JP4266285B2 - Method for producing vanadium tris (β-diketonate) - Google Patents

Method for producing vanadium tris (β-diketonate) Download PDF

Info

Publication number
JP4266285B2
JP4266285B2 JP2001272722A JP2001272722A JP4266285B2 JP 4266285 B2 JP4266285 B2 JP 4266285B2 JP 2001272722 A JP2001272722 A JP 2001272722A JP 2001272722 A JP2001272722 A JP 2001272722A JP 4266285 B2 JP4266285 B2 JP 4266285B2
Authority
JP
Japan
Prior art keywords
diketonate
vanadium
vanadium tris
tris
dpm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001272722A
Other languages
Japanese (ja)
Other versions
JP2003055292A (en
Inventor
弓恵 奥原
秀公 門倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP2001272722A priority Critical patent/JP4266285B2/en
Publication of JP2003055292A publication Critical patent/JP2003055292A/en
Application granted granted Critical
Publication of JP4266285B2 publication Critical patent/JP4266285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化バナジウム含有薄膜を、化学気相成長法(CVD法)にて形成するための原料であるバナジウムトリス(β−ジケトネート)の製造方法に関する。
【0002】
【従来の技術】
第48回応用物理学関係連合講演会予稿集、30p−YA−12,p561(2001.3)で、渡辺らは、不揮発性メモリ用強誘電体薄膜として優れた強誘電性と無疲労特性を持つ(Bi4−xLa)Ti12(0<x<4)(以下BLTと表す)のTiサイトの一部をVで置換した(Bi4−xLa)(Ti3−y)O12(0<x<4,0<y<3)(以下BLTVと表す)が、BLTより低温の成膜で良好な特性が得られたと報告している。
【0003】
CVD法の原料供給法には大きく分けて二つの方法がある。純品原料化合物をそのままあるいは不活性なキャリヤーガスに同伴させCVD室に導入する方法Aと、原料化合物を有機溶媒に溶解し、その溶液をフラッシュ蒸発させて、CVD室に導入する方法Bである。いずれの場合でもこの各原料化合物の混合ガスが基板に到達する前に互いに反応して揮発性の低いものになったり、リガンド交換が起きて性質が違った物になる可能性がある。よって、各原料化合物がCVDに供するまで反応変質がないことが要求される。
【0004】
前出の渡辺らは、BLTV薄膜をMOCVD法で形成する際、V原料としてバナジウムトリエトキシドオキシド(以下VO(OEt)と表す)の蒸気をキャリヤーガスに同伴させCVD室に導入する、原料供給法Aにより良好な結果を得ている。しかし、複数の原料化合物を一つの有機溶媒に溶解し、その溶液をフラッシュ蒸発させてCVD室に導入する方法Bでは、La原料として使用されるランタントリス(ジピバロイルメタネート)(以下La(dpm)と表す)と、VO(OEt)などのアルコキシドは、CVDに供する前に配位子の交換反応を起こしやすく問題である。
【0005】
酸化ランタンのMOCVD用原料として、揮発性の高い化合物は、La(dpm)が最も有力である。そのためLa、Ti、Vの3元素の化合物を溶解した一液に用いられるVの配位子は、Laの配位子と同じであることが好ましい。それはバナジウムトリス(ジピバロイルメタネート)(以下V(dpm)と表す)等である。
【0006】
Sergio Dilli and Emilios Patsalides,Aust.J.Chem.,1976,vol.29,2389によれば、オキシ硫酸バナジウムVOSO・3HOの温水溶液を攪拌しながら亜ジチオン酸ナトリウムNa水溶液に加え、次いでジピバロイルメタン(以下dpmHと表す)のメタノール水溶液を加えると、茶色の結晶固体が得られた。これを水とエタノール水溶液で洗い、真空乾燥してV(dpm)を得た。この合成法では反応に大量の水を用いているので、生成V(dpm)に吸着した水を完全に除去するのは長時間の乾燥でも難しい。吸着した水はCVD原料の劣化を促進し、また分解機構に影響を与えるため好ましくない。さらに原料に含まれるNaは、生成V(dpm)に不純物として多く残る可能性が高く、これは電子材料に用いられるCVD原料として好ましくない。一般に、電子材料のCVD材の不純物金属元素量は各5〜1ppm程度以下が望まれている。
【0007】
そこで、アルカリ金属塩を原料とせず、非水溶液の反応系で、CVD材料として有用なV(dpm)を合成する方法が必要となった。
Dictionary of Inorganic Compounds vol.2 p1521(Chapman&Hall,1992)には、バナジウムトリス(アセチルアセトネート)(以下V(acac)と表す)が、VCl・6HOまたはVClと塩基存在下、エタノール中でアセチルアセトンと反応させて合成できることが記載されている。しかし、V(dpm)の合成には言及されていない。
【0008】
【発明が解決しようとする課題】
本課題は、バナジウムトリス(β−ジケトネート)の製造方法、特にバナジウムトリス(ジピバロイルメタネート)の製造方法を提供することである。さらに各金属元素不純物が5ppm以下の高純度バナジウムトリス(β−ジケトネート)の製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明は、三塩化バナジウムとβ−ジケトンとアンモニアガスを有機溶媒中で反応させ、副生塩化アンモニウムを濾過分離し、次いで溶媒と未反応原料を留去し、次いで、真空蒸留または昇華回収するバナジウムトリス(β−ジケトネート)の製造方法である。
【0010】
本発明は、三塩化バナジウムとβ−ジケトンとアンモニアガスをアルコール中で反応させ、反応後、生成バナジウムトリス(β−ジケトネート)を溶解する無極性溶媒に置換して副生塩化アンモニウムを濾過分離し、次いで溶媒と未反応原料を留去し、次いで、真空蒸留または昇華回収するバナジウムトリス(β−ジケトネート)の製造方法である。
【0011】
本発明は、三塩化バナジウムとβ−ジケトンとアンモニアガスをアルコールと、生成バナジウムトリス(β−ジケトネート)を溶解する無極性溶媒との混合溶媒中で反応させ、副生塩化アンモニウムを濾過分離し、次いで溶媒と未反応原料を留去し、次いで、真空蒸留または昇華回収するバナジウムトリス(β−ジケトネート)の製造方法である。
【0012】
本発明は、上記発明により、バナジウムトリス(ジピバロイルメタネート)中の金属元素不純物が各5ppm以下である高純度バナジウムトリス(ジピバロイルメタネート)の製造方法である。
【0013】
本発明は、上記発明においてβ−ジケトネートが、ジピバロイルメタネート(すなわち2,2,6,6−テトラメチル−3,5−ヘプタンジオネート)、2,6−ジメチル−3,5−ヘプタンジオネート、2,2,6,6−テトラメチル−3,5−オクタンジオネート、2,2,6−トリメチル−3,5−ヘプタンジオネート、6−エチル−2,2−ジメチル−3,5−オクタンジオネート、2,4−オクタンジオネートであるバナジウムトリス(β−ジケトネート)の製造方法である。
【0014】
【発明の実施の形態】
本発明は、前述のDictionary of Inorganic Compoundsに記載のV(acac)の製法を基に改良を加えた方法である。
【0015】
例としてV(dpm)の製造方法を以下に述べる。
V(dpm)の製造方法は、VCl1モルとdpmH3モルとアンモニアガスとを有機溶媒中で室温付近で反応させ、副生塩化アンモニウムを濾過分離し、次いで溶媒を留去し、次いで真空下で蒸留あるいは昇華精製する方法である。dpmHの仕込量は、VCl1モルに対し3モル以上で、好ましくは3.3〜5モルである。
アンモニアガスは、有機溶媒中にVClとdpmHとを溶解あるいは分散させた溶液中のガス吹き込み管からバブリングにより供給する。この方法はアンモニアガスと反応溶液との接触面積が大きくなるため、反応が進みやすいので好ましい。
【0016】
反応の有機溶媒としてメタノール、エタノールなどのアルコールを用いると、VClを溶解するため反応が進みやすく好ましい。しかし生成したV(dpm)はアルコールに溶けない。副生成物である塩化アンモニウムもアルコールにほとんど溶けないので、一緒に析出してしまい、濾過分離することができない。よって反応後に、V(dpm)を溶解し、副生塩化アンモニウムを溶かさない無極性溶媒、例えばトルエン、ヘキサン、ヘプタン、オクタンなどに交換する必要がある。V(dpm)の溶媒1リットルに室温で溶解する量を調べたところ、トルエンには410g、ヘキサンには250gであった。これに対しエタノールにはわずか<10gであった。
【0017】
反応の有機溶媒としてはじめからトルエン、ヘキサンなどを用いる場合は、VClが溶解しないため反応時間が長くなる。よって、溶媒としてはトルエン又はヘキサンなどの無極性溶媒とメタノール又はエタノールなどのアルコールとの混合溶媒を用いることが好ましい。
【0018】
合成して得られた粗製V(dpm)は、昇華または蒸留により精製する。V(dpm)の蒸気圧、昇華圧は、多くの金属dpmの中では高い。よってこの操作で多くの金属dpm塩や、未反応の塩化物や酸化物などが除かれるので、ほとんどの金属元素不純物は除くことができる。市販のVClを用いて金属元素不純物が各5ppm以下の精製V(dpm)を得ることが容易にできる。より高純度のVClを原料として用いれば、さらに不純物の少ないV(dpm)とすることもできる。
【0019】
【実施例1】
リフラックスコンデンサー、攪拌子、滴下ロート、アンモニアガス導入用ディップチューブを備えた500ml三つ口フラスコを真空置換しアルゴンガス雰囲気とした。無水VCl25.5g(0.16mol)と脱水したエタノール200mlを仕込み、室温で攪拌してVClを溶解した。ここにdpmH137.5g(0.75mol)と脱水エタノール100mlの混合溶液を滴下ロートより添加した。この後、反応フラスコを水冷しながらアンモニアガスをディップチューブより0.1l/minで5時間導入すると、液中に生成物が析出しはじめ、液温もわずかに上昇した。80〜90℃のオイルバスで7時間還流し、溶媒のエタノールを釜温度100℃、圧力1〜2Torrで留去した。ここに脱水トルエン300mlを添加して生成V(dpm)を溶解し、そのまま室温で1時間攪拌した。副生塩化アンモニウムの結晶を濾過で分離し、さらにこのケーキを脱水トルエン250mlで洗い流して白色の塩化アンモニウムを分離した。濾液を釜温度100〜130℃、圧力1〜2Torrで溶媒や未反応dpmHを留去し、粗製V(dpm)を得た。
この粗製V(dpm)を、加熱温度155℃、圧力0.1〜0.2Torrで昇華し、精製品89.6gを得た。収率92%であった。
【0020】
回収した昇華物は茶色の固体で、融点は155〜160℃であった。前述のSergio Dilliらの文献によれば、V(dpm)の融点は158℃であり、これにほぼ一致した。またV含量は8.56%で、理論値8.48%にほぼ一致した。このことより実施例1で昇華精製して得た結晶はV(dpm)と同定した。
【0021】
ICP−MSにより微量金属不純物を定量した。

Figure 0004266285
【0022】
TG−DTAによる測定
測定条件
試料 6.02mg
雰囲気 Ar1気圧
昇温速度 10.0deg/min
測定結果を図1に示した。
99%以上の減量で、完全に蒸発した。よってこのV(dpm)は熱安定性も高く蒸発残さもなく、CVD原料として好ましいことがわかる。
【0023】
【実施例2】
リフラックスコンデンサー、攪拌子、滴下ロート、アンモニアガス導入用ディップチューブを備えた1L三つ口フラスコを真空置換しアルゴンガス雰囲気とした。無水VCl20.5g(0.13mol)と、脱水したエタノール200mlとトルエン200mlを仕込み、室温で攪拌してVClを溶解した。ここにdpmH112.4g(0.61mol)を滴下ロートより添加した。この後、アンモニアガスをディップチューブより0.1l/minで5時間導入すると、液中に副生塩化アンモニウムが析出し、液温も上昇した。80〜90℃のオイルバスで7時間還流し、副生塩化アンモニウムの結晶を濾過で分離し、さらにこのケーキを脱水トルエン300mlで洗い流して白色の塩化アンモニウムを分離した。濾液を釜温度100〜130℃、圧力1〜2Torrで減圧加熱し、溶媒や未反応dpmHを留去し、粗製V(dpm)を得た。
粗製V(dpm)を、加熱温度155℃、圧力0.1〜0.2Torrで昇華し、精製物70.5gを得た。収率90%であった。
回収した昇華精製物の特性は、実施例1で得たV(dpm)と同じであった。
【0024】
【発明の効果】
本発明の製造方法によれば、不純物金属元素が各5ppm以下で吸着水のない、MOCVD材に好適なV(dpm)が収率90%以上で得られる。
【図面の簡単な説明】
【図1】V(dpm)のTG−DTAによる測定結果を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing vanadium tris (β-diketonate), which is a raw material for forming a vanadium oxide-containing thin film by chemical vapor deposition (CVD).
[0002]
[Prior art]
In the 48th Applied Physics Related Conference Proceedings, 30p-YA-12, p561 (2001.3), Watanabe et al. Showed excellent ferroelectricity and fatigue-free characteristics as a ferroelectric thin film for nonvolatile memory. A part of the Ti site of (Bi 4-x La x ) Ti 3 O 12 (0 <x <4) (hereinafter referred to as BLT) is substituted with V (Bi 4-x La x ) (Ti 3-y V y ) O 12 (0 <x <4, 0 <y <3) (hereinafter referred to as BLTV) reports that good characteristics were obtained at a lower temperature than BLT.
[0003]
There are roughly two types of CVD material supply methods. A method A in which a pure raw material compound is introduced into the CVD chamber as it is or accompanied by an inert carrier gas, and a method B in which the raw material compound is dissolved in an organic solvent, the solution is flash-evaporated and introduced into the CVD chamber. . In any case, there is a possibility that the mixed gas of each raw material compound reacts with each other before reaching the substrate to become less volatile, or a ligand exchange occurs to have a different property. Therefore, it is required that there is no reaction alteration until each raw material compound is subjected to CVD.
[0004]
The above-mentioned Watanabe et al., When forming a BLTV thin film by the MOCVD method, introduces a vapor of vanadium triethoxide oxide (hereinafter referred to as VO (OEt) 3 ) as a V raw material into a CVD chamber with a carrier gas. Good results have been obtained by feeding method A. However, in the method B in which a plurality of raw material compounds are dissolved in one organic solvent and the solution is flash evaporated to be introduced into the CVD chamber, lanthanum tris (dipivaloylmethanate) (hereinafter referred to as La (Denoted as (dpm) 3 ) and alkoxides such as VO (OEt) 3 are problematic because they easily cause a ligand exchange reaction before being subjected to CVD.
[0005]
As a raw material for MOCVD of lanthanum oxide, La (dpm) 3 is the most powerful compound with high volatility. Therefore, it is preferable that the ligand of V used for the 1 liquid which melt | dissolved the compound of 3 elements of La, Ti, and V is the same as the ligand of La. It is vanadium tris (dipivaloylmethanate) (hereinafter referred to as V (dpm) 3 ).
[0006]
Sergio Dilli and Emilias Patsalides, Aust. J. et al. Chem. , 1976, vol. According to US Pat. No. 29,2389, a warm aqueous solution of vanadium oxysulfate VOSO 4 .3H 2 O was added to an aqueous sodium dithionite Na 2 S 2 O 4 solution with stirring, and then dipivaloylmethane (hereinafter referred to as dpmH) When a methanol aqueous solution was added, a brown crystalline solid was obtained. This was washed with water and an aqueous ethanol solution and vacuum-dried to obtain V (dpm) 3 . Since a large amount of water is used for the reaction in this synthesis method, it is difficult to completely remove the water adsorbed on the generated V (dpm) 3 even by drying for a long time. The adsorbed water is not preferable because it promotes the deterioration of the CVD raw material and affects the decomposition mechanism. Further, it is highly possible that Na contained in the raw material remains as an impurity in the generated V (dpm) 3 , which is not preferable as a CVD raw material used for an electronic material. In general, the amount of impurity metal elements in the CVD material of the electronic material is desired to be about 5 to 1 ppm or less.
[0007]
Therefore, a method for synthesizing V (dpm) 3 useful as a CVD material in a non-aqueous reaction system without using an alkali metal salt as a raw material has become necessary.
Dictionary of Inorganic Compounds vol. The 2 p1521 (Chapman & Hall, 1992 ), ( expressed as follows V (acac) 3) vanadium tris (acetylacetonate) is, VCl 3 · 6H 2 O or VCl 3 and the presence of a base, is reacted with acetylacetone in ethanol Can be synthesized. However, no mention is made of the synthesis of V (dpm) 3 .
[0008]
[Problems to be solved by the invention]
This subject is providing the manufacturing method of vanadium tris ((beta) -diketonate), especially the manufacturing method of vanadium tris (dipivaloylmethanate). Furthermore, it is providing the manufacturing method of highly purified vanadium tris ((beta) -diketonate) whose each metal element impurity is 5 ppm or less.
[0009]
[Means for Solving the Problems]
In the present invention, vanadium trichloride, β-diketone and ammonia gas are reacted in an organic solvent, by-product ammonium chloride is separated by filtration, then the solvent and unreacted raw material are distilled off, and then vacuum distillation or sublimation recovery is performed. This is a method for producing vanadium tris (β-diketonate).
[0010]
In the present invention, vanadium trichloride, β-diketone, and ammonia gas are reacted in alcohol, and after the reaction, the produced vanadium tris (β-diketonate) is replaced with a nonpolar solvent, and by-product ammonium chloride is separated by filtration. Then, the solvent and unreacted raw material are distilled off, and then vacuum distillation or sublimation recovery is used for producing vanadium tris (β-diketonate).
[0011]
In the present invention, vanadium trichloride, β-diketone, and ammonia gas are reacted in a mixed solvent of alcohol and a nonpolar solvent that dissolves the generated vanadium tris (β-diketonate), and by-product ammonium chloride is separated by filtration. Next, the solvent and unreacted raw materials are distilled off, and then vacuum distillation or sublimation recovery is used for producing vanadium tris (β-diketonate).
[0012]
This invention is a manufacturing method of the high purity vanadium tris (dipivaloylmethanate) whose metal element impurities in vanadium tris (dipivaloylmethanate) are each 5 ppm or less by the said invention.
[0013]
In the present invention, β-diketonate is dipivaloylmethanate (that is, 2,2,6,6-tetramethyl-3,5-heptanedionate), 2,6-dimethyl-3,5- Heptanedionate, 2,2,6,6-tetramethyl-3,5-octanedionate, 2,2,6-trimethyl-3,5-heptanedionate, 6-ethyl-2,2-dimethyl-3 , 5-octanedionate, 2,4-octanedionate, a method for producing vanadium tris (β-diketonate).
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is an improved method based on the method of producing V (acac) 3 described in the above-mentioned Dictionary of Inorganic Compounds.
[0015]
As an example, a method for producing V (dpm) 3 will be described below.
V (dpm) 3 is produced by reacting 1 mol of VCl 3 , 3 mol of dpmH and ammonia gas in an organic solvent at about room temperature, filtering off by-product ammonium chloride, then distilling off the solvent, and then vacuuming. It is a method of distillation or sublimation purification under the following. The amount of dpmH charged is 3 mol or more, preferably 3.3 to 5 mol, per 1 mol of VCl 3 .
Ammonia gas is supplied by bubbling from a gas blowing tube in a solution in which VCl 3 and dpmH are dissolved or dispersed in an organic solvent. This method is preferable because the contact area between the ammonia gas and the reaction solution increases, and the reaction easily proceeds.
[0016]
When an alcohol such as methanol or ethanol is used as the organic solvent for the reaction, it is preferable that the reaction proceeds easily because VCl 3 is dissolved. However, the produced V (dpm) 3 does not dissolve in alcohol. Since the by-product ammonium chloride is hardly soluble in alcohol, it precipitates together and cannot be separated by filtration. Therefore, after the reaction, it is necessary to exchange V (dpm) 3 with a nonpolar solvent that does not dissolve by-product ammonium chloride, such as toluene, hexane, heptane, octane, and the like. When the amount dissolved in 1 liter of V (dpm) 3 solvent at room temperature was examined, it was 410 g for toluene and 250 g for hexane. In contrast, ethanol was only <10 g.
[0017]
When toluene, hexane or the like is used from the beginning as the organic solvent for the reaction, the reaction time becomes longer because VCl 3 is not dissolved. Therefore, it is preferable to use a mixed solvent of a nonpolar solvent such as toluene or hexane and an alcohol such as methanol or ethanol as the solvent.
[0018]
The crude V (dpm) 3 obtained by synthesis is purified by sublimation or distillation. V (dpm) 3 has a high vapor pressure and sublimation pressure among many metal dpm. Therefore, since many metal dpm salts, unreacted chlorides and oxides are removed by this operation, most metal element impurities can be removed. It is easy to obtain purified V (dpm) 3 having a metal element impurity of 5 ppm or less using commercially available VCl 3 . If higher-purity VCl 3 is used as a raw material, V (dpm) 3 with less impurities can be obtained.
[0019]
[Example 1]
A 500 ml three-necked flask equipped with a reflux condenser, a stirrer, a dropping funnel, and a dip tube for introducing ammonia gas was vacuum-substituted to obtain an argon gas atmosphere. 25.5 g (0.16 mol) of anhydrous VCl 3 and 200 ml of dehydrated ethanol were charged and stirred at room temperature to dissolve VCl 3 . A mixed solution of 137.5 g (0.75 mol) of dpmH and 100 ml of dehydrated ethanol was added thereto from a dropping funnel. Thereafter, when ammonia gas was introduced from the dip tube at 0.1 l / min for 5 hours while cooling the reaction flask with water, the product started to precipitate in the liquid, and the liquid temperature slightly increased. The mixture was refluxed in an oil bath at 80 to 90 ° C. for 7 hours, and ethanol as a solvent was distilled off at a kettle temperature of 100 ° C. and a pressure of 1 to 2 Torr. To this was added 300 ml of dehydrated toluene to dissolve the produced V (dpm) 3 and the mixture was stirred at room temperature for 1 hour. By-product ammonium chloride crystals were separated by filtration, and the cake was washed with 250 ml of dehydrated toluene to separate white ammonium chloride. Solvent and unreacted dpmH were distilled off from the filtrate at a kettle temperature of 100 to 130 ° C. and a pressure of 1 to 2 Torr to obtain crude V (dpm) 3 .
The crude V (dpm) 3 was sublimated at a heating temperature of 155 ° C. and a pressure of 0.1 to 0.2 Torr to obtain 89.6 g of a purified product. The yield was 92%.
[0020]
The recovered sublimate was a brown solid, and the melting point was 155 to 160 ° C. According to the above-mentioned Sergio Dilli et al., The melting point of V (dpm) 3 is 158 ° C., which is almost consistent with this. The V content was 8.56%, which almost coincided with the theoretical value of 8.48%. From this, the crystal obtained by sublimation purification in Example 1 was identified as V (dpm) 3 .
[0021]
Trace metal impurities were quantified by ICP-MS.
Figure 0004266285
[0022]
Measurement measurement condition sample by TG-DTA 6.02 mg
Atmosphere Ar1 atmospheric pressure heating rate 10.0 deg / min
The measurement results are shown in FIG.
It evaporated completely with a weight loss of 99% or more. Therefore, it can be seen that V (dpm) 3 is preferable as a CVD raw material because it has high thermal stability and no evaporation residue.
[0023]
[Example 2]
A 1 L three-necked flask equipped with a reflux condenser, a stirrer, a dropping funnel, and a dip tube for introducing ammonia gas was vacuum-substituted to obtain an argon gas atmosphere. 20.5 g (0.13 mol) of anhydrous VCl 3, 200 ml of dehydrated ethanol and 200 ml of toluene were charged and stirred at room temperature to dissolve VCl 3 . Here, 112.4 g (0.61 mol) of dpmH was added from a dropping funnel. Thereafter, when ammonia gas was introduced from the dip tube at 0.1 l / min for 5 hours, by-product ammonium chloride was precipitated in the liquid, and the liquid temperature also increased. The mixture was refluxed in an oil bath at 80 to 90 ° C. for 7 hours, crystals of by-product ammonium chloride were separated by filtration, and the cake was washed with 300 ml of dehydrated toluene to separate white ammonium chloride. The filtrate was heated under reduced pressure at a kettle temperature of 100 to 130 ° C. and a pressure of 1 to 2 Torr, and the solvent and unreacted dpmH were distilled off to obtain crude V (dpm) 3 .
Crude V (dpm) 3 was sublimated at a heating temperature of 155 ° C. and a pressure of 0.1 to 0.2 Torr to obtain 70.5 g of a purified product. The yield was 90%.
The characteristics of the collected purified sublimation product were the same as V (dpm) 3 obtained in Example 1.
[0024]
【The invention's effect】
According to the production method of the present invention, V (dpm) 3 suitable for an MOCVD material having an impurity metal element of 5 ppm or less and no adsorbed water can be obtained with a yield of 90% or more.
[Brief description of the drawings]
FIG. 1 is a diagram showing a measurement result of TG-DTA of V (dpm) 3 .

Claims (6)

三塩化バナジウムとβ−ジケトンとアンモニアを有機溶媒中で反応させ、副生塩化アンモニウムを濾過分離し、次いで溶媒と未反応原料を留去し、次いで、真空蒸留または昇華回収するバナジウムトリス(β−ジケトネート)の製造方法。Vanadium trichloride, β-diketone and ammonia are reacted in an organic solvent, by-product ammonium chloride is separated by filtration, then the solvent and unreacted raw material are distilled off, and then vacuum distillation or sublimation recovery of vanadium tris (β- Diketonate). 請求項1記載の有機溶媒としてアルコールを用い、反応後、生成バナジウムトリス(β−ジケトネート)を溶解する無極性溶媒に置換して副生塩化アンモニウムを濾過分離する請求項1記載のバナジウムトリス(β−ジケトネート)の製造方法。An alcohol is used as the organic solvent according to claim 1, and after the reaction, vanadium tris (β-diketonate) is replaced with a nonpolar solvent that dissolves the produced vanadium tris (β-diketonate) and the by-product ammonium chloride is separated by filtration. -Production method of diketonate). 請求項1記載の有機溶媒として、アルコールと、生成バナジウムトリス(β−ジケトネート)を溶解する無極性溶媒との混合溶媒とする請求項1記載のバナジウムトリス(β−ジケトネート)の製造方法。The method for producing vanadium tris (β-diketonate) according to claim 1, wherein the organic solvent according to claim 1 is a mixed solvent of alcohol and a nonpolar solvent for dissolving the generated vanadium tris (β-diketonate). 含有する金属元素不純物が各5ppm以下の高純度である請求項1、2、3記載のバナジウムトリス(β−ジケトネート)の製造方法。The method for producing vanadium tris (β-diketonate) according to claim 1, 2 or 3, wherein the metal element impurities contained have a high purity of 5 ppm or less. 請求項1、2、3、4において、β−ジケトネートがジピバロイルメタネート、2,6−ジメチル−3,5−ヘプタンジオネート、2,2,6,6−テトラメチル−3,5−オクタンジオネート、2,2,6−トリメチル−3,5−ヘプタンジオネート、6−エチル−2,2−ジメチル−3,5−オクタンジオネート、2,4−オクタンジオネートであるバナジウムトリス(β−ジケトネート)の製造方法。The β-diketonate according to claim 1, wherein the β-diketonate is dipivaloylmethanate, 2,6-dimethyl-3,5-heptanedionate, 2,2,6,6-tetramethyl-3,5. Vanadium tris which is -octanedionate, 2,2,6-trimethyl-3,5-heptanedionate, 6-ethyl-2,2-dimethyl-3,5-octanedionate, 2,4-octanedionate A method for producing (β-diketonate). 請求項1、2、3、4において、β−ジケトネートがジピバロイルメタネートであるバナジウムトリス(ジピパロイルメタネート)の製造方法。The method for producing vanadium tris (dipipaloylmethanate) according to claim 1, 2, 3, 4 wherein β-diketonate is dipivaloylmethanate.
JP2001272722A 2001-08-06 2001-08-06 Method for producing vanadium tris (β-diketonate) Expired - Fee Related JP4266285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001272722A JP4266285B2 (en) 2001-08-06 2001-08-06 Method for producing vanadium tris (β-diketonate)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001272722A JP4266285B2 (en) 2001-08-06 2001-08-06 Method for producing vanadium tris (β-diketonate)

Publications (2)

Publication Number Publication Date
JP2003055292A JP2003055292A (en) 2003-02-26
JP4266285B2 true JP4266285B2 (en) 2009-05-20

Family

ID=19098046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001272722A Expired - Fee Related JP4266285B2 (en) 2001-08-06 2001-08-06 Method for producing vanadium tris (β-diketonate)

Country Status (1)

Country Link
JP (1) JP4266285B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856825B2 (en) * 2001-08-23 2012-01-18 田中貴金属工業株式会社 Raw material compound for CVD, method for producing the same, and chemical vapor deposition method of iridium or iridium compound thin film

Also Published As

Publication number Publication date
JP2003055292A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
KR101720371B1 (en) Method for producing indium chloride alkoxides
KR20010072098A (en) TETRAHYDROFURAN-ADDUCTED GROUP Ⅱ β-DIKETONATE COMPLEXS AS SOURCE REAGENTS FOR CHEMICAL VAPOR DEPOSITION
US6620971B2 (en) Asymmetric β-ketoiminate ligand compound, preparation method thereof, and organometal percursor comprising the same
JP4022662B2 (en) Zirconium alkoxytris (β-diketonate), production method thereof, and liquid composition for forming PZT film
KR101399552B1 (en) Strontium precursors, preparation method thereof and process for the formation of thin films using the same
JP4266285B2 (en) Method for producing vanadium tris (β-diketonate)
JPH06298714A (en) Novel organometallic complex and its ligand
KR100435816B1 (en) Organotitanium Precursors for Chemical Vapor Deposition and Manufacturing Method Thereof
JP4002956B2 (en) Method for producing tantalum alcoholate and niobium alcoholate
JP2002338590A (en) Tris(ethylcyclopentadienyl)lanthanoid, method of producing the same and method of producing oxide thin film through vapor-phase
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
Potdar et al. Alternative route for synthesis of barium titanyl oxalate: molecular precursor for macrocrystalline barium titanate powders
JP4104713B2 (en) Titanium complex and synthesis method thereof
JP4006892B2 (en) Method for producing liquid double alkoxide of niobium, tantalum and alkaline earth metal, and method for producing complex oxide dielectric using the same
JP4656292B2 (en) Method for producing metal alkanolamine compounds
JP4086219B2 (en) High purity bismuth tris (β-diketonate) and method for producing the same
JP4448987B2 (en) Method for producing bismuth alkoxide
JP2002069027A (en) HAFNIUM ALKOXYTRIS(beta-DIKETONATE), METHOD FOR MANUFACTURING THE SAME AND METHOD FOR MANUFACTURING OXIDE FILM USING THE SAME
JP4042959B2 (en) Tris (diisobutyrylmethanate) neodymium and method for producing neodymium-substituted bismuth titanate ferroelectric thin film by chemical vapor deposition using the same
JPH11255784A (en) Titanium complex and its synthesis
US6248928B1 (en) Metalorganic chemical vapor deposition precursors
Archer et al. Synthesis, characterization and reactivity of crown ether adducts of barium carboxylates: Ba (O2CCH3) 2 (18-crown-6)· 4H2O and Ba (O2C (CH2) 4CO2)(18-crown-6)· 8H2O
US7012150B2 (en) Method of manufacturing bis(cyclopentadienly)ruthenium and bis(cyclopentadienyl)ruthenium manufactured by the same
Lim et al. A study of the development of CVD precursors III-synthesis and properties of new lead β-diketonate derivatives
US9790238B2 (en) Strontium precursor, method for preparing same, and method for forming thin film by using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150227

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees