KR100633731B1 - R12 and r134a substitute mixed refrigerant - Google Patents
R12 and r134a substitute mixed refrigerant Download PDFInfo
- Publication number
- KR100633731B1 KR100633731B1 KR1020050055471A KR20050055471A KR100633731B1 KR 100633731 B1 KR100633731 B1 KR 100633731B1 KR 1020050055471 A KR1020050055471 A KR 1020050055471A KR 20050055471 A KR20050055471 A KR 20050055471A KR 100633731 B1 KR100633731 B1 KR 100633731B1
- Authority
- KR
- South Korea
- Prior art keywords
- refrigerant
- refrigerants
- cfc12
- mixed refrigerant
- mixed
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/042—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising compounds containing carbon and hydrogen only
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/004—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/006—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/40—Replacement mixtures
- C09K2205/42—Type R12
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
도 1은 본 발명에서 사용한 일반적인 냉동/공조기의 구성도이다.1 is a block diagram of a general refrigeration / air conditioner used in the present invention.
* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
Qc: 응축기에서의 열 흐름 방향(냉매→공기)Qc: direction of heat flow in the condenser (from refrigerant to air)
Qe: 증발기에서 열 흐름 방향(공기→냉매)Qe: Heat flow direction from the evaporator (air to refrigerant)
TS1: 증발기 공기 입구온도, TS7: 증발기 공기 출구온도TS1: evaporator air inlet temperature, TS7: evaporator air outlet temperature
TS3: 응축기 공기 출구온도, TS6: 응축기 공기 입구온도TS3: condenser air outlet temperature, TS6: condenser air inlet temperature
Evaporator: 증발기, Compressor: 압축기Evaporator: Compressor: Compressor
Condenser: 응축기, Expansion Valve: 팽창기 Condenser: Condenser, Expansion Valve: Inflator
본 발명은 증기 압축식 냉동/공조기에서 냉매(Refrigerant, 이하 R이라 한다)로 사용할 수 있는 물질 즉 ‘R152a와 디메틸에테르(이하 DME라 한다)로 구성된 혼합냉매’에 관한 것이며 좀더 구체적으로는 지금까지 가정용 냉장고 및 자동차 공조기 등에 널리 적용되어 온 R12(CFC12)나 R134a(HFC134a)를 대체할 수 있는 혼 합냉매에 관한 것이다. The present invention relates to a material that can be used as a refrigerant (referred to as R) in a vapor compression refrigeration / air conditioner, that is, 'a mixed refrigerant composed of R152a and dimethyl ether (hereinafter referred to as DME)'. The present invention relates to a mixed refrigerant that can replace R12 (CFC12) or R134a (HFC134a), which has been widely applied to household refrigerators and automobile air conditioners.
지금까지는 냉동기, 에어컨, 열펌프 등의 냉매로서 메탄 또는 에탄에서 유도한 염화불화탄소(Chlorofluorocarbon, 이하 CFC라 한다)와 수소화염화불화탄소(Hydrochlorofluorocarbon, 이하 HCFC라 한다)가 주로 사용되어 왔으며 특히 가정용 냉장고, 자동차 공조기 등에는 비등점이 -29.75℃이고 분자 질량이 120.93kg/kmol인 CFC12가 널리 사용되어 왔다.Until now, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) derived from methane or ethane have been mainly used as refrigerants for refrigerators, air conditioners, and heat pumps. In automotive air conditioners, CFC12 having a boiling point of -29.75 ° C and a molecular mass of 120.93kg / kmol has been widely used.
그러나 최근에는 CFC와 HCFC에 의한 성층권 내 오존층 파괴가 중요한 지구환경문제로 대두되었고 이로 인해 성층권 오존을 파괴하는 CFC와 HCFC의 생산과 소비는 1987년에 만들어진 몬트리올 의정서에 의해 규제를 받고 있다. CFC12의 오존파괴지수(Ozone depletion potential, 이하 ODP라 한다)는 0.9로 높아서 현재 선진국에서는 몬트리올 의정서에 의거하여 전폐되었으며 따라서 전 세계 대부분의 국가가 오존파괴지수(ODP)가 0.0인 HFC134a 대체냉매를 사용하려 하고 있다.Recently, however, the destruction of the stratospheric ozone layer by CFCs and HCFCs has emerged as an important global environmental problem, and the production and consumption of stratospheric ozone-depleting CFCs and HCFCs is regulated by the Montreal Protocol, created in 1987. The Ozone Depletion Potential (ODP) of CFC12 was as high as 0.9, which is now obsolete in developed countries in accordance with the Montreal Protocol. I'm trying to.
한편 최근에는 오존층 파괴 문제뿐만 아니라 지구 온난화 문제도 급속도로 부상하기 시작했고 1997년의 교토 의정서는 지구온난화지수(Global warming potential, 이하 GWP라 한다)가 높은 HFC 냉매의 사용을 자제할 것을 강력히 권하고 있다. 이런 추세를 반영하여 유럽과 일본의 냉장고 제조 회사는 거의 대부분의 냉장고에 CFC12나 HFC134a 대신 이소부탄(이하 R600a라 한다) 탄화수소를 냉매로 쓰고 있다.Recently, not only the ozone depletion problem but also the global warming problem began to emerge rapidly, and the 1997 Kyoto Protocol strongly recommends refusing to use HFC refrigerants with high global warming potential (GWP). . Reflecting this trend, European and Japanese refrigerator manufacturers use isobutane (hereinafter referred to as R600a) hydrocarbons as refrigerants in most refrigerators instead of CFC12 or HFC134a.
[표 1]은 몇몇 냉매의 환경 지수를 보여 준다. Table 1 shows the environmental indices of some refrigerants.
(*) ODP는 CFC11을 1.0으로 정해서 기준으로 삼은 것임.(*) ODP is based on CFC11 as 1.0.
(**) GWP는 100년 기준 이산화탄소를 1.0으로 정해서 기준으로 삼은 것임.(**) GWP is based on a 100-year carbon dioxide standard of 1.0.
[표 1]에 기재된 바와 같이, 프로판, DME, R152a 등은 오존층파괴지수(ODP)가 0.0이고 지구온난화지수(GWP)도 다른 냉매들에 비해 현저히 낮다. 바로 이런 특성으로 인해 현재 유럽 연합과 일본 그리고 아시아의 대부분 국가들이 ODP가 0.0이고 GWP가 기존의 CFC12 냉매나 HFC134a 냉매보다 낮은 냉매들을 혼합하여 원하는 열역학적 특성을 얻고 또 동시에 효율 향상이나 기름과의 호환성 증대를 이루려 한다. 이런 점에서 R152a와 DME 등은 적격이라 할 수 있다.As shown in Table 1, propane, DME, R152a, and the like have an ozone depletion index (ODP) of 0.0 and a global warming index (GWP). This is why most countries in the European Union, Japan, and Asia now mix refrigerants with an ODP of 0.0 and lower GWP than conventional CFC12 or HFC134a refrigerants to achieve the desired thermodynamic properties, while at the same time improving efficiency or increasing oil compatibility. To achieve. In this regard, R152a and DME are eligible.
어떤 물질이 기존 냉매의 대체냉매로 유용하려면 우선 기존 냉매와 유사한 성능계수(Coefficient of performance, 이하 COP라 한다)를 가져야 한다. 여기서 성능계수(COP)란 압축기에 가해진 일과 대비한 총 냉동효과를 의미하는 것으로서 COP가 클수록 냉동/공조기의 에너지 효율이 좋다. 또한 압축기를 크게 개조하지 않고 사용하려면 대체냉매가 기존 냉매와 비슷한 증기압을 가져서 궁극적으로 비슷한 체적용량(Volumetric capacity, 이하 VC라 한다)을 제공해야 한다. 여기서 체적용량(VC)이란 단위 체적 당 냉동 효과를 뜻하는데 이것은 압축기의 크기를 나타내는 인자로서 대개 증기압에 비례하고 단위는 kJ/m3이다. 대체냉매가 기존 냉매와 비슷한 체적용량을 낸다면 제조업체는 압축기를 바꾸거나 크게 개조하지 않고도 냉동/공조기를 제작할 수 있어 매우 유리하다. 그러나 지금까지의 연구 결과 순수 물질로 기존 냉매를 대체하는 경우 대체냉매의 체적용량이 달라서 필연적으로 압축기를 바꾸거나 크게 개조해야 하며 또 기존 냉매와 비슷한 성능계수를 내기가 어렵다는 것이 밝혀졌다. In order for a material to be useful as an alternative to a conventional refrigerant, it must first have a coefficient of performance (COP) similar to that of a conventional refrigerant. The coefficient of performance (COP) refers to the total refrigeration effect compared to the work applied to the compressor, the larger the COP, the better the energy efficiency of the refrigeration / air conditioner. In addition, in order to use the compressor without major modifications, the alternative refrigerant must have a vapor pressure similar to that of the existing refrigerant and ultimately provide a similar volumetric capacity (VC). The volumetric capacity (VC) here refers to the refrigeration effect per unit volume, which is a factor of the size of the compressor, which is usually proportional to the vapor pressure and is in kJ / m3. If the replacement refrigerant has a volume capacity similar to that of the existing refrigerant, it is very advantageous for manufacturers to build refrigeration / air conditioning without changing compressors or making major modifications. However, studies to date have shown that in case of replacing the existing refrigerant with pure material, the volume of the replacement refrigerant is different, so it is inevitable to change or largely modify the compressor, and it is difficult to obtain a similar coefficient of performance as the existing refrigerant.
이를 해결할 수 있는 방법 중 하나가 혼합냉매를 이용하는 것이다. 혼합냉매의 특성은 조성을 잘 배합해서 성능계수를 기존 냉매와 비슷하게 하고 동시에 기존 냉매와 비슷한 체적용량(VC)을 내게 하며 이로써 압축기를 크게 개조할 필요가 없게 만들 수 있다는 것이다. 이런 특성 때문에 지난 몇 년간 CFC12의 대체물로 여러 혼합냉매가 제안된바 있으나 그것들 중 몇몇은 몬트리올 의정서에서 사용을 금하는 HCFC를 구성 성분으로 가지고 있어 장기적인 관점에서 볼 때 적합한 대체물이라 할 수 없다. One way to solve this is to use a mixed refrigerant. The characteristics of mixed refrigerants are that they can be formulated so that their coefficients of performance are similar to those of conventional refrigerants, while at the same time providing a volumetric capacity (VC) similar to conventional refrigerants, thereby eliminating the need for major modifications to the compressor. Due to these characteristics, several mixed refrigerants have been proposed as substitutes for CFC12 in the past few years, but some of them have HCFCs which are prohibited from use in the Montreal Protocol, and thus are not suitable alternatives in the long term.
미국의 듀퐁 사에서는 HCFC와 수소화불화탄소(Hydrofluorocarbon, 이하 HFC라 한다)로 구성된 MP39(53%R22/34%R124/13%R152a), MP66(61%R22/28%R124/11%R152a) 등의 3원 혼합냉매를 개발하여 시판한 바 있고 Monroe Air Tech사는 HCFC와 이소부탄으로 구성된 GHG-X3(65%R22/4%R600a/31%R142b)라는 3원 혼합냉매를 개발하여 시판하고 있으며 다른 여러 회사들도 다양한 혼합냉매를 상품화하고 있다. 그러나 대부분 이런 냉매들은 오존파괴지수(ODP)가 0.0보다 커서 지구 환경에 유해하고 CFC12보다 에너지 효율이 낮으므로 지구 온난화의 간접 효과를 가속화시킬 우려가 있으며 또 교토 의정서에서 사용을 제한하는 HCFC와 HFC 등으로 구성되어 있어 장기적 관점에서 적합한 대체물이라 할 수 없다. In DuPont, USA, MP39 (53% R22 / 34% R124 / 13% R152a) and MP66 (61% R22 / 28% R124 / 11% R152a) are made up of HCFC and hydrofluorocarbon (HFC). Has developed and marketed three-way mixed refrigerants. Monroe Air Tech has developed and marketed three-way mixed refrigerants called GHG-X3 (65% R22 / 4% R600a / 31% R142b) composed of HCFC and isobutane. Several companies are also commercializing various mixed refrigerants. However, most of these refrigerants have an ozone depletion index (ODP) greater than 0.0, which is harmful to the global environment and lower in energy efficiency than CFC12, which may accelerate the indirect effects of global warming. In the long term, it is not a suitable substitute.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 오존파괴지수(ODP)가 0.0이므로 성층권 내 오존층에 전혀 영향을 미치지 않으며 지구온난화지수 또한 기존의 다른 대체냉매보다 낮고 동시에 기존의 압축기를 크게 개조하지 않고도 CFC12와 HFC134a의 대체냉매로 사용할 수 있는 혼합냉매를 제공하는 것이다.The present invention has been made to solve the above problems of the prior art, the object of the present invention is because the Ozone Depletion Index (ODP) is 0.0 has no effect on the ozone layer in the stratosphere and the global warming index is also better than other alternative refrigerants At the same time, it provides a mixed refrigerant that can be used as an alternative to CFC12 and HFC134a without significantly modifying existing compressors.
상기한 본 발명의 목적은 냉동/공조기용 혼합냉매에 있어서 R152a(1,1-디플루오로에탄) 3 내지 29중량%와 RE170(디메틸에테르) 71 내지 97중량%로 구성된 2원 근공비 혼합냉매에 의해 달성된다.The above-described object of the present invention is a two-way muscle azeotropic mixed refrigerant consisting of 3 to 29% by weight of R152a (1,1-difluoroethane) and 71 to 97% by weight of RE170 (dimethyl ether) in a refrigeration / air conditioner mixed refrigerant. Is achieved by.
또한 상기한 본 발명의 목적은 R152a(1,1-디플루오로에탄) 3 내지 29중량%와 RE170(디메틸에테르) 71 내지 97중량%로 구성된 2원 근공비 혼합냉매를 사용하며 증발기, 응축기, 압축기, 팽창 밸브를 포함하는 냉동/공조기에 의해서도 달성된다.In addition, the above object of the present invention uses a binary near-air mixture mixed refrigerant consisting of 3 to 29% by weight of R152a (1,1-difluoroethane) and 71 to 97% by weight of RE170 (dimethyl ether), evaporator, condenser, It is also achieved by a refrigeration / air conditioner comprising a compressor, expansion valve.
본 발명의 그밖의 목적, 특정한 장점 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 분명해질 것이다.Other objects, specific advantages and novel features of the invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings.
이하에서는 본 발명의 바람직한 실시예에 따른 알12 및 알134에이 대체용 혼 합냉매 및 이를 사용한 냉동시스템의 구성에 대하여 상세히 설명한다.Hereinafter will be described in detail the configuration of the mixed refrigerant for Al 12 and Al 134 a and the refrigeration system using the same according to a preferred embodiment of the present invention.
본 발명은 오존파괴지수(ODP)가 0.0이므로 성층권 내 오존층에 전혀 영향을 미치지 않으며 지구온난화지수 또한 기존의 다른 대체냉매보다 낮고 동시에 기존의 압축기를 크게 개조하지 않고도 CFC12와 HFC134a의 대체냉매로 사용할 수 있는 혼합냉매에 관한 것이다.In the present invention, since the ozone depletion index (ODP) is 0.0, it does not affect the ozone layer in the stratosphere at all, and the global warming index is also lower than other alternative refrigerants, and at the same time, it can be used as an alternative refrigerant of CFC12 and HFC134a without significantly modifying the existing compressor. To a mixed refrigerant.
구체적으로 본 발명은 R152a(1,1-디플루오로에탄)와 디메틸에테르(DME)로 구성된 2원 근공비 혼합냉매에 관한 것이다. 본 발명에서 제안하는 대체 혼합냉매는 오존파괴지수(ODP)가 0.0이고 기존의 다른 대체냉매에 비해 지구온난화지수(GWP)가 현저히 낮으며 또 CFC12와 HFC134a의 성능계수(COP)와 체적용량(VC)에 근접한 값을 낸다.Specifically, the present invention relates to a binary near azeotropic mixed refrigerant composed of R152a (1,1-difluoroethane) and dimethyl ether (DME). The alternative mixed refrigerant proposed by the present invention has an ozone depletion index (ODP) of 0.0 and a significantly lower global warming index (GWP) than other alternative refrigerants, and the coefficient of performance (COP) and volume capacity (VC) of CFC12 and HFC134a. Yields a value close to).
대체 혼합냉매를 개발하기 위하여 본 발명자는 냉동/공조기의 성능을 모사하는 프로그램을 만들었다. 제1도는 본 발명에서 사용한 일반적인 냉동/공조기의 구성도로서 증발기, 응축기, 압축기, 팽창 밸브 등으로 구성되어 있다. 프로그램에서는 먼저 냉동/공조기를 구성하는 요소들 예를 들어 열교환기 및 압축기 등에 대한 열역학 및 열전달 해석을 수행하였고 최종적으로 이 모든 것을 조합한 전체 프로그램을 개발했다. 이렇게 개발한 프로그램의 정확도를 결정하는 중요 인자 중 하나는 냉매의 물성치이다. 본 프로그램에서는 미국, 일본 등에서 기준으로 삼고 있는 Carnahan-Starling-De Santis(CSD) 상태 방정식을 사용하여 모든 냉매의 물성치를 계산했다. REFPROP으로 알려진 CSD 상태 방정식은 미국 표준 연구소(National Institute of Standards and Technology)에서 개발한 것으로 정확성 및 적용성이 이미 입증되어 전 세계 냉동/공조 관련 유수 기업, 연구소, 대학에서 가장 널리 사용되는 프로그램이다. 이번에 만든 냉동/공조기 프로그램의 개발 및 실행을 위한 입력 데이터로는 가능한 한 실제 데이터를 사용했다.In order to develop an alternative mixed refrigerant, the inventors have created a program that simulates the performance of a refrigeration / air conditioner. 1 is a block diagram of a general refrigeration / air conditioner used in the present invention, and is composed of an evaporator, a condenser, a compressor, an expansion valve, and the like. The program first performed thermodynamic and heat transfer analysis of the components that make up the refrigeration / air conditioner, such as heat exchangers and compressors, and finally developed a complete program that combines all of these. One of the important factors that determine the accuracy of this program is the properties of the refrigerant. In this program, the properties of all refrigerants were calculated using the Carnahan-Starling-De Santis (CSD) state equation, which is the standard in the United States and Japan. The CSD state equation, known as REFPROP, was developed by the National Institute of Standards and Technology and is the most widely used program in leading refrigeration and air conditioning companies, laboratories, and universities worldwide for its proven accuracy and applicability. The actual data was used as input data for the development and execution of the frozen / air conditioner program.
본 발명자는 냉동/공조기용 대체냉매의 오존파괴지수(ODP)가 반드시 0.0이어야 하며 가능한 한 지구온난화지수(GWP)가 낮아야 한다는 판단 하에 R152a(1,1-디플루오로에탄)와 RE170(디메틸에테르, DME)을 혼합하여 기존의 CFC12와 HFC134a 냉매를 대체할 수 있게 하였다. R152a와 DME 냉매는 증기압이 비슷하므로 두 냉매를 적절하게 혼합하면 사용자가 원하는 성질을 얻을 수 있으며 또 혼합냉매 적용 시 가장 중요한 인자 중 하나인 온도구배를 0.2℃ 미만으로 유지할 수 있음이 아래의 [표 2]에서 확인된다.The inventors have determined that the ozone depletion index (ODP) of the alternative refrigerant for refrigeration / air conditioners must be 0.0 and the global warming potential (GWP) should be as low as possible. R152a (1,1-difluoroethane) and RE170 (dimethyl ether) , DME) can be used to replace the existing CFC12 and HFC134a refrigerant. Since R152a and DME refrigerants have similar vapor pressures, proper mixing of the two refrigerants will provide the user with the desired properties, and the temperature gradient, one of the most important factors in applying mixed refrigerants, can be maintained below 0.2 ° C. 2].
[표 2]는 기존의 CFC12나 HFC134a를 사용하는 냉동/공조기 사용 조건에서 전산해석 프로그램을 이용하여 계산한 결과들을 요약한 것으로서 기준이 되는 CFC12와 본 발명자가 제안하는 대체 혼합냉매의 성능 지수를 보여 준다. [Table 2] summarizes the results calculated using the computational analysis program under the refrigeration / air conditioner using the conventional CFC12 or HFC134a, showing the performance index of the standard CFC12 and the alternative mixed refrigerant proposed by the present inventors give.
※COP: 성능계수(Coefficient of performance, 총 냉동효과/압축기에 가해진 일)※ COP: coefficient of performance (Coefficient of performance, total refrigeration effect / work done on the compressor)
VC: 체적용량(Volumetric capacity)VC: volumetric capacity
GTD: 온도구배(Gliding temperature difference)GTD: Gliding temperature difference
Tdis: 압축기 토출온도(Compressor discharge temperature)Tdis: Compressor discharge temperature
COPdiff: CFC12 대비 성능계수 차이COP diff : Performance factor difference compared to CFC12
VCdiff: CFC12 대비 체적용량 차이VC diff : Volumetric difference compared to CFC12
GWP: 지구온난화지수GWP: Global Warming Index
[표 2]에 기재된 바와 같이, 본 발명예 1 내지 7의 냉매들이 기존의 CFC12나 R134a에 비해 성능계수가 8% 정도 높으며 체적용량이 4% 정도 작음을 알 수 있다. 또 이 혼합냉매들의 온도구배는 0.2℃ 미만이므로 현재 상용화되고 있는 혼합냉매의 온도구배인 7℃보다 현저히 낮으므로 사용하는 데 전혀 문제가 없다. 또한 본 발명예 1-7 냉매들의 압축기 토출 온도 역시 CFC12의 토출온도보다 13℃ 정도 높으므로 사용하는 데 전혀 문제가 없다.As shown in Table 2, it can be seen that the refrigerants of Examples 1 to 7 of the present invention have an 8% higher coefficient of performance and 4% smaller volume capacity than conventional CFC12 or R134a. In addition, since the temperature gradient of the mixed refrigerant is less than 0.2 ℃, it is significantly lower than the temperature gradient of the commercially available mixed refrigerant 7 ℃, there is no problem to use. In addition, the compressor discharge temperature of the refrigerant examples 1-7 of the present invention is also about 13 ° C. higher than the discharge temperature of the CFC12, so there is no problem in using it.
본 발명예 1-7의 모든 냉매는 오존파괴지수(ODP)가 0.0으로서 전혀 오존층을 파괴시키지 않으므로 환경 보존 측면에서도 CFC12나 HFC134a보다 훨씬 우수하다. 또 HFC134a의 경우 지구 온난화 지수가 높아서 교토 의정서에 의거하여 규제를 받으므로 R152a나 DME같이 지구 온난화 지수가 낮은 냉매들을 중심으로 혼합냉매를 만들면 HFC 사용량이 줄어들어 지구 온난화도 경감시킬 수 있다.All of the refrigerants of Examples 1-7 of the present invention have an ozone depletion index (ODP) of 0.0 and thus do not destroy the ozone layer at all, and thus are much superior to CFC12 and HFC134a in terms of environmental preservation. In addition, HFC134a has a high global warming index and is regulated under the Kyoto Protocol. Therefore, if a mixed refrigerant is made around refrigerants with a low global warming index, such as R152a or DME, HFC134a may reduce global warming.
참고로 혼합냉매에서 R152a의 조성비율이 커지면 몇 가지 문제점이 생긴다. [표 2]에서 보듯이 R152a의 양이 증가할수록 지구온난화지수(GWP)가 증가하며 R152a의 양이 29중량%를 차지할 경우 지구온난화지수는 42.7로 증가한다. 현재 유럽 공동체를 비롯해서 전 세계는 GWP가 45-50 이하인 냉매만을 장기적인 환경친화 대체냉매로 쓰려 하고 있고 실제로 가정용 냉장고의 경우 모든 냉매가 이 기준을 만족시키고 있다. 따라서 지구온난화지수를 45이하로 하는 조건을 만족시키기 위해서 R152a와 DME로 구성된 혼합냉매의 R152a의 조성비율은 29중량% 이하인 것이 바람직하다. 본 발명예 1 내지 7의 혼합냉매는 지구온난화지수 조건을 만족하도록 R152a의 조성비율이 29중량%이하인 것에 해당한다.For reference, if the composition ratio of R152a in the mixed refrigerant increases, some problems occur. As shown in [Table 2], the global warming index (GWP) increases as the amount of R152a increases, and the global warming index increases to 42.7 when the amount of R152a accounts for 29% by weight. Currently, the European community and the world are trying to use only refrigerants with a GWP of 45-50 or less as long-term environmentally friendly alternative refrigerants. Therefore, in order to satisfy the condition that the global warming index is 45 or less, the composition ratio of R152a of the mixed refrigerant composed of R152a and DME is preferably 29% by weight or less. The mixed refrigerants of Examples 1 to 7 of the present invention correspond to a composition ratio of R152a of 29 wt% or less so as to satisfy the global warming index conditions.
또한 R152a의 양이 많아지면 냉동기유와 냉매의 호환성이 떨어진다. DME와 냉동기유의 호환성이 훨씬 더 뛰어나기 때문이다. 이런 점을 고려할 때 R152a/DME 혼합냉매의 경우 R152a의 조성이 작은수록 실제 제품에 적용하는 데 문제가 생기지 않는다.In addition, when the amount of R152a increases, the compatibility between the refrigerant oil and the refrigerant is reduced. This is because the DME and refrigeration oil are much more compatible. In view of this, the smaller the composition of R152a in the case of the R152a / DME mixed refrigerant, the less problems are applied to the actual product.
냉매와 냉동기유를 함께 섞는 이유는 에어컨이나 냉동기의 중심이라고 할 수 있는 콤푸레셔의 기어를 보호하기 위한 것이다. 냉동기유로써 요구되는 특성은 윤활성이 좋고, 고온에서 견디며, 저온에서도 응고하지 않아야 함은 물론이다.The reason why the refrigerant and the refrigerant oil are mixed together is to protect the gear of the compressor, which is the center of the air conditioner or the refrigerator. The characteristics required for the refrigeration oil are of course good lubricity, endure at high temperatures, and should not solidify even at low temperatures.
그리고 냉동기유가 성능을 발휘하려면 냉매와 희석하여서도 화학적인 반응을 일으키지 않아야 하는데, 이것을 냉매와 냉동기유의 호환성이라고 할 수 있다. DME는 R152a보다 냉동기유와의 호환성이 좋기 때문에 혼합냉매에서 DME가 차지하는 비율이 클 수록 유리하다. 따라서 본 발명예 1 내지 7의 혼합냉매는 DME가 71중량% 이상인 것을 선택하였다. In order to achieve the performance of the refrigeration oil, even when diluted with the refrigerant should not cause a chemical reaction, this can be said to be compatible with the refrigerant. As DME is more compatible with refrigeration oil than R152a, the greater the proportion of DME in mixed refrigerants, the better. Therefore, the mixed refrigerant of Examples 1 to 7 of the present invention was selected that the DME is 71% by weight or more.
또한 R152a와 DME로 구성된 혼합냉매에서 R152a의 조성비율이 증가하면 혼합냉매의 제조 원가가 상승하게 된다. DME와는 달리 R152a는 인공 화합물이므로 현재 DME에 비해 4-5배 비싸다. 따라서 환경친화 냉매의 확산을 위해서는 가격이 싼 냉매가 반드시 필요하다. 따라서 경제적 관점에서 혼합냉매에서 R152a의 조성비율이 작을 수록 유리한 것이다.In addition, if the composition ratio of R152a is increased in the mixed refrigerant composed of R152a and DME, the production cost of the mixed refrigerant increases. Unlike DME, R152a is an artificial compound, which is 4-5 times more expensive than DME. Therefore, inexpensive refrigerants are essential for the diffusion of environmentally friendly refrigerants. Therefore, from the economic point of view, the smaller the composition ratio of R152a in the mixed refrigerant is, the more advantageous it is.
상기한 구성을 갖는 본 발명에 따른 혼합냉매는 오존파괴지수(ODP)가 0.0이므로 성층권 내 오존층에 전혀 영향을 미치지 않으며 지구온난화지수 또한 기존의 다른 대체냉매보다 낮고 동시에 기존의 압축기를 크게 개조하지 않고도 CFC12와 HFC134a의 대체냉매로 사용할 수 있는 장점이 있다.Since the mixed refrigerant according to the present invention having the above-described structure has an ozone depletion index (ODP) of 0.0, it does not affect the ozone layer in the stratosphere at all, and the global warming index is also lower than that of other existing alternative refrigerants, and at the same time without greatly modifying the existing compressor. It can be used as an alternative to CFC12 and HFC134a.
또한 본 발명의 혼합냉매는 냉동기유와의 호환성이 우수한 DME가 차지하는 비율이 높기 때문에 혼합냉매의 호환성 또한 우수해지는 효과가 있다. In addition, since the mixed refrigerant of the present invention has a high proportion of DME having excellent compatibility with refrigerator oil, the compatibility of the mixed refrigerant is also excellent.
본 발명에 따른 혼합냉매는 DME를 70중량% 이상 사용하기 때문에 제조비용을 줄일 수 있어서 환경친화적 혼합냉매의 사용을 확산시키는데 유리하다.Since the mixed refrigerant according to the present invention uses more than 70% by weight of DME, the manufacturing cost can be reduced, which is advantageous in spreading the use of environmentally friendly mixed refrigerant.
비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위는 본 발명의 요지에서 속하는 이러한 수정이나 변형을 포함할 것이다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will cover such modifications and variations as fall within the spirit of the invention.
Claims (2)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050055471A KR100633731B1 (en) | 2005-06-27 | 2005-06-27 | R12 and r134a substitute mixed refrigerant |
PCT/KR2005/002678 WO2006038766A1 (en) | 2004-08-25 | 2005-08-17 | R502, r12 or r22 substitute mixed refrigerant and refrigeration system using thereof |
EP05780547A EP1794253A1 (en) | 2004-08-25 | 2005-08-17 | R502, r12 or r22 substitute mixed refrigerant and refrigeration system using thereof |
JP2007529676A JP2008510870A (en) | 2004-08-25 | 2005-08-17 | R502, R12 or R22 alternative mixed refrigerant and refrigeration system using the same |
US11/574,202 US20090261289A1 (en) | 2004-08-25 | 2005-08-17 | R502, R12 or R22 Substitute Mixed Refrigerant and Refrigeration System Using Thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050055471A KR100633731B1 (en) | 2005-06-27 | 2005-06-27 | R12 and r134a substitute mixed refrigerant |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100633731B1 true KR100633731B1 (en) | 2006-10-13 |
Family
ID=37626152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050055471A KR100633731B1 (en) | 2004-08-25 | 2005-06-27 | R12 and r134a substitute mixed refrigerant |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100633731B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11228945A (en) | 1998-02-16 | 1999-08-24 | Daikin Ind Ltd | Refrigerant composition |
-
2005
- 2005-06-27 KR KR1020050055471A patent/KR100633731B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11228945A (en) | 1998-02-16 | 1999-08-24 | Daikin Ind Ltd | Refrigerant composition |
Non-Patent Citations (1)
Title |
---|
05222234 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100492169B1 (en) | R502 and r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100261459B1 (en) | Composition of refrigerant mixtures for refrigerator/ air conditioner | |
KR101034795B1 (en) | Binary refrigerant mixture composed of R1234yf and R152a | |
KR100633731B1 (en) | R12 and r134a substitute mixed refrigerant | |
KR100492171B1 (en) | R502 and r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100540285B1 (en) | R12 and r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100540279B1 (en) | R502 and r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100633730B1 (en) | R12 substitute mixed refrigerant | |
KR101572757B1 (en) | Ternary refrigerant mixture composed of R32, RC270, R1234yf | |
KR100499259B1 (en) | R12 substitute mixed refrigerant and refrigeration system using thereof | |
KR100540286B1 (en) | R12 substitute mixed refrigerant and refrigeration system using thereof | |
KR100540284B1 (en) | R12 or r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100492174B1 (en) | R12 or r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100540283B1 (en) | R12 or r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100540281B1 (en) | R502 and r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100540282B1 (en) | R502 and r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100540278B1 (en) | R502 substitute mixed refrigerant and refrigeration system using thereof | |
KR100540280B1 (en) | R502 and r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100633732B1 (en) | R22 substitute mixed refrigerant | |
KR20060018800A (en) | R12 and r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100492173B1 (en) | R502 and r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100492170B1 (en) | R502 substitute mixed refrigerant and refrigeration system using thereof | |
KR101104108B1 (en) | refrigerant mixture of R32 and R134a for drop in replacement of R22 | |
KR100492175B1 (en) | R12 and r22 substitute mixed refrigerant and refrigeration system using thereof | |
KR100492172B1 (en) | R502 and r22 substitute mixed refrigerant and refrigeration system using thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20090930 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |