KR100639118B1 - Cr-mn-y coating layer forming method with high oxidation resistance and electrical conductivity - Google Patents

Cr-mn-y coating layer forming method with high oxidation resistance and electrical conductivity Download PDF

Info

Publication number
KR100639118B1
KR100639118B1 KR1020050096696A KR20050096696A KR100639118B1 KR 100639118 B1 KR100639118 B1 KR 100639118B1 KR 1020050096696 A KR1020050096696 A KR 1020050096696A KR 20050096696 A KR20050096696 A KR 20050096696A KR 100639118 B1 KR100639118 B1 KR 100639118B1
Authority
KR
South Korea
Prior art keywords
coating layer
electrical conductivity
oxidation resistance
high temperature
weight
Prior art date
Application number
KR1020050096696A
Other languages
Korean (ko)
Inventor
전재호
박치록
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020050096696A priority Critical patent/KR100639118B1/en
Application granted granted Critical
Publication of KR100639118B1 publication Critical patent/KR100639118B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fuel Cell (AREA)

Abstract

A method for forming a Cr-Mn-Y coating layer excellent in oxidation resistance and high temperature electrical conductivity is provided to maximize utilization of an existing ferritic metal connecting material by coating oxides with excellent electrical conductivity on the surface of an existing ferritic stainless steel sheet in an oxidative atmosphere of high temperature, thereby improving oxidation resistance and high temperature electrical conductivity of the existing ferritic stainless steel sheet. A method for forming a Cr-Mn-Y coating layer excellent in oxidation resistance and high temperature electrical conductivity comprises forming a coating layer on the surface of a ferritic stainless steel sheet that is a metal connecting material for solid oxide fuel cells by electron beam deposition such that the coating layer has a composition comprising 2 to 20 wt.% of Mn, 1 wt.% or less of Y and the balance of Cr.

Description

내산화성 및 고온전도성이 우수한 Cr―Mn―Y 코팅층 형성방법{Cr-Mn-Y COATING LAYER FORMING METHOD WITH HIGH OXIDATION RESISTANCE AND ELECTRICAL CONDUCTIVITY}Cr-Mn-Y COATING LAYER FORMING METHOD WITH HIGH OXIDATION RESISTANCE AND ELECTRICAL CONDUCTIVITY}

본 발명은 기존의 상업화된 페라이트계 스테인레스 강판의 표면에 고온의 산화성분위기하에서 전도성이 우수한 산화물을 코팅처리하여 내산화성 및 고온전도성이 우수한 Cr―Mn―Y 코팅층을 형성하는 방법에 관한 것이다.The present invention relates to a method of forming a Cr-Mn-Y coating layer having excellent oxidation resistance and high temperature conductivity by coating an oxide having excellent conductivity on a surface of an existing commercialized ferritic stainless steel sheet under a high temperature oxidative component crisis.

일반적으로, 고체산화물 연료전지 연결재는 기본적으로 한 셀의 양극과 이웃하는 셀의 음극을 전기적으로 연결하며, 공기가스와 연료가스를 물리적으로 차단하는 역할을 담당하는 재료로서, 그 요구특성에 비추어 볼 때 금속연결재는 세라믹 연결재에 비하여 가공성, 경제성, 전기전도성, 열전도성 측면에서 우수한 특성을 가진다.In general, the solid oxide fuel cell connection material is basically a material that electrically connects the anode of one cell and the cathode of a neighboring cell and physically blocks air gas and fuel gas. Metal connectors have superior properties in terms of processability, economy, electrical conductivity, and thermal conductivity compared to ceramic connectors.

지금까지 고체산화물 연료전지 금속연결재로 사용된 여러 가지 합금에는 크게 Cr를 기본으로 하는 Cr-base 합금, Fe를 기본으로 하는 Ferritic Fe-Cr 합금, 및 Ni을 기본으로 하는 Ni-base 초합금 등이 있다.To date, various alloys used as solid oxide fuel cell metal interconnects include Cr-based alloys based on Cr, Ferritic Fe-Cr alloys based on Fe, and Ni-base superalloys based on Ni. .

상기 Cr계 합금은 고온에서 안정한 Cr2O3 산화물을 형성하기 때문에 SOFC(Solid Oxide Fuel Cell) 금속연결재로 개발되어 왔으며, 열팽창계수가 SOFC를 구성하는 다른 세라믹 재료와 유사하고, 고온에서의 기계적 성질이 우수한 장점을 가진다.The Cr-based alloy has been developed as a SOFC (Solid Oxide Fuel Cell) metal coupling material because it forms a stable Cr 2 O 3 oxide at high temperature, and its thermal expansion coefficient is similar to that of other ceramic materials constituting SOFC, and its mechanical properties at high temperature. This has an excellent advantage.

이러한 Cr계 합금개발 연구는 Cr2O3 산화물의 밀착성을 증가시키고, 성장속도를 낮출 수 있는 합금을 개발하는 쪽으로 진행되어 왔으며, 대부분 Y, La, Ce, Zr 같은 원소를 ODS(Oxide Dispersion Strengthening) 형태로 첨가하게 된다.The development of Cr-based alloys has been conducted to develop alloys that can increase the adhesion of Cr 2 O 3 oxides and lower the growth rate, and most of the elements such as Y, La, Ce, and Zr are ODS (Oxide Dispersion Strengthening) Will be added in the form.

대표적인 Cr계 합금인 Cr-5Fe-1Y2O3와 Cr-0.4La2O3 등이 이런 배경에서 개발되었다고 볼 수 있으며, 일예로 "Cr-5Fe-1Y2O3"는 원래 1000℃ 정도의 고온에서 작동되는 평탄형 SOFC의 세라믹 연결재를 대체하기 위하여 개발되었는데 장기 안정성에 문제가 있어 그 사용에 한계가 있다.Representative Cr-based alloys such as Cr-5Fe-1Y 2 O 3 and Cr-0.4La 2 O 3 have been developed in this background, for example "Cr-5Fe-1Y 2 O 3 " is originally about 1000 ℃ It was developed to replace the ceramic interconnects of flat SOFCs operating at high temperatures, but there are limitations in their use due to problems with long term stability.

따라서, 작동온도가 800℃ 이하의 온도에서 적용을 하여야 하지만 Cr-5Fe-1Y2O3를 800℃ 이하의 SOFC용 금속연결재로 사용하는 경우는 거의 없다. 왜냐하면, 그 온도범위(650~800℃)에서는 가공성이 나쁘고 가격이 비싼 Cr계 합금 대신에 Fe계나 Ni계 합금을 적용할 수 있기 때문이다.Therefore, the operating temperature should be applied at a temperature of 800 ℃ or less, but rarely use Cr-5Fe-1Y 2 O 3 as a metal connecting material for SOFC below 800 ℃. This is because in the temperature range (650 to 800 ° C.), Fe-based or Ni-based alloys can be applied in place of Cr-based alloys, which are poor in workability and expensive.

Ni계 초합금으로는 "Haynes 230", "Inconel 625", "Inconel 718" 등이 사용되고 있는데, "Haynes 230"이 가장 높은 전기전도성을 보여주는 것으로 알려져 있다. 이는 "Haynes 230"의 산화거동과 관련이 있는데 "Haynes 230" 합금이 가장 작 은 산화성장 속도를 가지기 때문이다.As the Ni-based superalloy, "Haynes 230", "Inconel 625", "Inconel 718" and the like are used, "Haynes 230" is known to show the highest electrical conductivity. This is related to the oxidation behavior of "Haynes 230" because the "Haynes 230" alloy has the smallest rate of oxidation growth.

하지만, "Haynes 230"합금도 SOFC 요구수명을 충분하게 만족시키지는 못하기 때문에 사용에 한계가 있다.However, "Haynes 230" alloys are also limited in their use because they do not fully meet the SOFC requirements.

한편, Fe-Cr 합금에는 "ZMG232"와 "Crofer22"가 있으며, ZMG232는 22중량%의 Cr를 함유하고, 0.04중량%의 La과 0.22중량%의 Zr를 첨가한 Ferritic Fe-22Cr 합금이다.On the other hand, Fe-Cr alloys are "ZMG232" and "Crofer22", ZMG232 is a Ferritic Fe-22Cr alloy containing 22% by weight of Cr, added 0.04% by weight La and 0.22% by weight Zr.

ZMG232는 열팽창계수가 12.8×10-6/℃이며, 700~1000℃의 온도범위에서 기존의 STS430보다 우수한 내산화성과 전기전도성을 보인다고 보고되어 있다. 이는 산화분위기에서 표면에 형성되는 산화물의 특성과 관련이 있다고 보여진다. 즉, ZMG232 합금의 경우에는 산화물의 조직이 치밀하고 밀착성이 높으며, 전기전도성이 우수한 구조를 가지기 때문이라고 한다.ZMG232 has a thermal expansion coefficient of 12.8 × 10 -6 / ℃ and is reported to show better oxidation resistance and electrical conductivity than the existing STS430 in the temperature range of 700 ~ 1000 ℃. This seems to be related to the characteristics of the oxides formed on the surface in the oxidizing atmosphere. That is, the ZMG232 alloy is said to have a structure in which the oxide structure is dense, high adhesion, and excellent electrical conductivity.

아울러, Crofer22는 원래 자동차 APU(Auxiliary Power Unit)용으로 개발한 Ferritic Fe-Cr 합금이며, Cr의 증발을 최소화하고, 열팽창계수를 낮추기 위하여 0.08중량%의 La을 미량 포함하는 것이다. 여기에 Mn과 Ti를 첨가하여, 고온의 산화분위기에서, 산화물 구조를 상층의 MnCr2O4와 하층의 Cr2O3를 형성시킨다. 여기서 스피넬 구조의 비절연성 MnCr2O4산화물은 Cr의 증발을 방지하는 기능도 가진다. 또한, Crofer22는 ZMG232보다도 전기전도도 특성이 우수한 것으로 알려져 있다.In addition, Crofer22 is a Ferritic Fe-Cr alloy originally developed for automotive APU (Auxiliary Power Unit), and contains a trace amount of 0.08% by weight of La to minimize evaporation of Cr and lower the coefficient of thermal expansion. Mn and Ti are added thereto to form an oxide structure of MnCr 2 O 4 in the upper layer and Cr 2 O 3 in the lower layer in a high temperature oxidation atmosphere. The non-insulating MnCr 2 O 4 oxide of the spinel structure also has a function of preventing the evaporation of Cr. Crofer22 is also known to have better electrical conductivity than ZMG232.

그러나, 금속연결재는 고체산화물 연료전지 작동환경에서 표면에 산화물을 형성하기 때문에 저항이 증가하여 전기전도성이 감소하게 된다. 즉, 금속연결재의 전기전도성은 금속 자체가 가지는 전기전도성보다는 표면에 형성된 산화물의 전기전도성에 의존한다. 따라서, 표면에 전도성이 우수한 산화물을 형성하는 것이 중요하다. 고체산화물 연료전지용 금속연결재가 대부분 Cr2O3-former를 바탕으로 설계하는 이유가 바로 이것 때문이다.However, since the metal interconnect forms an oxide on the surface in the solid oxide fuel cell operating environment, the resistance is increased to decrease the electrical conductivity. In other words, the electrical conductivity of the metal connecting material depends on the electrical conductivity of the oxide formed on the surface rather than the electrical conductivity of the metal itself. Therefore, it is important to form an oxide having excellent conductivity on the surface. This is why most metal connectors for solid oxide fuel cells are designed based on Cr 2 O 3 -formers.

하지만, Cr2O3-former형 금속연결재는 고체산화물 연료전지 가동 환경에서 휘발성의 Cr(Ⅵ)를 만들게 되고, 이들 Cr(Ⅵ)는 전지의 정상적인 전기화학반응을 방해하여 전지의 성능을 감소시키는 요인으로 작용한다.However, Cr 2 O 3 -former type metal interconnects form volatile Cr (VI) in the solid oxide fuel cell operating environment, and these Cr (VI) interferes with the normal electrochemical reaction of the cell and decreases battery performance. Act as a factor.

결국, 연료전지용 금속연결재는 이와 같은 두가지의 모순점 때문에 그 개발에 어려움이 있다.As a result, there is a difficulty in developing a metal connecting material for fuel cell due to these two contradictions.

최근에는 금속연결재용 합금 자체를 개발하려는 시도와 표면특성을 제어하기 위한 표면처리 기술을 개발하려는 시도가 병행되고 있다.Recently, attempts have been made to develop alloys for metal interconnects and surface treatment techniques for controlling surface characteristics.

특히, 표면처리에 관한 코팅물질로는 기존 제품의 내산화성 및 전기전도성을 증가시키고 Cr 증발을 방지하기 위하여, LSM, LSC, LSCF 같은 페로브스카이트(Perovskite) 구조의 산화물을 스프레이 피로시스(Spray pyrosis), PVD, 용사, 슬러리 코팅 등과 같이 다양한 방식으로 코팅하고 있다.In particular, the coating material for surface treatment is sprayed with a perovskite structure oxide such as LSM, LSC, LSCF to increase oxidation resistance and electrical conductivity of existing products and to prevent Cr evaporation. pyrosis), PVD, thermal spraying, slurry coating, etc. in various ways.

그러데, 이와 같은 페로브스카이트 세라믹 코팅의 경우 그 코팅층은 전자전도성이 우수하여야 하고, 열팽창계수가 이웃하는 구성요소와 유사하여야 하며, 밀착성이 우수하여 박리가 일어나지 않아야 한다.However, in the case of such a perovskite ceramic coating, the coating layer should have excellent electron conductivity, similar thermal expansion coefficient to neighboring components, and excellent adhesion, so that peeling should not occur.

뿐만 아니라, 고온에서 장시간 노출하였을 때 코팅층과 기판의 계면에서 스 피넬 구조의 MnCr2O4, CoCr2O3, CoFe2O4 같은 산화물이 형성되는 것이 유리하다. 왜냐하면, 이들 산화물은 비절연성이기 때문에 계면에서의 접촉저항을 크게 증가시키지는 않는다. 반면, 절연성의 SrCrO4나 La2O3 같은 산화물이 반응물로 형성되면 코팅층의 전기전도성을 크게 저하시키게 되는 점을 간과해서는 안된다.In addition, it is advantageous to form oxides such as MnCr 2 O 4 , CoCr 2 O 3 , and CoFe 2 O 4 having a spinel structure at the interface between the coating layer and the substrate after prolonged exposure at high temperature. Because these oxides are non-insulating, they do not significantly increase the contact resistance at the interface. On the other hand, if an oxide such as SrCrO 4 or La 2 O 3 is formed as a reactant, it should not be overlooked that the electrical conductivity of the coating layer is greatly reduced.

나아가, 코팅층의 조직이 치밀하여야 한다. 이는 외부로부터 코팅층을 통해 안쪽으로 확산하는 산소의 이동을 방지하고, 기판으로부터 Cr성분의 외부확산을 방지할 수 있기 때문이다. 따라서 코팅층이 같은 페로브스카이트상을 갖는다 하더라도 코팅층의 성분, 코팅층의 조직 및 구성에 따라 다른 특성을 가질 수 있다.Furthermore, the texture of the coating layer should be dense. This is because it is possible to prevent the movement of oxygen diffused inward through the coating layer from the outside, and to prevent the external diffusion of the Cr component from the substrate. Therefore, even if the coating layer has the same perovskite phase, it may have different properties depending on the components of the coating layer, the structure and composition of the coating layer.

따라서, 코팅층의 조직제어는 코팅공정과 밀접한 관계를 가지기 때문에 경제성이 있으면서 우수한 물성의 코팅층을 가지는 적절한 코팅방법의 모색이 요구된다.Therefore, since the control of the coating layer has a close relationship with the coating process, it is required to find an appropriate coating method having an economical coating layer having excellent properties.

본 발명은 상술한 바와 같은 종래 기술상의 한계성을 감안하여 이를 해결하고자 창출한 것으로, 고체산화물 연료전지용으로 사용되는 기존의 페라이트계 스테인레스 강판 표면에 고온의 산화분위기에서 전도성이 우수한 산화물을 코팅형성시킴으로써 내산화성 및 고온전도성을 향상시킬 수 있도록 하여 기존 페라이트계 금속연결재의 활용도를 극대화시킨 내산화성 및 고온전도성이 우수한 Cr―Mn―Y 코팅층 형성방법을 제공함에 그 주된 목적이 있다.The present invention has been made in view of the limitations of the prior art as described above. The present invention has been made to solve this problem by coating an oxide having excellent conductivity in a high temperature oxidation atmosphere on a surface of an existing ferritic stainless steel sheet used for a solid oxide fuel cell. The main object of the present invention is to provide a method of forming a Cr-Mn- 방법 coating layer having excellent oxidation resistance and high temperature conductivity by oxidizing and improving high temperature conductivity, thereby maximizing the utilization of existing ferrite-based metal connecting materials.

본 발명은 상기한 기술적 과제를 달성하기 위하여, 고체산화물 연료전지 금속연결재용 기판인 페라이트계 스테인레스 강판 표면에, Mn:2~20중량%, Y:1중량% 이하, 잔부 Cr로 이루어진 성분조성을 갖도록 알루미나 도가니에 장입한 후 전자빔 증착법을 이용하여 두께 5㎛를 갖도록 증착하여 코팅층을 형성하는 것을 특징으로 하는 내산화성 및 고온전도성이 우수한 Cr―Mn―Y 코팅층 형성방법을 제공한다.The present invention, to achieve the above technical problem, to have a composition consisting of Mn: 2 to 20% by weight, Y: 1% by weight or less, Cr on the surface of a ferritic stainless steel sheet which is a substrate for a solid oxide fuel cell metal connecting material. The present invention provides a method for forming a Cr-Mn coating having an excellent oxidation resistance and high temperature conductivity, which is charged into an alumina crucible and deposited to have a thickness of 5 µm using an electron beam deposition method.

이하에서는, 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다.Hereinafter, a preferred embodiment according to the present invention will be described in more detail.

먼저, 기존의 상품화된 "SUS444"와 같은 페라이트계 스테인레스 강판을 코팅하지 않고 그대로 사용하면 표면에 스피넬 구조의 MnCr2O4와 강옥(鋼玉)(Corundum) 구조의 Cr2O3산화물이 형성된다.First, if a conventional ferritic stainless steel sheet such as "SUS444" is used without coating, MnCr 2 O 4 having a spinel structure and Cr 2 O 3 oxide having a corundum structure are formed on the surface thereof.

이들 산화물의 상(像) 만을 비교하면, 고체산화물 연료전지 금속연결재로 개발된 "Crofer22APU" 합금이나 "ZMG232"와 동일하다.Comparing only the phases of these oxides, it is the same as the "Crofer22APU" alloy or "ZMG232" developed as the solid oxide fuel cell metal coupling material.

그러나, "SUS444"와 같은 페라이트계 스테인레스 강판은 Cr과 Mn의 농도가 작고 La 같은 희토류 금속성분을 포함하고 있지 않기 때문에 고체산화물 연료전지 금속연결재로 개발된 "Crofer22APU" 합금이나 "ZMG232" 보다 전기전도성이 떨어진다.However, ferritic stainless steel plates such as "SUS444" have a lower electrical conductivity than "Crofer22APU" alloy or "ZMG232" developed as a solid oxide fuel cell metal coupling material because the concentration of Cr and Mn is small and does not contain rare earth metal components such as La. Falls.

즉, "SUS444"와 "Crofer22APU" 재료를 가지고 고온의 산화분위기에서 동일한 조건으로 산화시킨 후 ASR(Area Specific Resistance)값을 측정하면 "Crofer22APU" 합금의 ASR값이 작게 나타난다.In other words, when ASR (Area Specific Resistance) is measured after oxidizing under the same conditions in a high temperature oxidizing atmosphere with materials "SUS444" and "Crofer22APU", the ASR value of the "Crofer22APU" alloy is small.

이는 "SUS444"에 형성된 산화물보다는 "Crofe22APU" 재료의 표면에 형성된 산화물의 ρ(Resistivity)값이 매우 작음을 의미한다. 왜냐하면, "Crofer22APU" 합금은 미량의 La와 함께 Mn, Cr을 적절히 첨가함으로써 표층에 전기전도성이 우수한 산화물층을 형성할 수 있도록 설계되었기 때문이다.This means that the rho (Resistivity) value of the oxide formed on the surface of the "Crofe22APU" material is much smaller than the oxide formed on "SUS444". This is because the "Crofer22APU" alloy is designed to form an oxide layer having excellent electrical conductivity on the surface layer by appropriately adding Mn and Cr with a small amount of La.

본 발명은 이에 고온의 산화 분위기에서 표면에 형성되는 산화물의 접착력을 증대시킬 뿐 아니라 스케일의 성장속도를 줄여 재료의 ASR값을 감소시키는 Y와, 전도성이 우수한 스피넬 구조의 MnCr2O4 같은 산화물을 형성할 수 있는 Cr과 Mn에 착안하여 이들을 기 상업화된 페라이트계 스테인레스 강판 위에 적당히 코팅하여 코팅층을 형성하도록 한 것이다.According to the present invention, oxides such as Y and MnCr 2 O 4 having high conductivity and spinel structure, which not only increase the adhesion of oxides formed on the surface in a high temperature oxidizing atmosphere but also reduce the growth rate of the scale, reduce the ASR value of the material. Focusing on Cr and Mn which can be formed, these are coated on a commercially available ferritic stainless steel sheet to form a coating layer.

아울러, 본 발명에서는 기존의 상업화된 페라이트계 스테인리스 강판인 "SUS444"를 코팅용 기판으로 사용하였고, 여러가지 합금조성을 가지는 Cr-Mn-Y 코팅층을 제조하기 위하여 전자빔 증착법(EB evaporation)을 사용하였으며, 합금코팅을 위해 하나의 알루미나 도가니 안에 크롬(Cr), 망간(Mn) 및 이트륨(Y)을 일정 비율로 장입시킨 후 전자빔을 이용하여 코팅을 하였다.In addition, in the present invention, the conventional commercialized ferritic stainless steel sheet "SUS444" was used as a coating substrate, an electron beam evaporation (EB evaporation) was used to manufacture a Cr-Mn-Y coating layer having a variety of alloy compositions, alloys For coating, chromium (Cr), manganese (Mn) and yttrium (Y) were charged in a ratio in one alumina crucible and then coated using an electron beam.

이때, 상기 Mn은 2~20중량%, Y는 0.1중량% 이하, 잔부 Cr로 구성된 증착대상물을 알루미나 도가니에 장입하여 증착하도록 하였는 바, 이와 같은 성분조성을 갖도록 수치한정하는 이유는 다음과 같다.At this time, the Mn is 2 to 20% by weight, Y is 0.1% by weight or less, the depositing object consisting of the remaining Cr was charged to deposit in an alumina crucible, the reason for limiting the numerical value so as to have such a composition.

즉, Mn의 경우 2중량% 이하로 첨가되게 되면 전도성이 우수한 MnCr2O3가 형 성되지 않으며, 20중량% 이상으로 첨가되게 되면 표면에 치밀하지 않고 전도성도 떨어지는 Mn2O3가 형성되기 때문에 상기와 같은 조성범위로 첨가됨이 바람직하다.That is, MnCr 2 O 3 which is excellent in conductivity is not formed when MnC is added in an amount of 2% by weight or less, and when it is added in 20% by weight or more, Mn 2 O 3 which is not dense and has low conductivity is formed on the surface. It is preferable to add in the composition range as described above.

또한, Y는 고온의 산화분위기에서 내산화성을 증가시키면서 동시에 고온전도성을 증가시키기 위하여 첨가하게 되는데, 첨가되는 Y의 양이 많으면 표면에 절연성의 Y2O3가 형성되어 전도성이 떨어질 뿐만 아니라, 열충격시 Y2O3 스케일의 박리가 쉽게 발생하기 때문에 내산화성도 떨어지게 된다. 따라서, Y의 첨가량은 0.1중량% 이하로 첨가됨이 바람직하다.In addition, Y is added in order to increase oxidation resistance and increase high temperature conductivity at the same time in a high temperature oxidizing atmosphere. When the amount of Y added is large, insulating Y 2 O 3 is formed on the surface, resulting in poor thermal conductivity and thermal shock. When the Y 2 O 3 scale peels easily, oxidation resistance is also reduced. Therefore, the amount of Y added is preferably added at 0.1% by weight or less.

마지막으로, Cr는 기본적으로 표면에 Cr2O3를 형성시키나 같이 첨가된 Mn과 함께 작용하여 전도성이 우수한 MnCr2O3를 만들 수 있다. 즉 Mn의 첨가량을 2~20중량%로 첨가하고, 잔부를 Cr로 첨가하게 된다. 다시말해, Mn의 성분함량에 따라 그 비율이 조절될 수 있다.Finally, Cr basically forms Cr 2 O 3 on the surface, but can work with Mn added together to make MnCr 2 O 3 with excellent conductivity. That is, Mn is added in an amount of 2 to 20% by weight, and the balance is added by Cr. In other words, the ratio can be adjusted according to the component content of Mn.

[실시예]EXAMPLE

이하, 본 발명에 따른 바람직한 실시예를 설명하기로 한다.Hereinafter, a preferred embodiment according to the present invention will be described.

상술한 본 발명에 따른 조성을 갖도록 알루미나 도가니에 증착대상물을 장입시킨 후 진공증착시 코팅조건으로 기판의 온도를 350℃로 고정하였고, 진공도는 5×10-5torr 이하로 유지하였으며, 코팅두께는 5㎛로 고정하였다.After depositing the deposition object in the alumina crucible to have the composition according to the present invention described above, the temperature of the substrate was fixed at 350 ° C. under the coating conditions during vacuum deposition, and the vacuum degree was maintained at 5 × 10 −5 torr or less, and the coating thickness was 5 Fixed to μm.

이후, 코팅처리하여 시험편을 만들고, 그 시험편이 갖는 내산화성 및 고온전도성을 평가하였다.Thereafter, the coating was made to test pieces, and the oxidation resistance and high temperature conductivity of the test pieces were evaluated.

이때, 내산화성은 700℃의 공기분위기에서 1000시간 동안 노출시킨 후, 시험편의 무게증가량을 측정하였으며, 평가기준은 무게증가량(mg/cm2)이 0.2이하이면 ◎, 0.2에서 0.5이면 ○, 0.5이상이면 × 로 하였다.At this time, the oxidation resistance was exposed for 1000 hours in an air atmosphere at 700 ℃, and the weight increase of the test piece was measured, the evaluation criteria are ◎, if the weight increase (mg / cm 2 ) is less than 0.2, ◎, if 0.5 to 0.5, ○, 0.5 It was set as x as it was above.

그리고, 코팅층의 전도성은 700℃ 공기분위기에서 1000시간동안 노출시킨 후 ASR값을 측정함으로써 평가하였는 바, 예컨대 그 평가기준은 ASR값이 0.01Ω㎠이하이면 ◎; 0.01~0.015Ω㎠이면 ○; 0.015Ω㎠ 이상이면 ×로 하였다.In addition, the conductivity of the coating layer was evaluated by measuring the ASR value after exposure for 1000 hours in an air atmosphere at 700 ° C., for example, the evaluation criterion was: ◎ when the ASR value was 0.01 m 2 or less; If it is 0.01-0.015 mm <2>, it is ○; It was set as x if it was 0.015 cm <2> or more.

먼저, 본 발명 성분조성의 범위내에서 Mn:2, 2, 2, 20, 3중량%로 변화시킴과 동시에 그에 대응하여 Y:0.1, 0.2, 1, 0.2, 0중량%로 변화시켰고, 잔부 Cr로 하여 조성한 증착대상물을 각각 발명예1,2,3,4,5로 하여 알루미나 도가니에 장입한 후 상술한 진공도 및 온도범위에서 SUS444의 표면에 두께 5㎛로 전자빔 증착법을 통해 증착하여 코팅층을 형성하였다.First, within the range of the composition of the present invention, Mn: 2, 2, 2, 20, 3% by weight, and correspondingly changed to Y: 0.1, 0.2, 1, 0.2, 0% by weight, and the balance Cr The deposition target was prepared as the invention examples 1, 2, 3, 4 and 5, respectively, and charged into an alumina crucible, and then deposited on the surface of SUS444 by electron beam deposition at a thickness of 5 μm in the above vacuum and temperature ranges to form a coating layer. It was.

그리고, 이와 같은 코팅층을 갖는 시편을 통해 상술한 평가방법으로 각각의 내산화성 및 고온전도성을 평가한 후 하기한 표 1에 나타내었다.And, after evaluating each oxidation resistance and high temperature conductivity by the above-mentioned evaluation method through a specimen having such a coating layer is shown in Table 1 below.

한편, 본 발명과의 대비를 위해 Mn과 Y를 전혀 첨가하지 않는 Cr만으로 이루어진 증착대상물을 비교예1로 하고, Mn:30중량%, Y:0중량%, Cr:70중량%로 이루어진 증착대상물을 비교예2로 하며, Mn:2중량%, Y:2중량%, Cr:96중량%로 이루어진 증착대상물을 비교예3으로 하여 상기 발명예1~5와 동일한 과정을 거쳐 시편을 제작한 후 동일한 방식으로 각 시편이 갖는 내산화성 및 고온전도성을 평가하여 하기한 표 1에 나타내었다.On the other hand, for comparison with the present invention, the deposition object consisting of only Cr without adding Mn and Y at all as Comparative Example 1, Mn: 30% by weight, Y: 0% by weight, Cr: 70% by weight Cr In Comparative Example 2, Mn: 2% by weight, Y: 2% by weight, Cr: 96% by weight of the sample to prepare a specimen through the same process as in Examples 1 to 5 to Comparative Example 3 In the same manner, the oxidation resistance and the high temperature conductivity of each specimen were evaluated and shown in Table 1 below.

Figure 112005057975013-pat00001
Figure 112005057975013-pat00001

상기 표 1에서와 같이, Cr-Mn-Y 합금 코팅층을 제조함에 있어 Mn의 첨가량을 2~20중량%로 하고, Y의 첨가량을 1중량% 이하로 하며, 나머지는 Cr성분으로 하는 증착대상물을 통해 전자빔 증착을 하게 되면 기존의 상업화된 페라이트계 스테인리스 강판의 내산화성 및 전도성을 증가시킬 수 있음을 확인하였다.As shown in Table 1, in the preparation of the Cr-Mn-Y alloy coating layer, the amount of Mn added is 2 to 20% by weight, the amount of Y is added to 1% by weight or less, and the remainder is a Cr-deposited object. Through electron beam deposition, it was confirmed that the oxidation resistance and conductivity of the conventional commercialized ferritic stainless steel sheet could be increased.

즉, 본 발명을 통해 새로운 합금을 제조하지 않고도 기존의 페라이트계 스테인리스 강판위에 Cr-Mn-Y을 선택적으로 코팅함으로서 고온의 산화분위기에서 표면에 전도성이 우수한 산화물을 형성할 수 있음을 확인하였다.That is, it was confirmed through the present invention that by selectively coating Cr-Mn-Y on an existing ferritic stainless steel sheet without producing a new alloy, it is possible to form an oxide having excellent conductivity on the surface in a high temperature oxidation atmosphere.

이상에서 상세히 설명한 바와 같이, 본 발명에 따르면 이미 제조된 페라이트계 스테인레스 강판의 표면에 전자빔 증착법을 이용하여 망간, 이트륨, 크롬을 적절히 혼합하여 증착한 코팅층을 형성함으로써 내산화성 및 고온전도성이 우수한 고체산화물 연료전지 연결재를 제조할 수 있다.As described above in detail, according to the present invention, a solid oxide having excellent oxidation resistance and high temperature conductivity by forming a coating layer formed by appropriately mixing manganese, yttrium, and chromium by using an electron beam evaporation method on a surface of a ferritic stainless steel sheet already manufactured. Fuel cell interconnects can be manufactured.

Claims (1)

고체산화물 연료전지 금속연결재용 기판인 페라이트계 스테인레스 강판 표면에,On the surface of ferritic stainless steel sheet, which is a substrate for solid oxide fuel cell metal connecting material, 전자빔 증착법을 이용하여, Mn:2~20중량%, Y:1중량% 이하, 잔부 Cr로 이루어진 성분조성을 갖도록 코팅층을 형성한 것을 특징으로 하는 내산화성 및 고온전도성이 우수한 Cr―Mn―Y 코팅층 형성방법.Formation of Cr-Mn coating having excellent oxidation resistance and high temperature conductivity, wherein the coating layer is formed to have a component composition consisting of Mn: 2 to 20% by weight, Y: 1% by weight or less, and Cr by using an electron beam deposition method. Way.
KR1020050096696A 2005-10-13 2005-10-13 Cr-mn-y coating layer forming method with high oxidation resistance and electrical conductivity KR100639118B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050096696A KR100639118B1 (en) 2005-10-13 2005-10-13 Cr-mn-y coating layer forming method with high oxidation resistance and electrical conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050096696A KR100639118B1 (en) 2005-10-13 2005-10-13 Cr-mn-y coating layer forming method with high oxidation resistance and electrical conductivity

Publications (1)

Publication Number Publication Date
KR100639118B1 true KR100639118B1 (en) 2006-10-31

Family

ID=37621025

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050096696A KR100639118B1 (en) 2005-10-13 2005-10-13 Cr-mn-y coating layer forming method with high oxidation resistance and electrical conductivity

Country Status (1)

Country Link
KR (1) KR100639118B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080057550A (en) * 2006-12-20 2008-06-25 재단법인 포항산업과학연구원 Seperator for solid oxide fuel cell and preparing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080057550A (en) * 2006-12-20 2008-06-25 재단법인 포항산업과학연구원 Seperator for solid oxide fuel cell and preparing method thereof

Similar Documents

Publication Publication Date Title
Wu et al. Recent development of SOFC metallic interconnect
JP5133695B2 (en) Fuel cell components
CA2648740C (en) Multi-layer coating for metal containing surfaces
JP5878588B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steel adapted for use with solid oxide fuel cells
KR101516835B1 (en) Material for protective coatings on high temperature-resistant chromium oxide-forming substrates, method for the production thereof, and use thereof
CA2792306A1 (en) Composite coatings for oxidation protection
Zhu et al. (Mn, Co) 3O4-Based spinels for SOFC interconnect coating application
AU2004271148B2 (en) Oxidation resistant ferritic stainless steels
KR100803085B1 (en) Fabrication methods of oxidation-resisted interconnect for solid oxide fuel cell
Tomas et al. Efficiencies of cobalt-and copper-based coatings applied by different deposition processes for applications in intermediate-temperature solid oxide fuel cells
JP5306631B2 (en) Ferritic steel for solid oxide fuel cells and other high temperature applications
KR20190090013A (en) Improved contact between interconnect and battery in a solid oxide cell stack
Elangovan et al. Evaluation of ferritic stainless steel for use as metal interconnects for solid oxide fuel cells
KR100639118B1 (en) Cr-mn-y coating layer forming method with high oxidation resistance and electrical conductivity
KR100660212B1 (en) Metal interconnection material for solid oxide fuel cell having cobalt/lanthanum coating layers and method for preparing the cobalt/lanthanum coating layers
KR100306247B1 (en) Low Thermal Expansion Alloy
KR100711798B1 (en) METHOD OF COATING ON Fe-Cr ALLOY FOR SOFE INTERCONNECT
KR101027222B1 (en) OAE/Co Coating for Planar Solid Oxide Fuel Cell Interconnects
KR100832402B1 (en) Metallic interconnects in solid oxide fuel cell and manufacturing method thereof
KR20080057550A (en) Seperator for solid oxide fuel cell and preparing method thereof
KR100804243B1 (en) Separator for solid oxide fuel cell
EP3883028B1 (en) Metal member and manufacturing method thereof
JP7413867B2 (en) Coated steel material for solid oxide fuel cell components, solid oxide fuel cell components and manufacturing method thereof
KR20120074563A (en) Solid oxide fuel cell interconnect and coating method thereof
JP3701902B2 (en) Low resistivity low thermal expansion alloy

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101020

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee