cr과 Mn의 농도가 작고 La 같은 희토류 금속성분을 포함하고 있지 않기 때문에 고체산화물 연료전지 금속연결재로 개발된 "Crofer22APU" 합금이나 "ZMG232" 보다 전기전도성이 떨어진다. However, ferritic stainless steel plates such as "SUS444" have a lower electrical conductivity than "Crofer22APU" alloy or "ZMG232" developed as a solid oxide fuel cell metal coupling material because the concentration of Cr and Mn is small and does not contain rare earth metal components such as La. Falls.

즉, "SUS444"와 "Crofer22APU" 재료를 가지고 고온의 산화분위기에서 동일한 조건으로 산화시킨 후 ASR(Area Specific Resistance)값을 측정하면 "Crofer22APU" 합금의 ASR값이 작게 나타난다. In other words, when ASR (Area Specific Resistance) is measured after oxidizing under the same conditions in a high temperature oxidizing atmosphere with materials "SUS444" and "Crofer22APU", the ASR value of the "Crofer22APU" alloy is small.

이는 "SUS444"에 형성된 산화물보다는 "Crofe22APU" 재료의 표면에 형성된 산화물의 ρ(Resistivity(저항력))값이 매우 작음을 의미한다. 왜냐하면, "Crofer22APU" 합금은 미량의 La와 함께 Mn, Cr을 적절히 첨가함으로써 표층에 전기전도성이 우수한 산화물층을 형성할 수 있도록 설계되었기 때문이다. This means that the rho (Resistivity) value of the oxide formed on the surface of the "Crofe22APU" material is much smaller than that formed on "SUS444". This is because the "Crofer22APU" alloy is designed to form an oxide layer having excellent electrical conductivity on the surface layer by appropriately adding Mn and Cr with a small amount of La.

본 발명은 이에 고온의 산화 분위기에서 표면에 형성되는 산화물의 특성을 개선하여 재료의 ASR값을 줄이고 내고온산화성을 증가시키는 역할을 하기 위하여, Co와 La을 이층으로 코팅하여, 전도성이 우수한 스피넬 구조의 CoCr2O3, CoFe2O4 같은 산화물을 형성할 수 있도록 하였다. 또한 여기서 소량의 La은 산화물의 밀착성을 증가시키는 역할을 하게 된다. The present invention is to improve the properties of the oxide formed on the surface in a high temperature oxidizing atmosphere to reduce the ASR value of the material and to increase the high temperature oxidation resistance, by coating the Co and La in two layers, excellent spinel structure Of CoCr 2 O 3 , CoFe 2 O 4 The same oxide can be formed. In addition, a small amount of La serves to increase the adhesion of the oxide.

즉, 본 발명에서는 표면에 형성되는 산화물의 상을 고온 전도성이 우수한 스피넬 구조의 CoCr2O3, CoFe2O4 등을 만들기 위하여, 코팅층의 하층에 Co 금속을 선택하여 코팅하였고, 산화물의 밀착성을 확보하고, 동시에 시험편의 내고온산화성을 증가시킬 수 있도록 La의 두께를 변화시키면서 품질특성을 평가하여 결정하였다. That is, in the present invention, the phase of the oxide formed on the surface of the spinel structure of CoCr 2 O 3 , CoFe 2 O 4 having excellent high temperature conductivity In order to make, etc., Co metal was selected and coated on the lower layer of the coating layer, and the quality characteristics were determined by changing the thickness of La so as to secure the adhesion of the oxide and at the same time increase the high temperature oxidation resistance of the test piece.

본 발명에 따른 코팅층의 구성은 하층은 코발트이고, 상층은 란탄으로 구성된 이층 코팅층이다. 이때, 란탄의 두께에 따라 코팅 후 밀착성, 내고온산화성 및 고온전도성에 크게 영향을 미치기 때문에 매우 중요하다. The composition of the coating layer according to the present invention is a lower layer is cobalt, the upper layer is a two-layer coating layer consisting of lanthanum. At this time, it is very important because it greatly affects the adhesion, high temperature oxidation resistance and high temperature conductivity after coating depending on the thickness of lanthanum.

상기 코발트 코팅층 및 란탄 코팅층은 당해 기술분야에 통상적으로 알려진 방법에 의해 페라이트계 스테인레스 강판 표면에 형성될 수 있다. 예를들어, 전자빔 증착법이 상기 코발트 코팅층 및 란탄 코팅층을 형성하는데 이용될 수 있으며, 증착조건은 당해 분야의 숙련자에 의해 쉽게 결정될 수 있을 것이다.The cobalt coating layer and lanthanum coating layer may be formed on the surface of the ferritic stainless steel sheet by a method commonly known in the art. For example, electron beam deposition may be used to form the cobalt coating layer and the lanthanum coating layer, and deposition conditions may be readily determined by those skilled in the art.

본 발명에서는 코팅층의 하층에 코발트층의 두께를 1㎛에서 10㎛를 갖도록 하는데 만약 코발트의 두께가 10㎛이상이 되면, 고체산화물 연료전지 가동 중에, 기판의 표면에 Co3O4같은 코발트 산화물이 형성되어 전도성이 증가하지 않으며, 코발트의 두께가 1㎛이하가 되면 코팅층의 기능이 오래가지 못하기 때문에, 코발트층의 두께는 1㎛에서 10㎛를 갖도록 하는 것이 효과가 크다.  In the present invention, the cobalt layer has a thickness of 1 μm to 10 μm under the coating layer. If the cobalt thickness is 10 μm or more, cobalt oxides such as Co 3 O 4 may be formed on the surface of the substrate during operation of the solid oxide fuel cell. Since the conductivity does not increase and the thickness of the cobalt is less than or equal to 1 μm, the function of the coating layer may not be long.

한편, 시편의 내고온산화성을 증가시키기 위해서는 La을 두께 50Å에서 1000Å의 두께로 코팅하여야 한다. La의 기능은 Fe-Cr 합금 표면에 고온의 산화분위기에서 표면에 형성되는 산화물의 접착력을 증대시킬 뿐 아니라, 스케일의 성장속도를 줄이기 때문에 내고온산화성을 증대시킬 뿐 아니라, 재료의 ASR 값을 줄이는 역할을 한다. 왜냐하면 스케일의 성장속도가 줄어 표면에 형성된 스케일의 두께가 줄면 ASR값이 줄고 따라서 전도성이 증가하기 때문이다. 그런데, Fe-Cr 합금표면에 La의 코팅층이 50Å이하로 너무 작으면 이러한 효과가 없어진다. 그리고 La이 1000Å이상으로 코팅되면, 표면에 절연성의 La2O3가 형성되어 전도성이 떨어진다. 따라서, 란탄의 코팅층 두께는 50Å에서 1000Å의 두께로 코팅하여야 한다. On the other hand, in order to increase the high temperature oxidation resistance of the specimen La should be coated with a thickness of 50Å to 1000Å. The function of La not only increases the adhesion of oxides formed on the surface of the Fe-Cr alloy in the high temperature oxidizing atmosphere, but also reduces the growth rate of the scale, thereby increasing the high temperature oxidation resistance and reducing the ASR value of the material. Play a role. This is because as the growth rate of the scale decreases and the thickness of the scale formed on the surface decreases, the ASR value decreases and thus the conductivity increases. However, if the coating layer of La on the Fe-Cr alloy surface is too small, less than 50 kPa, this effect is lost. And when La is coated with 1000Å or more, insulating La 2 O 3 is formed on the surface, the conductivity is lowered. Therefore, the coating layer thickness of lanthanum should be coated with a thickness of 50 kPa to 1000 kPa.

결국, 본 발명은 고체산화물 연료전지 연결재용 기판인 페라이트계 스테인레스 강판 표면에 1㎛에서 10㎛ 두께의 코발트와, 50Å에서 1000Å 두께의 란탄으로 이루어진 이층 코팅층을 형성한 것에 그 특징이 있다. As a result, the present invention is characterized in that a two-layer coating layer made of cobalt having a thickness of 1 μm to 10 μm and lanthanum having a thickness of 50 μm to 1000 μm is formed on the surface of a ferritic stainless steel sheet which is a substrate for a solid oxide fuel cell connection material.

이하 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following examples.

[실시예] EXAMPLE

상술한 본 발명에 따른 코팅층의 구성 및 두께를 갖도록 알루미나 도가니에 증착대상물을 장입시킨 후 진공증착시 코팅조건으로 기판의 온도를 350℃로 고정하였고, 진공도는 5×10-5torr 이하로 유지하였으며, 코발트와 란탄을 차례로 코팅하였다. After depositing a deposition object in the alumina crucible to have the composition and thickness of the coating layer according to the present invention, the temperature of the substrate was fixed at 350 ° C. under the coating conditions during vacuum deposition, and the degree of vacuum was kept below 5 × 10 −5 torr. , Cobalt and lanthanum were coated one after the other.

이후, 코팅처리하여 시험편을 만들고, 그 시험편이 갖는 내산화성 및 고온전도성을 평가하였다. Thereafter, the coating was made to test pieces, and the oxidation resistance and high temperature conductivity of the test pieces were evaluated.

이때, 내산화성은 700℃의 공기분위기에서 1000시간 동안 노출시킨 후, 시험편의 무게증가량을 측정하였으며, 평가기준은 무게증가량(mg/cm2)이 0.2이하이면 ◎, 0.2에서 0.5이면 ○, 0.5이상이면 ×로 하였다. At this time, the oxidation resistance was exposed for 1000 hours in an air atmosphere at 700 ℃, and the weight increase of the test piece was measured, the evaluation criteria are ◎, if the weight increase (mg / cm 2 ) is less than 0.2, ◎, if 0.5 to 0.5, ○, 0.5 It was set as x as it was above.

그리고, 코팅층의 전도성은 700℃ 공기분위기에서 1000시간동안 노출시킨 후 ASR값을 측정함으로써 평가하였는 바, 예컨대 그 평가기준은 ASR값이 0.01Ω㎠이하이면 ◎; 0.01~0.015Ω㎠이면 ○; 0.015Ω㎠ 이상이면 ×로 하였다. In addition, the conductivity of the coating layer was evaluated by measuring the ASR value after exposure for 1000 hours in an air atmosphere at 700 ° C., for example, the evaluation criterion was: ◎ when the ASR value was 0.01 m 2 or less; If it is 0.01-0.015 mm <2>, it is ○; It was set as x if it was 0.015 cm <2> or more.

먼저, 본 발명 성분조성의 범위 내에서 Co 코팅층의 두께를 5㎛로 고정시킨 후, 란탄 코팅층의 두께를 50, 189, 387, 1017Å 로 변화시킨 증착대상물을 각각 발명예 1 ,2, 3, 4로 하여 전자빔 증착법을 통해 증착하여 코팅층을 형성하였다. 그리고 Co 코팅층의 두께를 1, 10㎛로 변화시키고, 란탄 코팅층의 두께를 189Å로 하여 만들어진 증착대상물을 각각 발명예 5, 6으로 하여 전자빔 증착법을 통해 증착하여 코팅층을 형성하였다. First, within the range of the composition of the present invention, the thickness of the Co coating layer was fixed at 5 μm, and then the deposition targets of which the thickness of the lanthanum coating layer was changed to 50, 189, 387, and 1017 Å were Inventive Examples 1, 2, 3, and 4, respectively. As a result of depositing by the electron beam evaporation method to form a coating layer. The thickness of the Co coating layer was changed to 1 and 10 μm, and the deposition targets made of the lanthanum coating layer was 189 Å, respectively, as Inventive Examples 5 and 6, respectively, and were deposited by electron beam deposition to form a coating layer.

그리고, 이와 같은 코팅층을 갖는 시편을 통해 상술한 평가방법으로 각각의 내산화성 및 고온전도성을 평가한 후 하기한 표 1에 나타내었다. And, after evaluating each oxidation resistance and high temperature conductivity by the above-mentioned evaluation method through a specimen having such a coating layer is shown in Table 1 below.

한편, 본 발명과의 대비를 위해 Co와 La을 전혀 첨가하지 않은 기판을 비교예1로 하고, Co의 두께를 5㎛로 하고, La의 두께를 20, 1540Å으로 이루어진 증착대상물을 비교예 2, 3으로 하며, La의 두께는 189Å으로 고정하고, 하층의 Co의 두께를 0.5, 20㎛로 이루어진 증착대상물을 비교예 4, 5로 하여 상기 발명예 1~6와 동일한 과정을 거쳐 시편을 제작한 후 동일한 방식으로 각 시편이 갖는 내산화성 및 고온전도성을 평가하여 하기한 표 1에 나타내었다. On the other hand, for comparison with the present invention, a substrate without Co and La added at all, Comparative Example 1, the thickness of Co is 5㎛, the deposition object consisting of La, the thickness of 20, 1540Å Comparative Example 2, 3, the thickness of La was fixed to 189Å, and the specimens were fabricated through the same process as the above Inventive Examples 1 to 6 using Comparative Examples 4 and 5 as the deposition targets having a thickness of Co of 0.5 and 20 µm. After the evaluation in the same manner each oxidation resistance and high temperature conductivity of each specimen are shown in Table 1 below.

[표 1]TABLE 1

코팅층 두께Coating layer thickness 내산화성Oxidation resistance 전도성conductivity Co (㎛)Co (μm) La (Å)La (Å) 발명예 1Inventive Example 1 5 5 5050 발명예 2Inventive Example 2 189189 발명예 3Inventive Example 3 387387 발명예 4Inventive Example 4 10171017 발명예 5Inventive Example 5 1One 189189 발명예 6Inventive Example 6 1010 189189 비교예 1Comparative Example 1 00 00 ×× ×× 비교예 2Comparative Example 2 55 2020 ×× 비교예 3Comparative Example 3 55 15401540 ×× ×× 비교예 4Comparative Example 4 0.50.5 189189 ×× 비교예 5Comparative Example 5 2020 189189 ××

상기 표 1에서와 같이, Co/La 이층 코팅층을 제조함에 있어, Co 코팅층의 두께를 1에서 10㎛의 두께로 하고, La 코팅층을 50에서 1000Å 두께로 코팅하면 기존의 상업화된 페라이트계 스테인리스 강판의 내산화성 및 전도성을 증가시킬 수 있 음을 확인하였다. 즉, 본 발명을 통해 새로운 합금을 제조하지 않고도 기존의 페라이트계 스테인리스 강판위에 Co/La을 적절하게 이층 코팅함으로서 고온의 산화분위기에서 표면에 전도성이 우수한 산화물을 형성할 수 있음을 확인하였다. As shown in Table 1, in the manufacture of the Co / La two-layer coating layer, the thickness of the Co coating layer 1 to 10㎛ thickness, La coating layer 50 to 1000Å thickness of the conventional commercialized ferritic stainless steel sheet It was confirmed that the oxidation resistance and conductivity can be increased. That is, the present invention confirmed that by coating two layers of Co / La on an existing ferritic stainless steel sheet without appropriately producing a new alloy, an oxide having excellent conductivity on the surface in a high temperature oxidation atmosphere can be formed.

이상에서 상세히 설명한 바와 같이, 본 발명에 따르면 이미 제조된 페라이트계 스테인레스 강판의 표면에, 하층에는 코발트를 상층에는 란탄을 적절한 두께로 코팅하여 이층 코팅층을 형성함으로써 내고온산화성 및 고온전도성이 우수한 고체산화물 연료전지 연결재를 제조할 수 있다. As described in detail above, according to the present invention, a solid oxide having excellent high temperature oxidation resistance and high temperature conductivity by forming a two-layer coating layer by coating cobalt on a lower layer and lanthanum on an upper layer on a surface of an already manufactured ferritic stainless steel sheet. Fuel cell interconnects can be manufactured.

Claims (4)

페라이트계 스테인레스 강판 표면에 1-10㎛ 두께의 코발트 코팅층 및 그 상부에 50-1000Å 두께의 란탄 코팅층이 형성된 고체산화물 연료전지용 금속연결재.A metal connection material for a solid oxide fuel cell in which a cobalt coating layer having a thickness of 1-10 μm and a lanthanum coating layer having a thickness of 50-1000 μm are formed on a ferritic stainless steel surface. 페라이트계 스테인레스 강판 표면에, 전자빔 증착법을 이용하여 코발트 코팅층을 형성하는 단계, 및Forming a cobalt coating layer on the surface of the ferritic stainless steel sheet using an electron beam deposition method, and 전자빔 증착법을 이용하여 상기 코발트 코팅층 상부에 란탄 코팅층을 형성하는 단계Forming a lanthanum coating layer on the cobalt coating layer using an electron beam deposition method 를 포함하는 내산화성 및 고온전도성이 우수한 고체산화물 연료전지용 금속연결재의 코팅방법.Coating method of the metal connection material for a solid oxide fuel cell excellent oxidation resistance and high temperature conductivity comprising a. 제 2항에 있어서, 상기 코발트 코팅층은 1-10㎛의 두께로 형성되는 것을 특징으로 하는 방법.The method of claim 2, wherein the cobalt coating layer is formed to a thickness of 1-10 μm. 제 2항에 있어서, 상기 란탄 코팅층은 50-1000Å 두께로 형성되는 것을 특징으로 하는 방법.3. The method of claim 2, wherein said lanthanum coating layer is formed 50-1000 mm thick.
KR1020050126935A 2005-12-21 2005-12-21 Metal interconnection material for solid oxide fuel cell having cobalt/lanthanum coating layers and method for preparing the cobalt/lanthanum coating layers KR100660212B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050126935A KR100660212B1 (en) 2005-12-21 2005-12-21 Metal interconnection material for solid oxide fuel cell having cobalt/lanthanum coating layers and method for preparing the cobalt/lanthanum coating layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050126935A KR100660212B1 (en) 2005-12-21 2005-12-21 Metal interconnection material for solid oxide fuel cell having cobalt/lanthanum coating layers and method for preparing the cobalt/lanthanum coating layers

Publications (1)

Publication Number Publication Date
KR100660212B1 true KR100660212B1 (en) 2006-12-21

Family

ID=37815175

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050126935A KR100660212B1 (en) 2005-12-21 2005-12-21 Metal interconnection material for solid oxide fuel cell having cobalt/lanthanum coating layers and method for preparing the cobalt/lanthanum coating layers

Country Status (1)

Country Link
KR (1) KR100660212B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803085B1 (en) 2006-10-31 2008-02-18 한국전력공사 Fabrication methods of oxidation-resisted interconnect for solid oxide fuel cell
CN115354262A (en) * 2022-09-22 2022-11-18 上海氢程科技有限公司 Preparation method of metal connector for solid oxide battery and metal connector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803085B1 (en) 2006-10-31 2008-02-18 한국전력공사 Fabrication methods of oxidation-resisted interconnect for solid oxide fuel cell
CN115354262A (en) * 2022-09-22 2022-11-18 上海氢程科技有限公司 Preparation method of metal connector for solid oxide battery and metal connector

Similar Documents

Publication Publication Date Title
JP5133695B2 (en) Fuel cell components
RU2404488C2 (en) Multilayer coating
KR101302381B1 (en) Strip product forming a surface coating of perovskite or spinel for electrical contacts
Zhu et al. (Mn, Co) 3O4-Based spinels for SOFC interconnect coating application
US20060193971A1 (en) Method for producing a protective coating for substrates that are subjected to high temperatures and form chromium oxide
KR100803085B1 (en) Fabrication methods of oxidation-resisted interconnect for solid oxide fuel cell
KR100660212B1 (en) Metal interconnection material for solid oxide fuel cell having cobalt/lanthanum coating layers and method for preparing the cobalt/lanthanum coating layers
KR101595540B1 (en) Separator for solid oxide fuel cell
JPH06146006A (en) Ferrite stainless steel material and its manufacture
KR100639118B1 (en) Cr-mn-y coating layer forming method with high oxidation resistance and electrical conductivity
Fu et al. Evaluation of lanthanum ferrite coated interconnect for intermediate temperature solid oxide fuel cells
Zhao et al. Efficient FeCoNi/CeO2 coatings for solid oxide fuel cell steel interconnect applications
KR100711798B1 (en) METHOD OF COATING ON Fe-Cr ALLOY FOR SOFE INTERCONNECT
KR101027222B1 (en) OAE/Co Coating for Planar Solid Oxide Fuel Cell Interconnects
KR100832402B1 (en) Metallic interconnects in solid oxide fuel cell and manufacturing method thereof
KR20080057550A (en) Seperator for solid oxide fuel cell and preparing method thereof
KR100804243B1 (en) Separator for solid oxide fuel cell
KR101242794B1 (en) Bipolar plates for fuel cell having good resistance to chromium poisoning and method for manufacturing the same
KR101220746B1 (en) Solid oxide fuel cell interconnect and coating method thereof
KR101119002B1 (en) Coating method and Coating material for solid oxide fuel cell interconnect
Jian et al. Metallic Interconnect Materials of Solid Oxide Fuel Cells
KR20050064079A (en) Separator of solid oxide fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121207

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131202

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141128

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151204

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee