JP4042959B2 - Tris (diisobutyrylmethanate) neodymium and method for producing neodymium-substituted bismuth titanate ferroelectric thin film by chemical vapor deposition using the same - Google Patents

Tris (diisobutyrylmethanate) neodymium and method for producing neodymium-substituted bismuth titanate ferroelectric thin film by chemical vapor deposition using the same Download PDF

Info

Publication number
JP4042959B2
JP4042959B2 JP2002163569A JP2002163569A JP4042959B2 JP 4042959 B2 JP4042959 B2 JP 4042959B2 JP 2002163569 A JP2002163569 A JP 2002163569A JP 2002163569 A JP2002163569 A JP 2002163569A JP 4042959 B2 JP4042959 B2 JP 4042959B2
Authority
JP
Japan
Prior art keywords
neodymium
divm
thin film
tris
ferroelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002163569A
Other languages
Japanese (ja)
Other versions
JP2003321417A (en
JP2003321417A5 (en
Inventor
弓恵 奥原
秀公 門倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP2002163569A priority Critical patent/JP4042959B2/en
Publication of JP2003321417A publication Critical patent/JP2003321417A/en
Publication of JP2003321417A5 publication Critical patent/JP2003321417A5/ja
Application granted granted Critical
Publication of JP4042959B2 publication Critical patent/JP4042959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、化学気相成長法(以下CVD法と表す)に用いられるトリス(竈−ジケトナート)ネオジムおよびそれを用いるネオジム置換チタン酸ビスマス強誘電体薄膜の製造方法に関する。
【0002】
【従来の技術】
高集積の不揮発性メモリーに(Bi4−x,Ln)Ti12(0<x<1)(以下BLnTと表す、LnはランタノイドすなわちLaからLuまでの元素を表す)や(Bi4−x,Ln)(Ti3−y,V)O12(0<x<1、0<y<0.2)(以下BLnTVと表す)の強誘電体薄膜が検討されている。LnがLaであるBi3.25La0.75Ti12(以下BLTと表す)はB.H.Park etal,Nature,Vol.401,p682(14.Oct.1999)によって発明された。Laの代わりにNdを使い、さらにTiの一部をVで置換すると低温でより優れた強誘電特性を示すことが、渡辺、野口、宮山、船窪ら、第62回応用物理学会講演予稿集p387(2001.9)で発表されている。
【0003】
これらの薄膜を量産性よく製造する方法として、CVD法が検討されている。その原料供給方式には、Bi,Ln,Tiの各化合物をそのまま気化して供給する方式と、溶液にして気化供給する方式があるが、後者のほうが量産に向いている。
前者の方法としては、渡辺ら、第48回応用物理学会講演予稿集p561(2001.3)は、BiMe、La(dpm)、Ti(OiPr)、VO(OEt)をバブリングでそのまま気化供給し、O共存下で540℃の低温CVDを行い、(Bi3.25La0.75)(Ti2.970.03)O12の強誘電体薄膜を作ったことを発表している。La(dpm)だけは固体なので、昇華供給であった。
さらに、渡辺ら、第49回応用物理学会講演予稿集p528(2002.3)は、BiMe、Nd(tmod)、Ti(OiPr)、VO(OEt)をバブリングでそのまま気化供給し、O共存下で630℃のCVDを行い、(Bi3.6Nd0.4)(Ti2.90.1)O12の強誘電体薄膜を作ったことを開示している。Nd(tmod){トリス(2,2,6,6−テトラメチル−3,5−オクタンジオナート)ネオジム}は特開平9−228049で開示されている化合物であり、その融点は134〜136℃である。
【0004】
後者の溶液気化法に用いられるLn源としては、従来トリス(ジピバロイルメタナート)ランタノイド(以下Ln(dpm)と表す)が検討されてきた。しかしこの化合物は、融点が高く、La(dpm)では260℃であり、気化器での固体析出の可能性があり、また、溶解度の点で使用可能な有機溶媒が限られているという欠点があった。La(tmod)の融点は約200℃であり、Nd(tmod)ほど低い化合物ではなかった。よってランタノイド、特にLaでは、より低い融点の化合物で、かつ低温でCVD成膜できる化合物が望まれていた。
【0005】
日本国特許第2799763号では、ジピバロイルメタネート化合物に代わるIIA,IIIA,IVA,IB族の多くの金属元素のトリス(2,6−ジメチル−3,5−ヘプタンジオネート)すなわちトリス(ジイソブチリルメタネート)とトリス(2,2,6−トリメチル−3,5−ヘプタンジオネート)が挙げられている。その特徴は、キャリヤーガスを導入して、気化同伴させて供給する場合、これらの化合物の気化温度と分解温度がはっきり離れており、不活性ガスに同伴される錯体量が従来品よりも多いため高速成膜が可能で、成膜された金属膜の特性も優れていることである。
本発明のトリス(ジイソブチリルメタナート)ランタノイド[トリス(2,6−ジメチル−3,5−ヘプタンジオナート)ランタノイド、Ln(C15、以下Ln(dibm)と表す]は、該特許のクレームに含まれるが、合成・同定はされていない。さらに、本発明化合物のLa(dibm)、Nd(dibm)の融点がそれぞれ110℃、130℃と低く、有機溶媒に非常によく溶け、溶液気化法で使用し、La(dpm)、Nd(dpm)より低温でLa、Ndの堆積ができるということは、なんら示唆されていなかった。
【0006】
より低い温度でBLnT薄膜やBLnTV薄膜が成膜できれば、プロセス上、また表面平滑性などの膜特性が優れるので有利である。600℃以下、好ましくはAl配線が可能な450℃程度の基板温度で薄膜をつくることが望まれていたが、まだ溶液気化法で原料を供給して、600℃以下で成膜した例はない。
【0007】
【発明が解決しようとする課題】
本発明者らは、溶液気化の原料として、Bi(dpm)−La(dpm)−Ti(OiPr)(dpm)の組合わせを用い、溶媒として酢酸n−ブチルを用いてBLTの成膜をしたところ、基板温度600℃以下では、膜にLaが入りにくく、大過剰のLa(dpm)を供給しなければならず、問題であることがわかった。その原因はLa(dpm)からのLa堆積温度がBi(dpm)やTi(OiPr)(dpm)の堆積温度に比べて高いためと推定された。さらにLa(dpm)は酢酸n−ブチルに対する溶解度が0.4mol/Lと小さく、融点も260℃と高いため、溶媒の先飛びや配管の加熱不足が原因の固体析出を起こしやすいことがわかった。
【0008】
本発明の目的は、上記問題を解決するために、そのLa堆積温度がLa(dpm)より低く、各種溶媒に対する十分な溶解度をもち、さらに融点が低いLa化合物を見つけ、600℃以下で、BLT薄膜の製造方法を提供することである。さらに同様な目的でNdなどのLn化合物を見つけ、低温でのBLnTV薄膜の製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、La(dibm)やNd(dibm)を使えばBLnT薄膜やBLnTV薄膜を600℃以下の低温で成膜できること、さらに融点は約110℃と室温では固体であるが、有機溶媒によく溶け安定であること、200〜250℃の気化温度で分解することなく気化し、その溶液の気化特性も優れていることを見出し、本発明を完成するに至った。
【0011】
本発明は、融点が低く、有機溶媒に非常によく溶け、溶液気化法で低温成膜が可能なNd(dibm) 3 、すなわち、トリス(ジイソブチリルメタナート)ネオジムである。
【0013】
本発明は、溶液気化により原料を供給し、化学気相成長法でネオジム置換チタン酸ビスマス強誘電体薄膜を製造する方法において、ネオジム源としてトリス(ジイソブチリルメタナート)ネオジムを用いることを特徴とするネオジム置換チタン酸ビスマス強誘電体薄膜の製造方法である。
【0014】
本発明は、基板温度が450〜600℃であることを特徴とする上記記載のネオジム置換チタン酸ビスマス強誘電体薄膜の製造方法である。
【0015】
本発明は、ビスマス源としてトリス(ジピバロイルメタナート)ビスマスまたはトリフェニルビスマス、チタン源としてジ(イソプロポキシ)ビス(ジピバロイルメタナート)チタンまたはジ(イソプロポキシ)ビス(ジイソブチリルメタナート)チタンと酸化剤を用いることを特徴とする上記記載のネオジム置換チタン酸ビスマス強誘電体薄膜の製造方法である。
【0016】
【発明の実施の形態】
Ln(dibm)の製法は、R.C.Young,A.Arch,Inorg.Synth.Vol.2,121(1946)に記載された、金属塩の水溶液にβ−ジケトンを直接に加えて水に不溶な金属キレートを析出させて得る製法を基に、改良を加えた方法である。以下La(dibm)を例にして説明する。
【0017】
硝酸ランタンと1〜1.1当量のdibmHを水−アルコール溶媒中に溶かし、pH7〜8となるまでアンモニア水を加えるとLa(dibm)の粗結晶が得られる。これをデカンテーションによって分離した後、溶媒、未反応dibmHを常圧〜減圧で留去する。精製は再結晶でも可能であるが、0.01〜1Torrでの真空蒸留が好ましい。こうすることにより溶液気化用原料として最適な、パーティクルや不揮発分を含まない、完全な揮発成分のみのLa(dibm)が得られる。
【0018】
以下に参考例1で得られたLa(dibm)3の同定とCVDに必要な物性の測定結果を記す。
(1)組成分析
ICP発光分光分析の結果
La分析値 22.7% (理論値23.0%)
(2)不純物分析
ICP発光分光分析の結果(単位ppm)
K<1,Na 5,Mg<1,Ca<1,Fe<2,Cu<2,Zn<1,であり、高純度であった。また、全Cl分析の結果、Clは<2ppmであった。
【0019】
(3)EI−MS
測定条件
装置:JEOL AX505W、イオン化法:EI、導入法:直接導入法、イオン化エネルギー:70eV、
測定結果を図1に示した。
主なm/zと強度(%)とそのイオン種を以下に列挙した。
m/z=604(26%)La(dibm) 分子イオン
561(13%)La(dibm)(MeHCCOCHCO)449(100%)La(dibm)
【0020】
(4)H−NMR
測定条件
装置:BRUKER AC300P(300MHz)、溶媒:ベンゼン−d、方法:1D、
測定結果を図2に示した。
δ(ppm)と(帰属)を以下に列挙する。
1.03+1.18+1.20(36H,CH(C
2.51(6H,C(CH
5.31+5.52(3H,C
【0021】
(5)FT−IR
測定条件
装置:SHIMADZU FT−IR8600、
方法:トルエン溶液をKBr板にキャスト後トルエンを蒸発除去した。
分解能:4.0cm−1
測定結果を図3に示した。
スペクトル(cm−1
2963,2921,2870,1593,1531,1504,1427,1383,1360,1331,1313,1232,1155,1092,1057,959,918,789,760,430,
【0022】
以上の結果からLa(dibm)と同定した。
【0023】
(6)性状と融点
淡橙色固体
融点110℃
【0024】
(7)蒸気圧
195℃/0.1Torr
【0025】
(8)TG−DTA
測定条件
昇温速度10.0deg/min
測定はAr1気圧とAr2Torrの2条件で行った。
Ar200sccm、1気圧、試料12.19mgの結果を図4に示す。
Ar50sccm、2Torr、試料16.55mgの結果を図5に示す。
図4、5よりLa(dibm)は250℃で熱分解している様子はない。しかし図4よりLa(dibm)は350℃付近から熱分解していることがわかる。また、図5より300℃での気化率が99.56%で100%ではないが、試料皿には何も残っていなかったことから、完全に気化したと考えられる。
【0026】
(9)溶解度
溶媒1Lに室温で溶解する質量(単位g)を表1に示す。
【0027】
【表1】

Figure 0004042959
【0028】
比較にLa(dpm)の酢酸n−ブチル中への溶解度は300g、トルエン、ヘキサンにはまったく溶けないことから、La(dibm)がかなりよくこれらの溶媒に溶けることがわかる。溶媒種の選択範囲が非常に広くなった。
【0029】
La(dibm)のCVDで基板へのLaの堆積が確認される下限の基板温度を実施例3で調べた結果、約400℃であった。この温度は比較例1の結果、La(dpm)の約500℃に比べ、約100℃ほど低かった。これは、dibm基の方がdpm基より、低温で酸化分解するためと考えられる。すなわちLa(dibm)の方がPLZT膜を低温で形成可能なことを表している。
なお温度の絶対値は、CVDの圧力や酸化ガスの種類により異なるが、両者の傾向は変わらない。
【0030】
本発明のBLTやBLnTV膜形成用の1成分であるBi化合物は、Bi(dpm)またはBiPhである。またTi化合物は、Ti(OiPr)(dpm)あるいはTi(OiPr)(dibm)である。またV化合物は、V(dpm)が使える。
【0031】
原料溶液の供給方法は、Bi、Ln、Ti、V化合物の個々の溶液を、それぞれのソースシリンダーから計量、気化器直前で混合され、一つの気化器で気化された後、CVD室に供給する方法と、Bi、Ln、Ti、V化合物を1つの溶液に含んだ原料を用い、その溶液を気化器で気化後、CVD室に供給する方法がある。前者は、溶液のポットライフが一溶液法に比べ長く、気化器を一つにする装置上の利点もある。後者は、供給装置が最も簡素化され、しかも溶液の組成均一性や得られた膜組成の均一性が優れている。
【0032】
本発明では、BLnTやBLnTV成膜の基板温度が450〜600℃である。Bi、Ln、Ti、V源を低温堆積可能な化合物を使うことにより、このような低温でも良好な強誘電性を示す膜が得られる。酸化ガスとしては、O、O、NO、NOなどが使える。CVD室の圧力は、0.001〜10Torrである。
【0033】
参考例1】
La(dibm)3の製造
攪拌子を備えた300ml三つ口フラスコにメタノール100mlとdibmH12.5g(80.0mmol)を仕込み、次いで硝酸ランタン六水和物10.4g(24.2mmol)をイオン交換水15.9gで溶解した溶液を攪拌下添加た。次いで28%アンモニア水5.0gをイオン交換水10.0gで希釈したものを滴下ロートより添加すると、液中に白色の粗製La(dibm)3が析出しはじめ、液温もわずかに上昇し、反応溶液はpH7.5となった。これをそのまま室温で2時間攪拌した後、粗製La(dibm)3の結晶をデカンテーションで分離して分離・回収した。回収した結晶を釜温度100〜110℃、圧力1〜2Torrで溶媒や末反応dibmHを留去し、粗製La(dibm)3を得た。この粗製La(dibm)3を、加熱温度240℃、圧力0.1〜0.2Torrで蒸留し、精製品8.4gを得た。収率57.9%であった。
【0034】
【実施例
Nd(dibm)3の製造
攪拌子を備えた300ml三つ口フラスコにメタノール70mlとdibmH10.0g(64.0mmol)を仕込み、次いで硝酸ネオジム5.2水和物8.0g(20.3mmol)をイオン交換水15.7gで溶解した紫色溶液を撹拌下添加した。次いで28%アンモニア水4.2gをイオン交換水10.7gで希釈したものを滴下ロートより添加すると、液温がわずかに上昇し、反応溶液はpH7.0となった。これをそのまま室温で2時間撹拌した後、1時間静置すると朱色のゼリー状粗製Nd(dibm)3が沈殿し、上澄液は無色透明液となった。次いでデカンテーションで分離・回収したゼリー状結晶を釜温度100〜110℃、圧力1〜2Torrで溶媒や未反応dibmHを留去し、粗製Nd(dibm)3を得た。この粗製Nd(dibm)3を、加熱温度220℃、圧力0.1〜0.2Torrで蒸留し、精製品8.1gを得た。収率65.3%であった。
【0035】
得られたNd(dibm)の分析と物性をLa(dibm)と同様に測定し、その結果を以下に記した。
Nd分析値:24.0% (理論値23.6%)
不純物分析値(ppm):K 3,Mg 2,Fe 9,Cu<2,Zn<1,Cl<2,
性状:赤紫色固体、融点130℃
蒸気圧:190℃/0.1Torr
TG−DTA:Ar200sccm、1気圧、試料16.6mg、
測定結果を図6に示す。
Nd(dibm)は350℃付近から熱分解していることがわかる。
溶解度:溶媒1Lに室温で溶解する質量(単位g)を表2に示す。
【0036】
【表2】
Figure 0004042959
【0037】
参考例2
La(dibm)3のCVDによるLa23膜の成膜
La(dibm)3の酢酸ブチル溶液(濃度0.1mol/1)0.1ml/minを250℃の気化器に送り、予熱したArガス200sccmとともに蒸発させ、CVD室に送った。これに予熱したO2ガス100sccmをCVD室入り口で混合し、反応圧力1Torr、400〜500℃の加熱されたSi基板上に導き、熱分解堆積させた。20分後、基板を取り出し膜厚測定すると、400℃で約15nmのLa23膜が形成されていた。500℃では約55nmであった。
【0038】
【比較例1】
La(dpm)3のCVDによるLa23膜の成膜
参考例2において、La(dibm)3をLa(dpm)3に代えた他は、参考例2と同様にした。400℃では、La23膜は形成されていなかった。500℃では約20nmであった。
【0039】
参考例3
La(dibm)3溶液を用いたBLT膜の製造
Bi(dpm)3の酢酸n−ブチル溶液(濃度0.1mol/1)を0.32ml/minで送り、Ti(OiPr)2(dpm)2の酢酸n−ブチル溶液(濃度0.1mol/l)を0.1ml/minで送り、La(dibm)3の酢酸n−ブチル溶液(濃度0.1mol/l)を0.3ml/minで送り、この3液を気化器直前で混合し、240℃の気化器で、予熱したArガス300sccmとともに気化させ、CVD室に送った。これと予熱したO2ガス700sccmとをCVD室入り口で混合し、反応圧1Torr、500℃に加熱されたPt(111)/SiO2/Si基板上に導き、熱分解堆積させた。20分後基板を取り出し膜厚測定すると200nmの膜が形成されていた。この膜はXRDよりペロブスカイト相のBLTで、組成分析の結果、Bi:La:Ti=3.2:0.8:3.0であった。
【0040】
【比較例2】
La(dpm)3溶液を用いたBLT膜の製造
参考例3において、La(dibm)3をLa(dpm)3に代えた他は、参考例3と同様にして、成膜した。しかし膜組成分析の結果、Bi:La:Ti=3.8:0.2:3.0とLaが少なく、良好なペロブスカイト相は形成されなかった。
【0041】
【実施例
Nd(dibm)3溶液を用いた(Bi3.6Nd0.4)(Ti2.90.1)O12膜の製造
Bi(dpm)3の酢酸n−ブチル溶液(濃度0.1mol/l)を0.36ml/minで送り、Nd(dibm)3の酢酸n−ブチル溶液(濃度0.1mol/l)を0.04ml/minで送り、Ti(OiPr)2(dpm)2の酢酸n−ブチル溶液(濃度0.1mol/l)を0.30ml/minで送り、V(dpm)3の酢酸n−ブチル溶液(濃度0.01mol/l)を0.10ml/minで送り、この4液を気化器直前で混合し、240℃の気化器で、予熱したArガス300sccmとともに気化させ、CVD室に送った。これと予熱したO2ガス700sccmとをCVD室入り口で混合し、反応圧1Torr、500℃に加熱されたPt(111)/SiO2/Si基板上に導き、熱分解堆積させた。20分後基板を取り出し膜厚測定すると200nmの膜が形成されていた。この膜は、XRDよりBi4Ti312と同様にC軸配向膜であった。この膜を溶解し、組成分析した結果、Bi:Nd:Ti:V=3.6:0.4:2.9:0.1であった。
【0042】
参考例4
La(dibm)3の酢酸n−ブチル溶液のポットライフ
La(dibm)33.0g(5mmol)をメスフラスコに入れ、脱酸素した水分15ppmの酢酸n−ブチルで50mlとし、気相部を乾燥Arとし、密封した。この溶液を室温に保ち、3ケ月後に色、濁りの生成を観察したが、淡黄色の完全透明状態が保たれていた。この3ケ月後の溶液をフラスコにとり、室温真空下で溶媒を蒸発除去し、次いで、240℃で真空蒸留したところ、全量が蒸発回収され、フラスコ内壁に薄い茶色の膜がわずかに残った程度であった。気化特性は全く変化していず、正常であることがわかった。よって3ケ月のポットライフがあると言える。
【0043】
【発明の効果】
溶液気化方式のCVD法でBLTやBLnTV薄膜を成膜する場合、Ln源としてLa(dibm)やNd(dibm)を用いることにより、基板温度450〜600℃の低温で成膜できる。
【図面の簡単な説明】
【図1】La(dibm)のEI−MSによる測定結果を示す図である。
【図2】La(dibm)H−NMRによる測定結果を示す図である。
【図3】La(dibm)のFT−IRによる測定結果を示す図である。
【図4】La(dibm)の1気圧でのTG−DTAによる測定結果を示す図である。
【図5】La(dibm)の10TorrでのTG−DTAによる測定結果を示す図である。
【図6】Nd(dibm)の1気圧でのTG−DTAによる測定結果を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to tris (竈 -diketonate) neodymium used in chemical vapor deposition (hereinafter referred to as CVD) and a method for producing a neodymium- substituted bismuth titanate ferroelectric thin film using the same.
[0002]
[Prior art]
(Bi 4-x , Ln x ) Ti 3 O 12 (0 <x <1) (hereinafter referred to as BLnT, Ln represents an element from lanthanoid, that is, La to Lu) or (Bi 4 -x, Ln x) (Ti 3 -y, V y) O 12 (0 <x <1,0 <y <0.2) ferroelectric thin film (hereinafter referred to as BLnTV) has been studied. Bi 3.25 La 0.75 Ti 3 O 12 (hereinafter referred to as BLT) in which Ln is La H. Park et al, Nature, Vol. 401, p682 (14. Oct. 1999). When Nd is used instead of La and a part of Ti is replaced with V, it exhibits better ferroelectric properties at low temperatures. Watanabe, Noguchi, Miyayama, Funaboku et al., Proc. (2001.9).
[0003]
A CVD method has been studied as a method for producing these thin films with high productivity. The raw material supply method includes a method in which each compound of Bi, Ln, and Ti is vaporized and supplied as it is, and a method in which the compound is vaporized and supplied as a solution, but the latter is more suitable for mass production.
As for the former method, Watanabe et al., 48th JSAP Conference Proceedings p561 (2001.3), BiMe 3 , La (dpm) 3 , Ti (OiPr) 4 , VO (OEt) 3 are bubbling as they are. Announced that vaporized supply and low temperature CVD at 540 ° C. in the presence of O 2 to produce a ferroelectric thin film of (Bi 3.25 La 0.75 ) (Ti 2.97 V 0.03 ) O 12 is doing. Since only La (dpm) 3 was a solid, it was a sublimation supply.
Furthermore, Watanabe et al., Proceedings of the 49th Japan Society of Applied Physics, p528 (2002. 2), vaporizes and supplies BiMe 3 , Nd (tmod) 3 , Ti (OiPr) 4 , and VO (OEt) 3 as they are. It discloses that a ferroelectric thin film of (Bi 3.6 Nd 0.4 ) (Ti 2.9 V 0.1 ) O 12 was formed by performing CVD at 630 ° C. in the presence of O 2 . Nd (tmod) 3 {Tris (2,2,6,6-tetramethyl-3,5-octanedionate) neodymium} is a compound disclosed in JP-A-9-228049, and has a melting point of 134-136. ° C.
[0004]
As an Ln source used in the latter solution vaporization method, tris (dipivaloylmethanate) lanthanoid (hereinafter referred to as Ln (dpm) 3 ) has been studied. However, this compound has a high melting point, 260 ° C. in La (dpm) 3 , may cause solid precipitation in a vaporizer, and has a drawback that usable organic solvents are limited in terms of solubility. was there. La (tmod) 3 had a melting point of about 200 ° C. and was not as low as Nd (tmod) 3 . Therefore, for lanthanoids, especially La, a compound having a lower melting point and capable of forming a CVD film at a low temperature has been desired.
[0005]
In Japanese Patent No. 2799763, tris (2,6-dimethyl-3,5-heptanedionate) or tris of many metal elements of the IIA, IIIA, IVA, and IB groups, which replace the dipivaloylmethanate compound. Diisobutyrylmethanate) and tris (2,2,6-trimethyl-3,5-heptanedionate). The feature is that when a carrier gas is introduced and supplied with vaporization, the vaporization temperature and decomposition temperature of these compounds are clearly separated, and the amount of complex entrained in the inert gas is larger than that of the conventional product. High-speed film formation is possible, and the characteristics of the formed metal film are excellent.
Tris (diisobutyrylmethanate) lanthanoid [tris (2,6-dimethyl-3,5-heptanedionate) lanthanoid, Ln (C 9 H 15 O 2 ) 3 , hereinafter referred to as Ln (divm) 3 ] Is included in the claims of the patent, but not synthesized or identified. Furthermore, the melting points of La (divm) 3 and Nd (divm) 3 of the compounds of the present invention are as low as 110 ° C. and 130 ° C., respectively, and they are very well soluble in organic solvents and used in the solution vaporization method, La (dpm) 3 , There was no suggestion that La 2 O 3 and Nd 2 O 3 can be deposited at a temperature lower than Nd (dpm) 3 .
[0006]
If a BLnT thin film or a BLnTV thin film can be formed at a lower temperature, it is advantageous in terms of process and film characteristics such as surface smoothness. Although it was desired to form a thin film at a substrate temperature of 600 ° C. or lower, preferably about 450 ° C. capable of Al wiring, there is no example of forming a film at 600 ° C. or lower by supplying raw materials by a solution vaporization method. .
[0007]
[Problems to be solved by the invention]
The present inventors use a combination of Bi (dpm) 3 -La (dpm) 3 -Ti (OiPr) 2 (dpm) 2 as a raw material for solution vaporization, and use n-butyl acetate as a solvent. As a result of film formation, it was found that when the substrate temperature was 600 ° C. or lower, La 2 O 3 was difficult to enter the film, and a large excess of La (dpm) 3 had to be supplied, which was a problem. The cause was estimated to be that the La 2 O 3 deposition temperature from La (dpm) 3 was higher than the deposition temperature of Bi (dpm) 3 and Ti (OiPr) 2 (dpm) 2 . Furthermore, since La (dpm) 3 has a low solubility in n-butyl acetate of 0.4 mol / L and a high melting point of 260 ° C., it turns out that solid precipitation is likely to occur due to solvent jumping and insufficient heating of piping. It was.
[0008]
The object of the present invention is to find a La compound having a La 2 O 3 deposition temperature lower than La (dpm) 3 , sufficient solubility in various solvents, and having a low melting point, in order to solve the above-mentioned problem. The following is to provide a method for manufacturing a BLT thin film. Another object is to find a Ln compound such as Nd for the same purpose and to provide a method for producing a BLnTV thin film at a low temperature.
[0009]
[Means for Solving the Problems]
The inventors of the present invention can form a BLnT thin film or a BLnTV thin film at a low temperature of 600 ° C. or less by using La (divm) 3 or Nd (divm) 3 , and the melting point is about 110 ° C., which is solid at room temperature. It was found that it was well dissolved in an organic solvent and was stable, vaporized without decomposition at a vaporization temperature of 200 to 250 ° C., and the vaporization characteristics of the solution were excellent, and the present invention was completed.
[0011]
The present invention is Nd (divm) 3 , that is, tris (diisobutyrylmethanate) neodymium, which has a low melting point, dissolves very well in an organic solvent, and can be formed at a low temperature by a solution vaporization method .
[0013]
The present invention is characterized in that tris (diisobutyryl methanate) neodymium is used as a neodymium source in a method of supplying a raw material by solution vaporization and producing a neodymium- substituted bismuth titanate ferroelectric thin film by chemical vapor deposition. A neodymium- substituted bismuth titanate ferroelectric thin film.
[0014]
The present invention is the method for producing a neodymium- substituted bismuth titanate ferroelectric thin film as described above, wherein the substrate temperature is 450 to 600 ° C.
[0015]
The present invention relates to tris (dipivaloylmethanato) bismuth or triphenylbismuth as a bismuth source, di (isopropoxy) bis (dipivaloylmethanato) titanium or di (isopropoxy) bis (diisobutylene) as a titanium source. Rumethanate) A method for producing a neodymium- substituted bismuth titanate ferroelectric thin film as described above, wherein titanium and an oxidizing agent are used.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The manufacturing method of Ln (divm) 3 is R.R. C. Young, A .; Arch, Inorg. Synth. Vol. No. 2,121 (1946) is an improved method based on a production method obtained by adding a β-diketone directly to an aqueous solution of a metal salt to precipitate a metal chelate insoluble in water. Hereinafter, La (divm) 3 will be described as an example.
[0017]
When lanthanum nitrate and 1-1.1 equivalents of dmmH are dissolved in a water-alcohol solvent and ammonia water is added until the pH is 7-8, crude crystals of La (divm) 3 are obtained. After separating this by decantation, the solvent and unreacted divmH are distilled off under normal pressure to reduced pressure. Purification can be performed by recrystallization, but vacuum distillation at 0.01 to 1 Torr is preferred. By doing so, La (divm) 3 which is optimal as a solution vaporizing raw material and does not contain particles and non-volatile components and contains only complete volatile components can be obtained.
[0018]
The identification results of La (divm) 3 obtained in Reference Example 1 and the measurement results of physical properties necessary for CVD are described below.
(1) Composition analysis Results of ICP emission spectroscopic analysis La analysis value 22.7% (theoretical value 23.0%)
(2) Impurity analysis Results of ICP emission spectroscopic analysis (unit: ppm)
K <1, Na 5, Mg <1, Ca <1, Fe <2, Cu <2, Zn <1, and high purity. As a result of total Cl analysis, Cl was <2 ppm.
[0019]
(3) EI-MS
Measurement condition apparatus: JEOL AX505W, ionization method: EI, introduction method: direct introduction method, ionization energy: 70 eV,
The measurement results are shown in FIG.
The main m / z, strength (%) and ionic species are listed below.
m / z = 604 (26%) La (divm) 3 + Molecular ion 561 (13%) La (divm) 2 (Me 2 HCCOCHCO) + 449 (100%) La (divm) 2 +
[0020]
(4) 1 H-NMR
Measurement condition apparatus: BRUKER AC300P (300 MHz), solvent: benzene-d 6 , method: 1D,
The measurement results are shown in FIG.
δ H (ppm) and (assignment) are listed below.
1.03 + 1.18 + 1.20 (36H, CH (C H 3 ) 2 )
2.51 (6H, C H (CH 3 ) 2 )
5.31 + 5.52 (3H, C H )
[0021]
(5) FT-IR
Measuring condition apparatus: SHIMADZU FT-IR8600,
Method: After the toluene solution was cast on a KBr plate, toluene was removed by evaporation.
Resolution: 4.0 cm −1 ,
The measurement results are shown in FIG.
Spectrum (cm −1 )
2963, 2921, 2870, 1593, 1531, 1504, 1427, 1383, 1360, 1331, 1313, 1232, 1155, 1092, 1057, 959, 918, 789, 760, 430,
[0022]
From the above results, it was identified as La (divm) 3 .
[0023]
(6) Properties and melting point Light orange solid melting point 110 ° C
[0024]
(7) Vapor pressure 195 ° C / 0.1 Torr
[0025]
(8) TG-DTA
Measurement condition heating rate 10.0 deg / min
The measurement was performed under two conditions of Ar1 atmospheric pressure and Ar2 Torr.
FIG. 4 shows the results of Ar 200 sccm, 1 atmosphere, and sample 12.19 mg.
The results for Ar 50 sccm, 2 Torr, and sample 16.55 mg are shown in FIG.
4 and 5, La (divm) 3 is not thermally decomposed at 250 ° C. However, it can be seen from FIG. 4 that La (divm) 3 is thermally decomposed from around 350 ° C. Further, from FIG. 5, the vaporization rate at 300 ° C. is 99.56%, not 100%, but nothing is left in the sample dish, so that it is considered that the vaporization is complete.
[0026]
(9) Solubility The mass (unit: g) dissolved in 1 L of solvent at room temperature is shown in Table 1.
[0027]
[Table 1]
Figure 0004042959
[0028]
For comparison, the solubility of La (dpm) 3 in n-butyl acetate is 300 g, and since it does not dissolve at all in toluene and hexane, it can be seen that La (divm) 3 is quite well soluble in these solvents. The selection range of solvent species has become very wide.
[0029]
As a result of examining the lower limit substrate temperature at which deposition of La 2 O 3 on the substrate was confirmed by CVD of La (divm) 3 in Example 3, it was about 400 ° C. As a result of Comparative Example 1, this temperature was about 100 ° C. lower than about 500 ° C. of La (dpm) 3 . This is probably because the divm group is oxidatively decomposed at a lower temperature than the dpm group. That is, La (divm) 3 indicates that the PLZT film can be formed at a low temperature.
The absolute value of the temperature varies depending on the CVD pressure and the type of oxidizing gas, but the tendency of both does not change.
[0030]
The Bi compound which is one component for forming the BLT or BLnTV film of the present invention is Bi (dpm) 3 or BiPh 3 . The Ti compound is Ti (OiPr) 2 (dpm) 2 or Ti (OiPr) 2 (divm) 2 . As the V compound, V (dpm) 3 can be used.
[0031]
In the raw material solution supply method, individual solutions of Bi, Ln, Ti, and V compounds are weighed from the respective source cylinders, mixed immediately before the vaporizer, vaporized by one vaporizer, and then supplied to the CVD chamber. There is a method and a method of using a raw material containing Bi, Ln, Ti, and V compounds in one solution, and vaporizing the solution with a vaporizer, and then supplying it to the CVD chamber. The former has the advantage that the pot life of the solution is longer than that of the one-solution method, and there is an advantage on an apparatus in which one vaporizer is used. In the latter, the supply device is most simplified, and the composition uniformity of the solution and the uniformity of the obtained film composition are excellent.
[0032]
In the present invention, the substrate temperature for film formation of BLnT or BLnTV is 450 to 600 ° C. By using a compound capable of depositing Bi, Ln, Ti, and V sources at a low temperature, a film showing good ferroelectricity can be obtained even at such a low temperature. As the oxidizing gas, O 2 , O 3 , N 2 O, NO 2 or the like can be used. The pressure in the CVD chamber is 0.001 to 10 Torr.
[0033]
[ Reference Example 1]
Production of La (divm) 3 A 300 ml three-necked flask equipped with a stirrer was charged with 100 ml of methanol and 12.5 g (80.0 mmol) of dibmH, and then ion-exchanged 10.4 g (24.2 mmol) of lanthanum nitrate hexahydrate. A solution dissolved in 15.9 g of water was added with stirring. Next, when a solution obtained by diluting 5.0 g of 28% aqueous ammonia with 10.0 g of ion-exchanged water is added from a dropping funnel, white crude La (divm) 3 starts to precipitate in the liquid, and the liquid temperature slightly increases. The reaction solution became pH 7.5. This was stirred as it was at room temperature for 2 hours, and then crude La (divm) 3 crystals were separated and collected by decantation. The recovered crystals were subjected to distillation of the solvent and the end reaction divmH at a pot temperature of 100 to 110 ° C. and a pressure of 1 to 2 Torr to obtain crude La (divm) 3 . This crude La (divm) 3 was distilled at a heating temperature of 240 ° C. and a pressure of 0.1 to 0.2 Torr to obtain 8.4 g of a purified product. The yield was 57.9%.
[0034]
[Example 1 ]
Production of Nd (divm) 3 A 300 ml three-necked flask equipped with a stirrer was charged with 70 ml of methanol and 10.0 g (64.0 mmol) of dibMH, and then 8.0 g (20.3 mmol) of neodymium nitrate 5.2 hydrate. A purple solution dissolved in 15.7 g of ion-exchanged water was added with stirring. Next, a solution obtained by diluting 4.2 g of 28% aqueous ammonia with 10.7 g of ion-exchanged water was added from a dropping funnel, the liquid temperature slightly increased, and the reaction solution became pH 7.0. This was stirred at room temperature for 2 hours and allowed to stand for 1 hour. Then, vermilion jelly-like crude Nd (divm) 3 precipitated and the supernatant became a colorless transparent liquid. Subsequently, the solvent and unreacted divmH were distilled off from the jelly-like crystals separated and collected by decantation at a kettle temperature of 100 to 110 ° C. and a pressure of 1 to 2 Torr to obtain crude Nd (divm) 3 . This crude Nd (divm) 3 was distilled at a heating temperature of 220 ° C. and a pressure of 0.1 to 0.2 Torr to obtain 8.1 g of a purified product. The yield was 65.3%.
[0035]
The analysis and physical properties of the obtained Nd (divm) 3 were measured in the same manner as La (divm) 3 and the results are described below.
Nd analysis value: 24.0% (theoretical value 23.6%)
Impurity analysis value (ppm): K3, Mg2, Fe9, Cu <2, Zn <1, Cl <2,
Properties: Magenta solid, melting point 130 ° C
Vapor pressure: 190 ° C / 0.1 Torr
TG-DTA: Ar200sccm, 1 atmosphere, sample 16.6mg,
The measurement results are shown in FIG.
It can be seen that Nd (divm) 3 is thermally decomposed from around 350 ° C.
Solubility: Table 2 shows the mass (unit: g) dissolved in 1 L of solvent at room temperature.
[0036]
[Table 2]
Figure 0004042959
[0037]
[ Reference Example 2 ]
La (dibm) 3 of by CVD La 2 O 3 film deposition La (dibm) 3 butyl acetate solution (concentration 0.1 mol / 1) sends a 0.1 ml / min to a vaporizer 250 ° C., preheated Ar Evaporated with 200 sccm of gas and sent to the CVD chamber. This was mixed with 100 sccm of preheated O 2 gas at the entrance of the CVD chamber, led to a heated Si substrate at a reaction pressure of 1 Torr and 400 to 500 ° C., and pyrolyzed and deposited. After 20 minutes, the substrate was taken out and the film thickness was measured. As a result, a La 2 O 3 film of about 15 nm was formed at 400 ° C. It was about 55 nm at 500 ° C.
[0038]
[Comparative Example 1]
Formation of La 2 O 3 film by CVD of La (dpm) 3
Reference Example 2, except that instead of La (dibm) 3 in La (dpm) 3 were the same as in Reference Example 2. At 400 ° C., no La 2 O 3 film was formed. At 500 ° C., it was about 20 nm.
[0039]
[ Reference Example 3 ]
Production of BLT film using La (divm) 3 solution An n-butyl acetate solution (concentration 0.1 mol / 1) of Bi (dpm) 3 was fed at 0.32 ml / min, and Ti (OiPr) 2 (dpm) 2 An n-butyl acetate solution (concentration 0.1 mol / l) was sent at 0.1 ml / min, and an n-butyl acetate solution (concentration 0.1 mol / l) in La (divm) 3 was sent at 0.3 ml / min. These three liquids were mixed immediately before the vaporizer, vaporized with a preheated Ar gas of 300 sccm in a vaporizer at 240 ° C., and sent to the CVD chamber. This was mixed with 700 sccm of preheated O 2 gas at the entrance of the CVD chamber, led to a Pt (111) / SiO 2 / Si substrate heated to 500 ° C. with a reaction pressure of 1 Torr, and pyrolyzed and deposited. When the substrate was taken out after 20 minutes and the film thickness was measured, a 200 nm film was formed. This film was BLT of perovskite phase from XRD, and as a result of composition analysis, it was Bi: La: Ti = 3.2: 0.8: 3.0.
[0040]
[Comparative Example 2]
Production of BLT film using La (dpm) 3 solution
A film was formed in the same manner as in Reference Example 3 , except that La (dbm) 3 was replaced with La (dpm) 3 in Reference Example 3 . However, as a result of the film composition analysis, Bi: La: Ti = 3.8: 0.2: 3.0 was small, and a good perovskite phase was not formed.
[0041]
[Example 2 ]
Production of (Bi 3.6 Nd 0.4 ) (Ti 2.9 V 0.1 ) O 12 Film Using Nd (divm) 3 Solution An n-butyl acetate solution (concentration 0.1 mol / l) of Bi (dpm) 3 was 0.36 ml / Nd (divm) 3 in n-butyl acetate solution (concentration 0.1 mol / l) at 0.04 ml / min, and Ti (OiPr) 2 (dpm) 2 n-butyl acetate solution (concentration 0) 0.1 mol / l) at a rate of 0.30 ml / min, a solution of V (dpm) 3 in n-butyl acetate (concentration 0.01 mol / l) at a rate of 0.10 ml / min. The mixture was vaporized with a preheated Ar gas of 300 sccm in a vaporizer at 240 ° C. and sent to the CVD chamber. This was mixed with 700 sccm of preheated O 2 gas at the entrance of the CVD chamber, led to a Pt (111) / SiO 2 / Si substrate heated to 500 ° C. with a reaction pressure of 1 Torr, and pyrolyzed and deposited. When the substrate was taken out after 20 minutes and the film thickness was measured, a 200 nm film was formed. This film was a C-axis oriented film, similar to Bi 4 Ti 3 O 12 from XRD. As a result of dissolving this film and analyzing the composition, it was Bi: Nd: Ti: V = 3.6: 0.4: 2.9: 0.1.
[0042]
[ Reference Example 4 ]
Put La a (dibm) 3 acetate n- butyl solution pot life La (dibm) 3 3.0g (5mmol ) in a volumetric flask, and 50ml acetic acid n- butyl deoxygenated water 15 ppm, dry the gas phase Ar and sealed. The solution was kept at room temperature, and the formation of color and turbidity was observed after 3 months, but the pale yellow completely transparent state was maintained. The solution after 3 months was placed in a flask, the solvent was removed by evaporation under vacuum at room temperature, and then vacuum distilled at 240 ° C. The whole amount was evaporated and recovered, with a slight brown film remaining on the inner wall of the flask. there were. Vaporization characteristics did not change at all and were found to be normal. Therefore, it can be said that there is a pot life of 3 months.
[0043]
【The invention's effect】
When a BLT or BLnTV thin film is formed by a solution vaporization type CVD method, it can be formed at a low substrate temperature of 450 to 600 ° C. by using La (divm) 3 or Nd (divm) 3 as the Ln source.
[Brief description of the drawings]
FIG. 1 is a diagram showing a measurement result of La (divm) 3 by EI-MS.
FIG. 2 is a diagram showing a measurement result of La (divm) 3 by 1 H-NMR.
FIG. 3 is a diagram illustrating a measurement result of La (divm) 3 by FT-IR.
FIG. 4 is a diagram showing a measurement result of La (divm) 3 by TG-DTA at 1 atm.
FIG. 5 is a diagram illustrating a measurement result of La (divm) 3 by TG-DTA at 10 Torr.
FIG. 6 is a view showing a measurement result by TG-DTA at 1 atm of Nd (divm) 3 .

Claims (4)

トリス(ジイソブチリルメタナート)ネオジム。  Tris (diisobutyryl methanate) neodymium. 溶液気化により原料を供給し、化学気相成長法でネオジム置換チタン酸ビスマス強誘電体薄膜を製造する方法において、ネオジム源としてトリス(ジイソブチリルメタナート)ネオジムを用いることを特徴とするネオジム置換チタン酸ビスマス強誘電体薄膜の製造方法。 Neodymium substitution characterized by using tris (diisobutyrylmethanate) neodymium as a neodymium source in a method of supplying raw materials by solution vaporization and producing a neodymium substituted bismuth titanate ferroelectric thin film by chemical vapor deposition. A method for producing a bismuth titanate ferroelectric thin film. 基板温度が450〜600℃であることを特徴とする請求項記載のネオジム置換チタン酸ビスマス強誘電体薄膜の製造方法。The method for producing a neodymium- substituted bismuth titanate ferroelectric thin film according to claim 2 , wherein the substrate temperature is 450 to 600 ° C. ビスマス源としてトリス(ジピバロイルメタナート)ビスマスまたはトリフェニルビスマス、チタン源としてジ(イソプロポキシ)ビス(ジピバロイルメタナート)チタンまたはジ(イソプロポキシ)ビス(ジイソブチリルメタナート)チタンと酸化剤を用いることを特徴とする請求項2または3記載のネオジム置換チタン酸ビスマス強誘電体薄膜の製造方法。Tris (dipivaloylmethanato) bismuth or triphenylbismuth as bismuth source, di (isopropoxy) bis (dipivaloylmethanato) titanium or di (isopropoxy) bis (diisobutyrylmethanate) as titanium source 4. The method for producing a neodymium- substituted bismuth titanate ferroelectric thin film according to claim 2 , wherein titanium and an oxidizing agent are used.
JP2002163569A 2002-04-26 2002-04-26 Tris (diisobutyrylmethanate) neodymium and method for producing neodymium-substituted bismuth titanate ferroelectric thin film by chemical vapor deposition using the same Expired - Fee Related JP4042959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002163569A JP4042959B2 (en) 2002-04-26 2002-04-26 Tris (diisobutyrylmethanate) neodymium and method for producing neodymium-substituted bismuth titanate ferroelectric thin film by chemical vapor deposition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163569A JP4042959B2 (en) 2002-04-26 2002-04-26 Tris (diisobutyrylmethanate) neodymium and method for producing neodymium-substituted bismuth titanate ferroelectric thin film by chemical vapor deposition using the same

Publications (3)

Publication Number Publication Date
JP2003321417A JP2003321417A (en) 2003-11-11
JP2003321417A5 JP2003321417A5 (en) 2007-07-05
JP4042959B2 true JP4042959B2 (en) 2008-02-06

Family

ID=29545708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163569A Expired - Fee Related JP4042959B2 (en) 2002-04-26 2002-04-26 Tris (diisobutyrylmethanate) neodymium and method for producing neodymium-substituted bismuth titanate ferroelectric thin film by chemical vapor deposition using the same

Country Status (1)

Country Link
JP (1) JP4042959B2 (en)

Also Published As

Publication number Publication date
JP2003321417A (en) 2003-11-11

Similar Documents

Publication Publication Date Title
KR101498732B1 (en) Process for forming the strontium-containing thin film
KR101532995B1 (en) Molybdenum allyl complexes and use thereof in thin film deposition
KR100577698B1 (en) Ruthenium thin film
US20130129593A1 (en) Metal Complex Compositions and Methods for Making Metal-Containing Films
US8580989B2 (en) Process for the preparation of indium chlordialkoxides
HUT73045A (en) Rare earth compounds and their preparation
KR20060110328A (en) Metal compound, material for forming thin film and method for preparing thin film
TW201014925A (en) Titanium pyrrolyl-based organometallic precursors and use thereof for preparing dielectric thin films
TW201930630A (en) Process for the generation of metal-containing films
KR20010072098A (en) TETRAHYDROFURAN-ADDUCTED GROUP Ⅱ β-DIKETONATE COMPLEXS AS SOURCE REAGENTS FOR CHEMICAL VAPOR DEPOSITION
KR20160113667A (en) Process for the generation of thin inorganic films
JP5260148B2 (en) Method for forming strontium-containing thin film
JP4022662B2 (en) Zirconium alkoxytris (β-diketonate), production method thereof, and liquid composition for forming PZT film
JP5214191B2 (en) Thin film forming raw material and thin film manufacturing method
JP3931683B2 (en) Method for producing PZT thin film by chemical vapor deposition
JP4042959B2 (en) Tris (diisobutyrylmethanate) neodymium and method for producing neodymium-substituted bismuth titanate ferroelectric thin film by chemical vapor deposition using the same
JP2002338590A (en) Tris(ethylcyclopentadienyl)lanthanoid, method of producing the same and method of producing oxide thin film through vapor-phase
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
JP4120321B2 (en) Titanium complex for chemical vapor deposition and method for producing PZT thin film using the same
JPH0977592A (en) Production of bismuth laminar ferroelectric thin film
JP2003321475A (en) Lanthanum tris(diisobutyrylmethanate), method for producing the same and method for producing plzt film using the same by chemical vapor deposition
US20100256405A1 (en) Synthesis of allyl-containing precursors for the deposition of metal-containing films
JP2002069027A (en) HAFNIUM ALKOXYTRIS(beta-DIKETONATE), METHOD FOR MANUFACTURING THE SAME AND METHOD FOR MANUFACTURING OXIDE FILM USING THE SAME
TW201807246A (en) Process for the generation of thin inorganic films
JP4266285B2 (en) Method for producing vanadium tris (β-diketonate)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees