KR100644163B1 - Process for preparing zinc oxide thin film - Google Patents

Process for preparing zinc oxide thin film Download PDF

Info

Publication number
KR100644163B1
KR100644163B1 KR1020050050826A KR20050050826A KR100644163B1 KR 100644163 B1 KR100644163 B1 KR 100644163B1 KR 1020050050826 A KR1020050050826 A KR 1020050050826A KR 20050050826 A KR20050050826 A KR 20050050826A KR 100644163 B1 KR100644163 B1 KR 100644163B1
Authority
KR
South Korea
Prior art keywords
thin film
zinc oxide
zinc
substrate
oxide thin
Prior art date
Application number
KR1020050050826A
Other languages
Korean (ko)
Inventor
김윤수
김창균
이영국
정택모
안기석
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020050050826A priority Critical patent/KR100644163B1/en
Application granted granted Critical
Publication of KR100644163B1 publication Critical patent/KR100644163B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A method for manufacturing a zinc oxide thin film is provided to improve the qualities without an additional oxygen source by performing a metal organic chemical deposition using amino alkyl acid alkyl zinc as a thin film precursor material. Amino alkyl acid alkyl zinc is vaporized. A zinc oxide thin film is formed on a base member by using the vaporized amino alkyl acid alkyl zinc. The base member is made of one selected from a group consisting of a silicon substrate, a sapphire substrate and a zinc oxide substrate. The base member is performed with a surface oxidation. When the zinc oxide thin film is formed on the base member, the temperature of the base member is in a predetermined range of 250 to 400 ‹C.

Description

산화아연 박막의 제조 방법 {PROCESS FOR PREPARING ZINC OXIDE THIN FILM}Production method of zinc oxide thin film {PROCESS FOR PREPARING ZINC OXIDE THIN FILM}

도 1은 제조예 1에서 제조한 메틸(1-디메틸아미노-2-메틸-2-프로폭시)아연(Ⅱ)의 열무게 분석(TGA) 및 시차 열법 분석(DTA) 결과를 나타내는 그래프고, 1 is a graph showing the results of thermogravimetric analysis (TGA) and differential thermal analysis (DTA) of methyl (1-dimethylamino-2-methyl-2-propoxy) zinc (II) prepared in Preparation Example 1;

도 2는 실시예 1에서 제조한 산화아연 박막의 X선 회절 분석 결과를 나타내는 그래프고, 2 is a graph showing the results of X-ray diffraction analysis of the zinc oxide thin film prepared in Example 1,

도 3은 실시예 2에서 제조한 산화아연 박막의 X선 회절 분석 결과를 나타내는 그래프고, 3 is a graph showing the results of X-ray diffraction analysis of the zinc oxide thin film prepared in Example 2,

도 4는 실시예 3에서 제조한 산화아연 박막의 X선 회절 분석 결과를 나타내는 그래프며, 4 is a graph showing the results of X-ray diffraction analysis of the zinc oxide thin film prepared in Example 3,

도 5 내지 8은 실시예 2, 3, 5 및 7에서 제조한 산화아연 박막의 주사전자현미경 사진이다.5 to 8 are scanning electron micrographs of the zinc oxide thin films prepared in Examples 2, 3, 5, and 7.

본 발명은 산화아연 박막의 제조 방법에 관한 것으로, 구체적으로는, 산소 원을 별도로 공급하지 않고 더 온화한 공정 조건에서 금속 유기물 화학 증착법(MOCVD)을 수행하여 고품질 결정상 산화아연 박막을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a zinc oxide thin film, and more particularly, to a method for producing a high quality crystalline zinc oxide thin film by performing metal organic chemical vapor deposition (MOCVD) under milder process conditions without separately supplying an oxygen source. will be.

산화아연은 띠 간격(band gap)이 약 3.4 eV로 큰 투명 반도체로서 발광 다이오드, 레이저 다이오드 등의 광소자, 압전 소자, 및 투명 전도막 등에 응용할 수 있다 (Ohta etc., "Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO," Appl. Phys. Lett., 2000, 77, 475-477; Bagnall etc., "Optically pumped lasing of ZnO at room temperature," Appl. Phys. Lett., 1997, 70, 2230-2232; Wacogne etc., "Effective piezoelectric activity of zinc oxide films grown by radio-frequency planar magnetron sputtering," Appl. Phys. Lett., 1995, 67, 1674-1676; Jiang etc., "Aluminum-doped zinc oxide films as transparent conductive electrode for organic light emitting," Appl. Phys. Lett., 2003, 83, 1875-1877).Zinc oxide is a transparent semiconductor with a band gap of about 3.4 eV, and can be applied to optical devices such as light emitting diodes and laser diodes, piezoelectric devices, and transparent conductive films. (Ohta etc., "Current injection emission from a transparent pn junction composed of p- SrCu 2 O 2 / n- ZnO, " Appl. Phys. Lett., 2000 , 77, 475-477; Bagnall etc., " Optically pumped lasing of ZnO at room temperature, " Appl. Phys Lett., 1997 , 70, 2230-2232; Wacogne etc., "Effective piezoelectric activity of zinc oxide films grown by radio-frequency planar magnetron sputtering," Appl. Phys. Lett., 1995 , 67, 1674-1676; Jiang etc., "Aluminum-doped zinc oxide films as transparent conductive electrode for organic light emitting," Appl. Phys. Lett., 2003 , 83, 1875-1877).

기질 위에 산화아연 박막을 형성하는 방법 중 아연 화합물을 이용하는 화학적 방법은 금속 유기물 화학 증착법(metal organic chemical vapor deposition, MOCVD)과 원자층 침착법(atomic layer deposition, ALD)으로 구분할 수 있다.Among the methods of forming a zinc oxide thin film on a substrate, a chemical method using a zinc compound may be classified into metal organic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD).

일반적으로, 금속 유기물 화학 증착법은 금속 유기물 형태의 고체 또는 액체 원을 사용하여 박막을 증착하는 방법으로서, 산화아연 막을 형성하기 위한 원료로는 금속 염화물, 또는 유기 리간드가 결합한 아연 착화합물 등을 주로 사용하여 왔다.In general, metal organic chemical vapor deposition is a method of depositing a thin film using a solid or liquid source in the form of a metal organic material. As a raw material for forming a zinc oxide film, a metal chloride or a zinc complex compounded with an organic ligand is mainly used. come.

그러나 대표적 금속 염화물인 염화아연은 승화 온도가 높아 공정에 이용하는 데 어려움이 있고 (Kaiya etc., "Epitaxial growth of ZnO thin films exhibiting room-temperature ultraviolet emission by atmospheric pressure chemical vapor deposition," Thin Solid Films, 2002, 409, 116-119), 유기 리간드가 결합한 아연 착화합물은 염화아연보다는 승화 온도가 낮으나 박막 내에 탄소 오염을 유발하는 단점이 있다 (Ayouchi etc., "Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis," Thin Solid Films, 2003, 426, 68-77).However, zinc chloride, a representative metal chloride, has a high sublimation temperature, making it difficult to use in processes (Kaiya etc., "Epitaxial growth of ZnO thin films exhibiting room-temperature ultraviolet emission by atmospheric pressure chemical vapor deposition," Thin Solid Films , 2002). , 409, 116-119), zinc complexes combined with organic ligands have a lower sublimation temperature than zinc chloride, but have the disadvantage of causing carbon contamination in thin films (Ayouchi etc., "Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis , " Thin Solid Films , 2003 , 426, 68-77).

한편, 디알킬아연은 휘발성이 높고 분해 온도가 낮은 특성으로 인해 산화아연 박막 제조에 사용하기 적합한 선구 물질로 알려져 있으나, 선구 물질 자체가 불안정하여 다루기가 어렵고 기화한 디알킬아연이 기질에 도달하기 전에 산소 원과 만나면 쉽게 반응하여 분말상의 산화아연이 생성하는 문제점이 있다 (Li etc., "Growth of stoichiometric (002) ZnO thin films on Si (001) substrate by using plasma enhanced chemical vapor deposition," J. Vac. Sci. Techonol. A, 2002, 20, 1779-1783).On the other hand, dialkyl zinc is known as a precursor suitable for use in the production of zinc oxide thin films due to its high volatility and low decomposition temperature.However, the precursor itself is unstable and difficult to handle and before vaporized dialkyl zinc reaches the substrate. There is a problem in that it reacts easily with an oxygen source and produces powdered zinc oxide (Li etc., "Growth of stoichiometric (002) ZnO thin films on Si (001) substrate by using plasma enhanced chemical vapor deposition," J. Vac . Sci. Techonol. A, 2002 , 20, 1779-1783).

또한, 상기 선구 물질들을 사용하여 MOCVD 공정을 수행하여 산화아연 박막을 제조하기 위해서는 산소 원을 별도로 공급해야 하며, 대부분의 선구 물질들은 산소 원에 대한 반응성이 커서 이들 두 원료(아연 원 및 산소 원)가 기질에 도달하기 전까지는 서로 접촉하지 않도록 장치를 구성해야 하므로 장비가 복잡해지는 단점이 있다.In addition, in order to manufacture a zinc oxide thin film by performing the MOCVD process using the precursor materials, an oxygen source must be separately supplied. Most precursor materials have high reactivity with oxygen sources, so these two raw materials (zinc source and oxygen source) are highly reactive. The device is complicated because the devices must be configured so that they do not contact each other until they reach the substrate.

따라서 최근에는 선구 물질 내에 산소를 함유하는 단일 선구 물질을 이용하여 산화아연 박막을 제조하려는 연구가 진행되고 있다. 이러한 선구 물질로는, 하나의 알킬기 및 하나의 알킬산기 리간드를 함유하는 알킬산알킬아연 (Auld etc., "Growth of ZnO by MOCVD using Alkylzinc Alkoxides as Single-source Precursors", J. Mater. Chem., 1994, 4, 1249-1253) 및 헥사키스[μ-(디에틸카르바마토-O:O']-μ4-옥소테트라아연 (Petrella etc., "Single-Source Chemical Vapor Deposition Growth of ZnO Thin Films Using Zn4O(CO2NEt)6", Chem. Mater., 2002, 14, 4339-4342) 등을 그 예로 들 수 있다. 이들을 단일 선구 물질로 사용하여 산화아연 박막을 제조할 경우, 선구 물질이 산소를 함유하고 있으므로 산소 원을 별도로 공급받지 않고도 화학적 분해 반응에 의해 저온에서 산화아연 박막을 제조할 수 있는 장점이 있다.Therefore, a recent research has been conducted to prepare a zinc oxide thin film using a single precursor containing oxygen in the precursor. Such precursors include alkyl zinc alkylate containing one alkyl group and one alkyl acid group ligand (Auld etc., "Growth of ZnO by MOCVD using Alkylzinc Alkoxides as Single-source Precursors", J. Mater. Chem., 1994, 4, 1249-1253) and hexamethylene kiss [μ- (diethyl bar Mato -O: O '] - μ 4 - oxo zinc tetra (Petrella etc., "Single-Source Chemical Vapor Deposition Growth of ZnO Thin Films Using Zn 4 O (CO 2 NEt) 6 ", Chem. Mater. , 2002 , 14, 4339-4342), etc. For example, when preparing a zinc oxide thin film using a single precursor, the precursor is Since it contains oxygen, there is an advantage that a zinc oxide thin film can be manufactured at low temperature by chemical decomposition reaction without receiving an oxygen source separately.

그러나 알킬산알킬아연은 사합체(tetramer)로 존재하고, 헥사키스[μ-(디에틸카르바마토-O:O']-μ4-옥소테트라아연은 분자량이 크기 때문에, 이들 선구 물질은 모두 기화 특성이 우수하지 못하다.However, since alkyl zinc alkylate is present as a tetramer and hexakis [μ- (diethylcarbamato-O: O ']-μ 4 -oxotetra zinc has a high molecular weight, all of these precursors Vaporization characteristics are not good.

이에 본 발명자들은 기화 특성이 우수하며 단일 선구 물질로 작용할 수 있는 이합체(dimer) 구조의 아미노알킬산알킬아연을 산화아연 박막 제조용 선구 물질로 사용함으로써, 산소 원을 별도로 공급하지 않고도 품질이 우수한 산화아연 박막을 제조할 수 있음을 확인하고 본 발명을 완성하게 되었다.Accordingly, the inventors of the present invention use zinc alkylaminoalkylate having a dimer structure, which has excellent vaporization properties and can act as a single precursor, as a precursor for producing zinc oxide thin films, thereby providing excellent zinc oxide without supplying an oxygen source. It was confirmed that the thin film can be prepared and completed the present invention.

본 발명의 목적은 산소 원을 별도로 공급하지 않고도 더 온화한 조건에서 균일하고 덮임성이 좋으며 배향 면이 일정한 고품질 산화아연 박막을 제조하는 방법을 제공하는 것이다.It is an object of the present invention to provide a method for producing a high quality zinc oxide thin film which is uniform, has good coverage, and has a uniform orientation in milder conditions without separately supplying an oxygen source.

상기 목적을 달성하기 위해, 본 발명에서는 아미노알킬산알킬아연을 기화시킨 후 생성한 증기를 기질과 접촉시켜 기질 위에 산화아연 박막을 침착시키는 것을 포함하는, 산화아연 박막의 제조 방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a zinc oxide thin film comprising vaporizing an alkyl zinc alkylaminoalkyl acid and then depositing a zinc oxide thin film on the substrate by contacting the resulting vapor with a substrate.

이하, 본 발명을 더 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 특징은, 금속 유기물 화학 증착(MOCVD) 공정을 이용하여 산화아연 박막을 제조할 때에, 기화 특성이 우수하고 단일 선구 물질로 작용할 수 있는 이합체(dimer) 구조의 아미노알킬산알킬아연을 박막 제조용 선구 물질로 사용하는 데 있다.A feature of the present invention is that when preparing a zinc oxide thin film using a metal organic chemical vapor deposition (MOCVD) process, a thin film of dialkyl aminoalkyl acid alkyl acid having excellent vaporization characteristics and capable of acting as a single precursor material It is used as a precursor material for manufacturing.

본 발명에 따른 산화아연 박막 제조 공정은, 금속 선구 물질인 아미노알킬산알킬아연을 기화시킨 후 기질과 접촉시킴으로써 수행할 수 있으며, 더 구체적으로는, 기질을 반응기에 장착한 후 반응기 내부의 압력을 10-2 내지 1 Torr로 유지하고 기질의 온도를 250 내지 400 ℃로 유지하면서 산화아연 박막 선구 물질인 아미노알킬산알킬아연을 운반 기체와 함께 반응기에 주입함으로써, 기질 위에 산화아연 박 막을 침착시킬 수 있다.The zinc oxide thin film manufacturing process according to the present invention may be performed by vaporizing a metal precursor alkyl zinc alkylamino acid and then contacting the substrate. More specifically, the pressure inside the reactor may be increased after mounting the substrate in the reactor. A zinc oxide thin film can be deposited on a substrate by maintaining a temperature of 10 -2 to 1 Torr and injecting a zinc oxide thin film precursor of alkyl zinc alkylalkylate into the reactor together with a carrier gas while maintaining the temperature of the substrate at 250 to 400 ° C. have.

본 발명에 사용되는 아미노알킬산알킬아연으로는 메틸(1-디메틸아미노-2-메틸-2-프로폭시)아연(II), 에틸(1-디메틸아미노-2-메틸-2-프로폭시)아연(II), 메틸(1-디메틸아미노-2-에틸-2-부톡시)아연(II) 등을 예로 들 수 있으며, 아미노알킬산알킬아연은 분자 내에 산소 원자를 함유하고 있을 뿐만 아니라, 이합체로 존재하므로 승화 온도가 60 내지 90 ℃로 낮아 기화 특성이 우수하다.Examples of the alkyl zinc alkylalkyl used in the present invention include methyl (1-dimethylamino-2-methyl-2-propoxy) zinc (II) and ethyl (1-dimethylamino-2-methyl-2-propoxy) zinc. (II), methyl (1-dimethylamino-2-ethyl-2-butoxy) zinc (II), and the like, and alkyl zinc aminoalkyl acid not only contains an oxygen atom in the molecule, but also as a dimer. Since present, the sublimation temperature is lowered to 60 to 90 ° C., so the vaporization characteristics are excellent.

따라서 MOCVD 공정을 이용하여 산화아연 박막을 제조할 때에 기화 특성이 우수한 아미노알킬산알킬아연을 박막 제조용 선구 물질로 사용하면, 산소 원을 별도로 공급하지 않아도 기존 MOCVD 공정(600 내지 800 ℃)에 비해 훨씬 낮은 온도인 250 내지 400 ℃에서 박막 침착 공정을 수행할 수 있다.Therefore, when producing zinc oxide thin film by using MOCVD process, alkyl zinc alkyl alkylate having excellent vaporization properties is used as a precursor for thin film production, which is much more than conventional MOCVD process (600 to 800 ℃) without supplying oxygen source. The thin film deposition process can be carried out at a low temperature of 250 to 400 ° C.

아미노알킬산알킬아연은 유기 용매 중에서 디알킬아연과 아미노알코올을 반응시키는 통상적인 제조 공정에 의해 제조할 수 있다 (Kitamura etc., "Self and Nonself Recognition of Asymmetric Catalysts. Nonlinear Effects in the Amino Alcohol-Promoted Enantioselective Addition of Dialkylzincs to Aldehydes", J. Am. Chem. Soc., 1995, 117, 4832-4842).Alkyl alkylaminoalkylates can be prepared by conventional manufacturing processes for reacting dialkylzinc and aminoalcohols in organic solvents (Kitamura etc., "Self and Nonself Recognition of Asymmetric Catalysts.Nonlinear Effects in the Amino Alcohol-Promoted Enantioselective Addition of Dialkylzincs to Aldehydes ", J. Am. Chem. Soc. , 1995 , 117, 4832-4842).

본 발명에 사용되는 반응기로는 스테인레스 강 재질의 반응기가 바람직하고, 산화아연 박막을 형성하기 위한 기질로는 통상의 박막 형성용 기판, 예를 들면 규소 (111), 사파이어 (0001), 산화아연 (0001) 등의 기판을 사용할 수 있다.As the reactor used in the present invention, a reactor made of stainless steel is preferable, and as a substrate for forming a zinc oxide thin film, a substrate for forming a thin film, for example, silicon (111), sapphire (0001), zinc oxide ( A substrate such as 0001) can be used.

상기 기판은 표면 처리하지 않고 그 자체로 사용할 수도 있고 산화 처리하여 표면 위에 산화막을 형성한 후 사용할 수도 있다.The substrate may be used by itself without surface treatment or may be used after forming an oxide film on the surface by oxidation treatment.

또한, 본 발명에서 박막 형성용 선구 물질의 반응기 내 주입을 용이하게 하기 위한 운반 기체로는 아르곤 등과 같은 비활성 기체를 사용할 수 있으며, 이러한 운반 기체는 10 내지 15 cc/min의 유량으로 주입하는 것이 바람직하다.In addition, in the present invention, an inert gas such as argon may be used as a carrier gas to facilitate the injection of the precursor for forming a thin film into the reactor, and the carrier gas may be injected at a flow rate of 10 to 15 cc / min. Do.

이하 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐이고 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention and the scope of the present invention is not limited thereto.

제조예 1: 메틸(1-디메틸아미노-2-메틸-2-프로폭시)아연(Ⅱ)의 제조Preparation Example 1 Preparation of Methyl (1-dimethylamino-2-methyl-2-propoxy) zinc (II)

125 mL 슐렝크 플라스크에 ZnMe2 (1.0 M 헵탄 용액, 5 mL, 5.0 mmol) 및 헥산 30 mL를 넣은 후 1-디메틸아미노-2-메틸-2-프로판올(dmampH) 0.59 g(5.0 mmol)을 서서히 가하였다. 반응 용액을 상온에서 12 시간 동안 교반하였다. 반응 종료 후 감압 하에서 용매를 제거하여 흰색 고체 화합물을 얻은 후, 이를 감압 하에서 승화시켜 (승화 조건: 45 ℃ 및 10-2 Torr) 흰색 결정 형태의 표제 화합물 0.71 g(수율 72.0%)을 얻었다.ZnMe 2 (1.0 M heptane solution, 5 mL, 5.0 mmol) and 30 mL of hexane were added to a 125 mL Schlenk flask, and 0.59 g (5.0 mmol) of 1-dimethylamino-2-methyl-2-propanol (dmampH) was added slowly. Was added. The reaction solution was stirred at room temperature for 12 hours. After completion of the reaction, the solvent was removed under reduced pressure to obtain a white solid compound, which was then sublimed under reduced pressure (sublimation conditions: 45 DEG C and 10 -2 Torr) to obtain 0.71 g (yield 72.0%) of the title compound in the form of white crystals.

녹는점: 123-125 ℃Melting Point: 123-125 ℃

1H-NMR (CDCl3, 300.13 MHz): δ 0.31 (s, 3H, Zn(C H 3)), 1.25 (s, 6H,C(C H 3)2), 2.12 (s, 2H, NC H 2C), 2.15 (s, N(C H 3)2). 1 H-NMR (CDCl 3 , 300.13 MHz): δ 0.31 (s, 3H, Zn (C H 3 )), 1.25 (s, 6H, C (C H 3 ) 2 ), 2.12 (s, 2H, NC H 2 C), 2.15 (s, N (C H 3 ) 2 ).

제조한 선구 물질의 열무게 분석(TGA) 및 시차 열법 분석(DTA) 결과를 도 1 에 나타내었다. 도 1로부터, 메틸(1-디메틸아미노-2-메틸-2-프로폭시)아연(Ⅱ)은 약 120 ℃에서 급격히 승화하기 시작하여 약 200 ℃에서 승화가 완료되어 잔류물이 거의 없으며, T1/2(시료의 무게가 처음 무게의 1/2이 되는 온도)이 185 ℃임을 알 수 있다.Results of thermogravimetric analysis (TGA) and differential thermal analysis (DTA) of the prepared precursors are shown in FIG. 1. From FIG. 1, methyl (1-dimethylamino-2-methyl-2-propoxy) zinc (II) begins to sublimate rapidly at about 120 ° C. and completes sublimation at about 200 ° C. with little residue. T 1 It can be seen that / 2 (the temperature at which the sample weight is half the original weight) is 185 ° C.

실시예 1: 산화아연 박막의 제조Example 1 Preparation of Zinc Oxide Thin Film

제조예 1에서 얻은 물질을 선구 물질로 사용하여 MOCVD 공정을 수행하였다.The MOCVD process was performed using the material obtained in Preparation Example 1 as a precursor material.

구체적으로는, 규소 기질의 표면을 증류수 또는 아세톤으로 세척한 후, 80 ℃로 가열한 피라냐 용액 (황산:과산화수소의 비가 1:1인 용액) 내에서 30 분 동안 산화 처리하여 산화막을 형성한 다음 다시 증류수로 세척하고 질소로 표면을 건조시켜 박막 형성용 기질을 준비하였다. 준비한 기질을 스테인레스 강 반응기 내부의 가열기에 장착한 후, 진공 펌프를 가동하여 반응기 내부의 압력이 10-5 Torr가 되게 하였다. 이어서, 제조예 1에서 얻은 박막 선구 물질을 90 ℃로 유지하여 승화시키면서 운반 기체인 아르곤과 함께 14 cc/min의 유속으로 반응기에 주입하여 1시간 동안 규소 기질 위에 박막을 침착시켰다. 박막을 침착시킬 때 기질 온도는 275 ℃로, 반응기의 압력은 6 × 10-1 Torr로 유지하였다.Specifically, the surface of the silicon substrate is washed with distilled water or acetone, and then oxidized in a piranha solution (solution having a ratio of sulfuric acid to hydrogen peroxide 1: 1) heated to 80 ° C. for 30 minutes to form an oxide film, and then again. A substrate for thin film formation was prepared by washing with distilled water and drying the surface with nitrogen. After the prepared substrate was mounted on the heater inside the stainless steel reactor, the vacuum pump was operated so that the pressure inside the reactor was 10 -5 Torr. Subsequently, the thin film precursor obtained in Preparation Example 1 was injected into the reactor at a flow rate of 14 cc / min with argon as a carrier gas while maintaining the sublimation at 90 ° C to deposit a thin film on the silicon substrate for 1 hour. The substrate temperature was maintained at 275 ° C. and the reactor pressure was 6 × 10 −1 Torr when the thin film was deposited.

이와 같이 제조한 박막의 X선 회절 분석 결과를 도 2에 나타내었다. 도 2로부터, 2θ = 34.5˚ 위치에서 산화아연의 (0002) 면에 해당하는 봉우리만이 관찰되는 것으로 보아, 산화아연이 [0001] 방향으로 우선 성장하였음을 알 수 있다 (참 조: JCPDS 36-1451). 또한, 도 2의 X선 회절 무늬로부터 반높이 나비(full-width at half maximum, FWHM)를 측정한 결과 그 값은 약 0.2°로서, 제조한 막의 결정성이 매우 우수함을 확인할 수 있다.The X-ray diffraction analysis of the thin film thus prepared is shown in FIG. 2. From Fig. 2, it can be seen that only peaks corresponding to the (0002) plane of zinc oxide are observed at the position 2θ = 34.5 °, indicating that zinc oxide first grew in the [0001] direction (see JCPDS 36-). 1451). In addition, as a result of measuring the full-width at half maximum (FWHM) from the X-ray diffraction pattern of Figure 2, the value is about 0.2 °, it can be seen that the crystallinity of the prepared film is very excellent.

실시예 2: 산화아연 박막의 제조Example 2: Preparation of Zinc Oxide Thin Film

박막을 침착시킬 때 기질의 온도를 250 ℃로 유지하는 것을 제외하고는, 실시예 1과 동일한 공정을 수행하여 기질 위에 산화아연 박막을 침착시켰다.A zinc oxide thin film was deposited on the substrate by following the same process as Example 1 except that the temperature of the substrate was maintained at 250 ° C. when the thin film was deposited.

실시예 3-7: 산화아연 박막의 제조Example 3-7 Preparation of Zinc Oxide Thin Film

박막을 침착시킬 때 기질의 온도를 각각 300, 325, 350, 375, 400 ℃로 유지하는 것을 제외하고는, 실시예 1과 동일한 공정을 수행하여 기질 위에 산화아연 박막을 침착시켰다. The zinc oxide thin film was deposited on the substrate by the same process as in Example 1 except that the temperature of the substrate was maintained at 300, 325, 350, 375, and 400 ° C. when the thin film was deposited.

이와 같이 제조한 박막 중 실시예 2 및 3에서 제조한 박막의 X선 회절 무늬를 도 3 및 4에 각각 나타내었다. 도 3 및 4로부터, 250 ℃ 및 300 ℃의 온도에서 성장한 박막에서는 2θ = 31.8˚, 34.5˚, 36.3˚ 및 56.6˚ 위치에서 봉우리가 관찰되었으며, 이는 산화아연이 각각

Figure 112005031291847-pat00001
,
Figure 112005031291847-pat00002
,
Figure 112005031291847-pat00003
,
Figure 112005031291847-pat00004
면으로도 성장하였음을 보여 주는 것이다.X-ray diffraction patterns of the thin films prepared in Examples 2 and 3 of the thin films thus prepared are shown in FIGS. 3 and 4, respectively. From Figs. 3 and 4, the peaks were observed at 2θ = 31.8 °, 34.5 °, 36.3 ° and 56.6 ° in thin films grown at temperatures of 250 ° C. and 300 ° C., respectively.
Figure 112005031291847-pat00001
,
Figure 112005031291847-pat00002
,
Figure 112005031291847-pat00003
,
Figure 112005031291847-pat00004
It also shows that it grew in cotton.

또한, 실시예 2, 3, 5 및 7에서 제조한 산화아연 박막의 주사전자현미경 사진을 도 5 내지 8에 각각 나타내었다. 도 5 내지 8로부터, 박막 성장 온도가 250 ℃인 경우(실시예 2)에는 성장한 박막의 표면이 매우 매끄러우며 수십 나노미터 크 기의 입자가 고르게 분포하고 있으며, 성장 온도가 250 ℃보다 높아짐에 따라 박막 표면이 점차 거칠어지고 평균 입자 크기도 증가함을 알 수 있다.In addition, scanning electron micrographs of the zinc oxide thin films prepared in Examples 2, 3, 5, and 7 are shown in FIGS. 5 to 8, respectively. 5 to 8, when the thin film growth temperature is 250 ° C. (Example 2), the surface of the grown thin film is very smooth and tens of nanometer-sized particles are evenly distributed, and as the growth temperature is higher than 250 ° C. It can be seen that the surface of the thin film gradually becomes rough and the average particle size also increases.

상기에서 살펴본 바와 같이, 본 발명에 따라 박막 선구 물질로서 아미노알킬산알킬아연을 사용하여 금속 유기물 화학 증착 공정을 수행하면 산소 원을 별도로 공급하지 않고도 기존 방법에 비해 더 낮은 온도에서 일정한 배향으로 성장한 고품질 산화아연 박막을 제조할 수 있다.As described above, according to the present invention, when the metal organic chemical vapor deposition process is performed using alkyl zinc alkylaminoalkyl as a thin film precursor, a high quality grown in a constant orientation at a lower temperature than a conventional method without supplying an oxygen source separately Zinc oxide thin films can be prepared.

Claims (6)

아미노알킬산알킬아연을 기화시킨 후 생성한 증기를 기질과 접촉시켜 기질 위에 산화아연 박막을 침착시키는 것을 포함하는, 산화아연 박막의 제조 방법.A method for producing a zinc oxide thin film, comprising depositing a zinc oxide thin film on a substrate by vaporizing the alkylzinc aminoalkyl acid zinc and then producing the vapor. 제 1 항에서, In claim 1, 아미노알킬산알킬아연이 메틸(1-디메틸아미노-2-메틸-2-프로폭시)아연(II), 에틸(1-디메틸아미노-2-메틸-2-프로폭시)아연(II) 및 메틸(1-디메틸아미노-2-에틸-2-부톡시)아연(II)으로 이루어진 군 중에서 선택됨을 특징으로 하는 방법.Alkyl zinc aminoalkyl acid is methyl (1-dimethylamino-2-methyl-2-propoxy) zinc (II), ethyl (1-dimethylamino-2-methyl-2-propoxy) zinc (II) and methyl ( 1-dimethylamino-2-ethyl-2-butoxy) zinc (II). 제 1 항에서, In claim 1, 기질을 규소 (111) 기판, 사파이어 (0001) 기판 및 산화아연 (0001) 기판 중에서 선택함을 특징으로 하는 방법.Wherein the substrate is selected from a silicon (111) substrate, a sapphire (0001) substrate and a zinc oxide (0001) substrate. 제 1 항 또는 제 3 항에서, The method of claim 1 or 3, 기질이 표면 산화 처리된 것임을 특징으로 하는 방법.Wherein the substrate is surface oxidized. 제 1 항에서, In claim 1, 박막을 침착시킬 때 기질 온도가 250 내지 400 ℃ 범위인 것을 특징으로 하는 방법.Wherein the substrate temperature ranges from 250 to 400 ° C. when depositing the thin film. 제 1 항에서, In claim 1, 아미노알킬산알킬아연을 60 내지 90 ℃에서 기화시키는 것을 특징으로 하는 방법.Alkyl zinc aminoalkyl acid is vaporized at 60 to 90 캜.
KR1020050050826A 2005-06-14 2005-06-14 Process for preparing zinc oxide thin film KR100644163B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050050826A KR100644163B1 (en) 2005-06-14 2005-06-14 Process for preparing zinc oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050050826A KR100644163B1 (en) 2005-06-14 2005-06-14 Process for preparing zinc oxide thin film

Publications (1)

Publication Number Publication Date
KR100644163B1 true KR100644163B1 (en) 2006-11-10

Family

ID=37654152

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050050826A KR100644163B1 (en) 2005-06-14 2005-06-14 Process for preparing zinc oxide thin film

Country Status (1)

Country Link
KR (1) KR100644163B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030001388A (en) * 2000-03-27 2003-01-06 토호쿠 테크노 아르크 코포레이션 리미티드 Zinc Oxide Semiconductor Material
KR100385634B1 (en) 2000-09-26 2003-05-27 학교법인 포항공과대학교 Metal-organic chemical vapor deposition of zinc oxide thin films exhibiting lasers
JP2004099412A (en) 2002-09-12 2004-04-02 Inst Of Physical & Chemical Res Material having zinc oxide thin film and method for manufacturing the same
KR100456016B1 (en) 2002-01-10 2004-11-06 학교법인 포항공과대학교 A process for preparing a zinc oxide nanowire by metal organic chemical vapor deposition and a nanowire prepared therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030001388A (en) * 2000-03-27 2003-01-06 토호쿠 테크노 아르크 코포레이션 리미티드 Zinc Oxide Semiconductor Material
KR100385634B1 (en) 2000-09-26 2003-05-27 학교법인 포항공과대학교 Metal-organic chemical vapor deposition of zinc oxide thin films exhibiting lasers
KR100456016B1 (en) 2002-01-10 2004-11-06 학교법인 포항공과대학교 A process for preparing a zinc oxide nanowire by metal organic chemical vapor deposition and a nanowire prepared therefrom
JP2004099412A (en) 2002-09-12 2004-04-02 Inst Of Physical & Chemical Res Material having zinc oxide thin film and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6209168B2 (en) Molybdenum allyl complex and its use in thin film deposition
US7462732B2 (en) Volatile nickel aminoalkoxide complex and deposition of nickel thin film using same
JP6471371B2 (en) Molybdenumsilcyclopentadienyl complexes, silylallyl complexes, and their use in thin film deposition
EP1299404B1 (en) Organometallic compounds and their use as precursors for forming films and powders of metal or metal derivatives
TW201512177A (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
JP6340470B2 (en) Molybdenum and tungsten-containing precursors for thin film deposition
KR101404714B1 (en) Ruthenium compounds with good step coverage, and deposited film using them
KR20080061381A (en) Organometallic compounds and methods of use thereof
TW201031770A (en) Metal complexes for the chemical vapour deposition of platinum
JP2020189841A (en) Metal complex including allyl ligand
US6809212B2 (en) Method for producing organometallic compounds
WO1993004212A1 (en) Preparation of group iii element-group vi element compound films
KR100644163B1 (en) Process for preparing zinc oxide thin film
CN115448954B (en) ALD precursor molybdenum complex and preparation method thereof
Bhakta et al. Mononuclear Mixed β‐Ketoester‐alkoxide Compound of Titanium as a Promising Precursor for Low‐Temperature MOCVD of TiO2 Thin Films
KR100319389B1 (en) Organogallium compound, process for the preparation thereof and preparation of gallium nitride film using same
KR102355133B1 (en) Precursor For Forming A Thin Film, Method For Preparing Thereof, Method For Preparing The Thin Film, and The Thin Film
KR20180057059A (en) Manganese aminoamide amidinate precursors, preparation method thereof and process for the formation of thin film using the same
Su et al. Bis (β-ketoiminate) dioxo tungsten (VI) complexes as precursors for growth of WOx by aerosol-assisted chemical vapor deposition
KR100965270B1 (en) Gallium complexes with donor-functionalized ligands and process for preparing thereof
KR102548031B1 (en) Novel Organo-Indium Compounds and Method for forming thin film using the same
KR100666755B1 (en) Novel iron amino-alkoxide complexes and process for preparing thereof
KR100711010B1 (en) Process for preparing zirconium oxide thin films
JP4042959B2 (en) Tris (diisobutyrylmethanate) neodymium and method for producing neodymium-substituted bismuth titanate ferroelectric thin film by chemical vapor deposition using the same
KR20230076621A (en) Novel Organo-Mollibdenum or Organo-Tungsten Compounds, Preparation method thereof, and Method for deposition of thin film using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091228

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee