KR100499259B1 - R12 substitute mixed refrigerant and refrigeration system using thereof - Google Patents

R12 substitute mixed refrigerant and refrigeration system using thereof Download PDF

Info

Publication number
KR100499259B1
KR100499259B1 KR1020040066992A KR20040066992A KR100499259B1 KR 100499259 B1 KR100499259 B1 KR 100499259B1 KR 1020040066992 A KR1020040066992 A KR 1020040066992A KR 20040066992 A KR20040066992 A KR 20040066992A KR 100499259 B1 KR100499259 B1 KR 100499259B1
Authority
KR
South Korea
Prior art keywords
mixed refrigerant
weight
refrigerant
present
refrigeration
Prior art date
Application number
KR1020040066992A
Other languages
Korean (ko)
Inventor
함윤식
정혜미
Original Assignee
함윤식
정혜미
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 함윤식, 정혜미 filed Critical 함윤식
Priority to KR1020040066992A priority Critical patent/KR100499259B1/en
Application granted granted Critical
Publication of KR100499259B1 publication Critical patent/KR100499259B1/en
Priority to JP2007529676A priority patent/JP2008510870A/en
Priority to US11/574,202 priority patent/US20090261289A1/en
Priority to EP05780547A priority patent/EP1794253A1/en
Priority to PCT/KR2005/002678 priority patent/WO2006038766A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/042Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising compounds containing carbon and hydrogen only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/004Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/40Replacement mixtures
    • C09K2205/42Type R12

Abstract

본 발명은 증기 압축식 냉동기 또는 공조기에서 사용되는 R12를 대체하기 위한 혼합냉매 및 이를 사용한 냉동시스템에 관한 것으로, 더욱 상세하게는 오존층파괴와 지구온난화를 일으키지 않으면서 동시에 기존의 냉동시스템을 대체하지 않고 사용할 수 있도록 하는 1,1,1,2-테트라플루오로에탄, 1,1-디플루오로에탄, 디메틸에테르 및 이소부탄을 선택적으로 조합하여 구성되는 혼합냉매 및 이를 사용한 냉동시스템에 관한 것이다. 본 발명의 바람직한 실시예에 따른 혼합냉매는 R134a(1,1,1,2-테트라플루오로에탄) 1 내지 78중량부, RE170(디메틸에테르) 1 내지 78중량부, R600a(이소부탄) 21 내지 99중량부로 구성된다.The present invention relates to a mixed refrigerant for replacing R12 used in a vapor compression refrigerator or an air conditioner and a refrigeration system using the same. More specifically, the present invention does not replace an existing refrigeration system without causing ozone layer destruction and global warming. The present invention relates to a mixed refrigerant composed by selectively combining 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, dimethyl ether, and isobutane, and a refrigeration system using the same. Mixed refrigerant according to a preferred embodiment of the present invention is 1 to 78 parts by weight of R134a (1,1,1,2-tetrafluoroethane), 1 to 78 parts by weight of RE170 (dimethyl ether), R600a (isobutane) 21 to It consists of 99 parts by weight.

Description

알12 대체용 혼합냉매 및 이를 사용한 냉동시스템{R12 SUBSTITUTE MIXED REFRIGERANT AND REFRIGERATION SYSTEM USING THEREOF}R12 SUBSTITUTE MIXED REFRIGERANT AND REFRIGERATION SYSTEM USING THEREOF}

본 발명은 증기 압축식 냉동/공조기에서 냉매(Refrigerant, 이하 R이라 한다)로 사용할 수 있는 물질 즉 '1,1,1,2-테트라플루오로에탄, 1,1-디플루오로에탄, 디메틸에테르(이하 DME라 한다) 및 이소부탄을 선택적으로 조합하여 구성한 혼합냉매 및 이를 사용한 냉동시스템'에 관한 것이며 좀더 구체적으로는 지금까지 가정용 냉장고 및 자동차 공조기 등에 널리 적용되어 온 디클로디플루오로메탄(CCl2F2, 이하 R12 혹은 CFC12라 한다)을 대체할 수 있는 혼합냉매 및 이를 사용하는 냉동시스템에 관한 것이다.The present invention is a material that can be used as a refrigerant (referred to as R) in a vapor compression refrigeration / air conditioner, namely '1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, dimethyl ether (Hereinafter referred to as DME) and isobutane and a mixed refrigerant and a refrigeration system using the same. More specifically, it is a dichlorodifluoromethane (CCl 2) which has been widely applied to household refrigerators and automobile air conditioners. F 2, below relates to a mixed refrigerant, and a refrigeration system using the same which can replace referred to as R12 or CFC12).

지금까지는 냉동기, 에어컨, 열펌프 등의 냉매로서 메탄 또는 에탄에서 유도한 염화불화탄소(Chlorofluorocarbon, 이하 CFC라 한다)와 수소화염화불화탄소(Hydrochlorofluorocarbon, 이하 HCFC라 한다)가 주로 사용되어 왔으며 특히 가정용 냉장고, 자동차 공조기 등에는 비등점이 -29.75℃℃이고 분자 질량이 120.93kg/kmol인 CFC12가 가장 널리 사용되어 왔다.Until now, chlorofluorocarbons (hereinafter referred to as CFCs) and hydrochlorofluorocarbons (hereinafter referred to as HCFCs) derived from methane or ethane have been mainly used as refrigerants for refrigerators, air conditioners, and heat pumps. In automotive air conditioners, CFC12 having a boiling point of -29.75 ° C and a molecular mass of 120.93kg / kmol has been most widely used.

그러나 최근에는 CFC와 HCFC에 의한 성층권 내 오존층 파괴가 중요한 지구환경문제로 대두되었고 이로 인해 성층권 오존을 파괴하는 CFC와 HCFC의 생산과 소비는 1987년에 만들어진 몬트리올 의정서에 의해 규제를 받고 있다. CFC12는 오존파괴지수(Ozone depletion potential, 이하 ODP라 한다)가 0.9로 높아서 현재 선진국에서는 몬트리올 의정서에 의거하여 전폐되었으며 따라서 전 세계 대부분의 국가가 오존파괴지수(ODP)가 0.0인 대체냉매를 사용하려 하고 있다.Recently, however, the destruction of the stratospheric ozone layer by CFCs and HCFCs has emerged as an important global environmental problem, and the production and consumption of stratospheric ozone-depleting CFCs and HCFCs is regulated by the Montreal Protocol, created in 1987. CFC12 has a high Ozone Depletion Potential (ODP) of 0.9, which is now obsolete in developed countries in accordance with the Montreal Protocol, and so most countries around the world try to use alternative refrigerants with an ODP of 0.0. Doing.

또 최근에는 오존층 파괴 문제뿐만 아니라 지구 온난화 문제도 급속도로 부상하기 시작했고 1997년의 교토 의정서는 지구온난화지수(Global warming potential, 이하 GWP라 한다)가 높은 HFC 냉매의 사용을 자제할 것을 강력히 권하고 있다. 이런 추세를 반영하여 유럽과 일본의 냉장고 제조 회사는 거의 대부분의 냉장고에 탄화수소인 이소부탄(이하 R600a라 한다)을 냉매로 쓰고 있으며 가정용 에어컨, 히트 펌프, 저온용 냉동고, 자동차 에어컨 등을 생산하는 업체들도 지구온난화지수(GWP)가 낮은 탄화수소 계열의 냉매를 사용하려 하고 있다. Recently, not only the ozone depletion problem but also the global warming problem has begun to emerge rapidly, and the 1997 Kyoto Protocol strongly recommends refusing to use HFC refrigerants with high global warming potential (GWP). . Reflecting this trend, European and Japanese refrigerator manufacturing companies use isobutane (hereinafter referred to as R600a) as a refrigerant in almost all refrigerators and produce household air conditioners, heat pumps, low temperature freezers and automobile air conditioners. Some are also trying to use hydrocarbon-based refrigerants with a low global warming index (GWP).

표 1은 몇몇 냉매의 환경 지수를 보여 준다. Table 1 shows the environmental indices of some refrigerants.

[냉매들의 환경 지수][Environmental Index of Refrigerants] 냉 매Refrigerant 오존파괴지수(ODP)Ozone Depletion Index (ODP) 지구온난화지수(GWP)Global Warming Index (GWP) CFC12CFC12 0.90.9 8,5008,500 HFC134aHFC134a 0.00.0 1,3001,300 HCFC22HCFC22 0.050.05 1,7001,700 R407CR407C 0.00.0 1,3701,370 CFC502CFC502 0.180.18 4,5104,510 R404AR404A 0.00.0 3,8503,850 HFC125HFC125 0.00.0 3,2003,200 HFC143aHFC143a 0.00.0 4,4004,400 HFC152aHFC152a 0.00.0 140140 프로필렌(R1270)Propylene (R1270) 0.00.0 3 이하3 or less 프로판(R290)Propane (R290) 0.00.0 3 이하3 or less DME(RE170)DME (RE170) 0.00.0 3 이하3 or less 이소부탄(R600a)Isobutane (R600a) 0.00.0 3 이하3 or less

(*) ODP는 CFC11을 1.0으로 정해서 기준으로 삼은 것임.(*) ODP is based on CFC11 as 1.0.

(**) GWP는 100년 기준 이산화탄소를 1.0으로 정해서 기준으로 삼은 것임.(**) GWP is based on a 100-year carbon dioxide standard of 1.0.

표 1에서 볼 수 있듯이 프로필렌, 프로판, 이소부탄, DME, 그리고 HFC152a 등은 오존층파괴지수(ODP)가 0.0이고 지구온난화지수(GWP)도 다른 냉매들에 비해 현저히 낮다. 바로 이런 특성으로 인해 현재 유럽 연합과 일본 그리고 아시아의 대부분 국가들이 ODP가 0.0이고 GWP가 기존의 CFC 냉매나 HFC 냉매보다 낮은 냉매들을 혼합하여 원하는 열역학적 특성을 얻고 또 동시에 효율 향상이나 기름과의 호환성 증대를 이루려 한다. 이런 점에서 프로필렌, 프로판, 이소부탄, DME, 그리고 HFC152a 등은 적격이라 할 수 있다.As shown in Table 1, propylene, propane, isobutane, DME, and HFC152a have an ozone depletion index (ODP) of 0.0 and a global warming index (GWP). This is why most countries in the European Union, Japan and Asia now mix refrigerants with an ODP of 0.0 and lower GWP than conventional CFC or HFC refrigerants to achieve the desired thermodynamic properties while at the same time improving efficiency or increasing oil compatibility. To achieve. In this sense, propylene, propane, isobutane, DME, and HFC152a are eligible.

어떤 물질이 기존 냉매의 대체냉매로 유용하려면 우선 기존 냉매와 유사한 성능계수(Coefficient of performance, 이하 COP라 한다)를 가져야 한다. 여기서 성능계수(COP)란 압축기에 가해진 일과 대비한 총 냉동효과를 의미하는 것으로서 COP가 클수록 냉동/공조기의 에너지 효율이 좋다. 또한 압축기를 크게 개조하지 않고 사용하려면 대체냉매가 기존 냉매와 비슷한 증기압을 가져서 궁극적으로 비슷한 체적용량(Volumetric capacity, 이하 VC라 한다)을 제공해야 한다. 여기서 체적용량(VC)이란 단위 체적 당 냉동 효과를 뜻하는데 이것은 압축기의 크기를 나타내는 인자로서 대개 증기압에 비례하고 단위는 kJ/㎥이다. 대체냉매가 기존 냉매와 비슷한 체적용량을 낸다면 제조업체는 압축기를 바꾸거나 크게 개조하지 않고도 냉동/공조기를 제작할 수 있어 매우 유리하다. 그러나 지금까지의 연구 결과 순수 물질로 기존 냉매를 대체하는 경우 대체냉매의 체적용량이 달라서 필연적으로 압축기를 바꾸거나 크게 개조해야 하며 또 기존 냉매와 비슷한 성능계수를 내기가 어렵다는 것이 밝혀졌다. In order for a material to be useful as an alternative to a conventional refrigerant, it must first have a coefficient of performance (COP) similar to that of a conventional refrigerant. The coefficient of performance (COP) refers to the total refrigeration effect compared to the work applied to the compressor, the larger the COP, the better the energy efficiency of the refrigeration / air conditioner. In addition, in order to use the compressor without major modifications, the alternative refrigerant must have a vapor pressure similar to that of the existing refrigerant and ultimately provide a similar volumetric capacity (VC). Here, the volumetric capacity (VC) refers to the refrigeration effect per unit volume, which is a factor indicating the size of the compressor, which is usually proportional to the vapor pressure and is in kJ / m 3. If the replacement refrigerant has a volume capacity similar to that of the existing refrigerant, it is very advantageous for manufacturers to build refrigeration / air conditioning without changing compressors or making major modifications. However, studies to date have shown that in case of replacing the existing refrigerant with pure material, the volume of the replacement refrigerant is different, so it is inevitable to change or largely modify the compressor, and it is difficult to obtain a similar coefficient of performance as the existing refrigerant.

이를 해결할 수 있는 방법 중 하나가 혼합냉매를 이용하는 것이다. 혼합냉매의 특성은 조성을 잘 배합해서 성능계수를 기존 냉매와 비슷하게 하고 동시에 기존 냉매와 비슷한 체적용량(VC)을 내게 하며 이로써 압축기를 크게 개조할 필요가 없게 만들 수 있다는 것이다. 이런 특성 때문에 지난 몇 년간 CFC12의 대체물로 여러 혼합냉매가 제안된바 있으나 그것들 중 몇몇은 몬트리올 의정서에서 사용을 금하는 HCFC를 구성 성분으로 가지고 있어 장기적인 관점에서 볼 때 적합한 대체물이라 할 수 없다. One way to solve this is to use a mixed refrigerant. The characteristics of mixed refrigerants are that they can be formulated so that their coefficients of performance are similar to those of conventional refrigerants, while at the same time providing a volumetric capacity (VC) similar to conventional refrigerants, thereby eliminating the need for major modifications to the compressor. Due to these characteristics, several mixed refrigerants have been proposed as substitutes for CFC12 in the past few years, but some of them have HCFCs which are prohibited from use in the Montreal Protocol, and thus are not suitable alternatives in the long term.

미국의 듀퐁 사에서는 HCFC와 수소화불화탄소(Hydrofluorocarbon, 이하 HFC라 한다)로 구성된 MP39(53% R22 / 34% R124 / 13% R152a), MP66(61% R22 / 28% R124 / 11% R152a) 등의 3원 혼합냉매를 개발하여 시판한 바 있고 Monroe Air Tech사는 HCFC와 이소부탄으로 구성된 GHG-X3(65% R22 / 4% R600a / 31% R142b)라는 3원 혼합냉매를 개발하여 시판하고 있으며 다른 여러 회사들도 다양한 혼합냉매를 상품화하고 있다. 그러나 대부분 이런 냉매들은 오존파괴지수(ODP)가 0.0보다 커서 지구 환경에 유해하고 CFC12보다 에너지 효율이 낮으므로 지구 온난화의 간접 효과를 가속화시킬 우려가 있으며 또 교토 의정서에서 사용을 제한하는 HCFC와 HFC 등으로 구성되어 있어 장기적 관점에서 적합한 대체물이라 할 수 없다. In DuPont, USA, MP39 (53% R22 / 34% R124 / 13% R152a), MP66 (61% R22 / 28% R124 / 11% R152a), consisting of HCFC and hydrofluorocarbon (HFC) Has developed and marketed three-way mixed refrigerants. Monroe Air Tech has developed and marketed three-way mixed refrigerants called GHG-X3 (65% R22 / 4% R600a / 31% R142b) consisting of HCFC and isobutane. Several companies are also commercializing a variety of mixed refrigerants. However, most of these refrigerants have an ozone depletion index (ODP) greater than 0.0, which is harmful to the global environment and lower in energy efficiency than CFC12, which may accelerate the indirect effects of global warming. In the long term, it is not a suitable substitute.

본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 오존층파괴와 지구온난화를 일으키지 않는 물질인 1,1,1,2-테트라플루오로에탄, 1,1-디플루오로에탄, 디메틸에테르 및 이소부탄을 적절한 조성비로 조합하여 사용함으로써 기존 냉동시스템을 교체하거나 크게 개조하지 않고 직접 적용할 수 있도록 하는 혼합냉매 및 이를 사용한 냉동시스템을 제공하는 것이다.The present invention has been made to solve the above problems of the prior art, an object of the present invention is 1,1,1,2-tetrafluoroethane, 1,1-di which is a substance that does not cause ozone layer destruction and global warming By using a combination of fluoroethane, dimethyl ether and isobutane in an appropriate composition ratio to provide a mixed refrigerant and a refrigeration system using the same that can be applied directly without replacing or significantly modifying the existing refrigeration system.

상기한 본 발명의 목적은 냉동/공조기용 혼합냉매에 있어서 R134a(1,1,1,2-테트라플루오로에탄) 1 내지 78중량부, RE170(디메틸에테르) 1 내지 78중량부, R600a(이소부탄) 21 내지 99중량부로 구성된 혼합냉매에 의해 달성될 수 있다.The object of the present invention described above is 1 to 78 parts by weight of R134a (1,1,1,2-tetrafluoroethane), 1 to 78 parts by weight of RE170 (dimethyl ether), and R600a (iso) in a mixed refrigerant for refrigeration / air conditioner. Butane) may be achieved by a mixed refrigerant consisting of 21 to 99 parts by weight.

상기 목적을 달성하기 위해, 냉동/공조기용 혼합냉매에 있어서 R134a(1,1,1,2-테트라플루오로에탄) 1 내지 20중량부, RE170(디메틸에테르) 60 내지 70중량부, R600a(이소부탄) 21 내지 30중량부로 구성되는 것이 바람직하다.In order to achieve the above object, 1 to 20 parts by weight of R134a (1,1,1,2-tetrafluoroethane), 60 to 70 parts by weight of RE170 (dimethyl ether), and R600a (iso) in a mixed refrigerant for a refrigerator / air conditioner Butane) is preferably composed of 21 to 30 parts by weight.

상기한 본 발명의 목적은 냉동/공조기용 혼합냉매에 있어서 R134a(1,1,1,2-테트라플루오로에탄) 1 내지 99중량부, RE170(디메틸에테르) 1 내지 99중량부로 구성된 혼합냉매에 의해서도 달성될 수 있다.The above object of the present invention is a mixed refrigerant consisting of 1 to 99 parts by weight of R134a (1,1,1,2-tetrafluoroethane) and 1 to 99 parts by weight of RE170 (dimethyl ether) in a refrigerant mixture for refrigeration and air conditioning. Can also be achieved.

또한 상기한 본 발명의 목적은 냉동/공조기용 혼합냉매에 있어서 R152a(1,1-디플루오로에탄) 1 내지 98중량부, RE170(디메틸에테르) 1 내지 98중량부, R600a(이소부탄) 1 내지 50중량부로 구성된 혼합냉매에 의해서도 달성될 수 있다.In addition, the object of the present invention described above is 1 to 98 parts by weight of R152a (1,1-difluoroethane), 1 to 98 parts by weight of RE170 (dimethyl ether), R600a (isobutane) in a refrigerant mixture for refrigeration / air conditioning It can also be achieved by a mixed refrigerant consisting of to 50 parts by weight.

상기 목적을 달성하기 위해, 냉동/공조기용 혼합냉매에 있어서 R152a(1,1-디플루오로에탄) 1 내지 10중량부, RE170(디메틸에테르) 40 내지 80중량부, R600a(이소부탄) 1 내지 50중량부로 구성되는 것이 바람직하다.In order to achieve the above object, 1 to 10 parts by weight of R152a (1,1-difluoroethane), 40 to 80 parts by weight of RE170 (dimethyl ether), and 1 to R600a (isobutane) in a mixed refrigerant for a refrigerator / air conditioner It is preferable that it is comprised by 50 weight part.

또한 상기한 본 발명의 목적은 냉동/공조기용 혼합냉매에 있어서 R152a(1,1-디플루오로에탄) 55-64%, R600a(이소부탄) 36-45% 또는 R152a(1,1-디플루오로에탄) 76-95%, R600a(이소부탄) 5-24%로 구성된 혼합냉매에 의해서도 달성될 수 있다.In addition, the object of the present invention described above is R152a (1,1-difluoroethane) 55-64%, R600a (isobutane) 36-45% or R152a (1,1-difluoro) in a mixed refrigerant for refrigeration / air conditioner Roetan) 76-95%, R600a (isobutane) 5-24% can also be achieved by a mixed refrigerant.

상기한 본 발명의 목적은 냉동/공조기용 혼합냉매에 있어서 R134a(1,1,1,2-테트라플루오로에탄) 60 내지 89중량부, R600a(이소부탄) 11 내지 40중량부로 구성된 혼합냉매에 의해서도 달성될 수 있다.The above object of the present invention is a mixed refrigerant consisting of 60 to 89 parts by weight of R134a (1,1,1,2-tetrafluoroethane) and 11 to 40 parts by weight of R600a (isobutane) in a refrigeration / air conditioner mixed refrigerant. Can also be achieved.

상기한 본 발명의 목적은 상기 혼합냉매들을 사용하는 냉동/공조기에 의해서도 달성될 수 있다.The above object of the present invention can also be achieved by a refrigeration / air conditioner using the mixed refrigerants.

본 발명의 그밖의 목적, 특정한 장점 및 신규한 특징들은 첨부된 도면들과 연관되어지는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 분명해질 것이다.Other objects, specific advantages and novel features of the invention will become more apparent from the following detailed description and the preferred embodiments associated with the accompanying drawings.

이하에서는 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 따른 R12 대체용 혼합냉매 및 이를 사용한 냉동시스템의 구성에 대하여 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings it will be described in detail with respect to the configuration of the R12 replacement refrigerant and the refrigeration system using the same according to a preferred embodiment of the present invention.

본 발명은 증기 압축식 냉동/공조기에서 냉매(Refrigerant, 이하 R이라 한다)로 사용할 수 있는 물질 즉 '1,1,1,2-테트라플루오로에탄, 1,1-디플루오로에탄, 디메틸에테르 및 이소부탄을 선택적으로 조합하여 구성한 혼합냉매 및 이를 사용한 냉동시스템'에 관한 것이며 좀더 구체적으로는 지금까지 가정용 냉장고 및 자동차 공조기 등에 널리 적용되어 온 디클로디플루오로메탄(CCl2F2)을 대체할 수 있는 혼합냉매 및 이를 사용하는 냉동시스템에 관한 것이다.The present invention is a material that can be used as a refrigerant (referred to as R) in a vapor compression refrigeration / air conditioner, namely '1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, dimethyl ether And a mixed refrigerant consisting of a selective combination of isobutane and a refrigeration system using the same, and more specifically, to replace dichlorodifluoromethane (CCl 2 F 2 ), which has been widely applied to household refrigerators and automobile air conditioners. And a refrigeration system using the same.

본 발명의 목적은 오존파괴지수(ODP)가 0.0이므로 성층권 내 오존층에 전혀 영향을 미치지 않으며 지구온난화지수 또한 기존의 다른 대체냉매보다 낮고 동시에 기존의 압축기를 크게 개조하지 않고도 CFC12의 대체냉매로 사용할 수 있는 혼합냉매 및 이를 사용하는 냉동시스템을 제공하는 것이다.The object of the present invention is that since the ODP is 0.0, it does not affect the ozone layer in the stratosphere at all, and the global warming index is also lower than other alternative refrigerants, and at the same time, it can be used as an alternative refrigerant of CFC12 without greatly modifying the existing compressor. It is to provide a mixed refrigerant and a refrigeration system using the same.

좀더 구체적으로 본 발명은 R134a(1,1,1,2-테트라플루오로에탄)나 R152a(1,1-디플루오로에탄) 그리고 RE170(디메틸에테르, DME)과 R600a(이소부탄, Iso-butane)을 선택적으로 조합하여 구성한 혼합냉매에 관한 것이다. 본 발명에서 제안하는 대체 혼합냉매는 오존파괴지수(ODP)가 0.0이고 기존의 다른 대체냉매에 비해 지구온난화지수(GWP)가 낮으며 또 CFC12의 성능계수(COP)와 체적용량(VC)에 근접한 값을 낸다.More specifically, the present invention relates to R134a (1,1,1,2-tetrafluoroethane) or R152a (1,1-difluoroethane) and RE170 (dimethyl ether, DME) and R600a (isobutane, Iso-butane). It is related with the mixed refrigerant comprised by combining selectively. The alternative mixed refrigerant proposed in the present invention has an ozone depletion index (ODP) of 0.0 and a lower global warming index (GWP) than other alternative refrigerants, and is close to the coefficient of performance (COP) and volume capacity (VC) of CFC12. Yields a value.

도 1은 본 발명에서 사용한 일반적인 냉동/공조기의 구성도이다. 도 1에 도시된 바와 같이, 냉동/공조기는 일반적으로 증발기, 응축기, 압축기, 팽창 밸브 등을 포함하여 구성된다. 1 is a block diagram of a general refrigeration / air conditioner used in the present invention. As shown in FIG. 1, the refrigeration / air conditioner generally comprises an evaporator, a condenser, a compressor, an expansion valve, and the like.

대체 혼합냉매를 개발하기 위하여 본 발명자는 냉동/공조기의 성능을 모사하는 미국 표준 연구소(National Institute of Standards and Technology)에서 개발한 CYCLE-D 프로그램을 사용하였다. 프로그램을 통해 냉동/공조기를 구성하는 요소들 예를 들어 열교환기 및 압축기 등에 대한 열역학 및 열전달 해석을 수행하였고 최종적으로 이 모든 것을 조합하여 사용했다. 프로그램의 정확도를 결정하는 중요 인자 중 하나는 냉매의 물성치이다. 본 프로그램에서는 미국, 일본 등에서 기준으로 삼고 있는 Carnahan-Starling-De Santis(CSD) 상태 방정식을 사용하여 모든 냉매의 물성치를 계산했다. REFPROP으로 알려진 CSD 상태 방정식은 미국 표준 연구소(National Institute of Standards and Technology)에서 개발한 것으로 정확성 및 적용성이 이미 입증되어 전 세계 냉동/공조 관련 유수 기업, 연구소, 대학에서 가장 널리 사용되는 프로그램이다. 이번에 만든 혼합냉매 및 냉동/공조기의 개발 및 실행을 위한 입력 데이터로는 가능한 한 실제 데이터를 사용했다.To develop an alternative mixed refrigerant, the inventors used the CYCLE-D program developed by the National Institute of Standards and Technology, which simulates the performance of a refrigeration / air conditioner. The program conducted thermodynamic and heat transfer analyzes of the components that make up the refrigeration / air conditioner, such as heat exchangers and compressors, and finally used them all in combination. One of the important factors that determine the accuracy of the program is the properties of the refrigerant. In this program, the properties of all refrigerants were calculated using the Carnahan-Starling-De Santis (CSD) state equation, which is the standard in the United States and Japan. The CSD state equation, known as REFPROP, was developed by the National Institute of Standards and Technology and is the most widely used program in leading refrigeration and air conditioning companies, laboratories, and universities worldwide for its proven accuracy and applicability. The actual data was used as input data for the development and execution of the mixed refrigerant and refrigeration / air conditioner.

본 발명자는 냉동/공조기용 대체냉매의 오존파괴지수(ODP)가 반드시 0.0이어야 하며 가능한 한 지구온난화지수(GWP)가 낮아야 한다는 판단 하에 R134a(1,1,1,2-테트라플루오로에탄)나 R152a(1,1-디플루오로에탄) 그리고 RE170(디메틸에테르, DME)과 R600a(이소부탄, Iso-butane)를 혼합하여 기존 냉매를 대체할 수 있게 하였다.The present inventors have determined that the ozone depletion index (ODP) of the alternative refrigerant for refrigeration / air conditioner must be 0.0 and the global warming potential (GWP) should be as low as possible. R134a (1,1,1,2-tetrafluoroethane) R152a (1,1-difluoroethane) and RE170 (dimethyl ether, DME) and R600a (isobutane, Iso-butane) were mixed to replace the existing refrigerant.

[표 2]는 기존의 CFC12를 사용하는 냉동/공조기의 사용 조건을 적용하여 전산해석 프로그램을 통해 계산한 본 발명에 따른 혼합냉매 및 비교예에 따른 혼합냉매의 성능지수들을 기존 냉매의 성능지수들과 비교한 결과들을 나타낸 것이다.[Table 2] shows the performance index of the mixed refrigerant according to the present invention and the mixed refrigerant according to the comparative example calculated by the computational analysis program by applying the use conditions of the conventional CFC12 refrigeration / air conditioner The results are compared with.

[CFC12 및 대체 혼합냉매의 성능 비교][Comparison of the Performance of CFC12 and Alternative Mixed Refrigerants] 냉매Refrigerant 조성(%)Furtherance(%) COPCOP VC(kJ/㎥)VC (kJ / ㎥) GTD(℃)GTD (℃) Tdis(℃)Tdis (℃) COPdiff (%)COP diff (%) VCdiff (%)VC diff (%) R134aR134a R152aR152a RE170RE170 R600aR600a CFC12CFC12 1.551.55 809809 0.00.0 103.4103.4 HFC134aHFC134a 100100 1.501.50 743743 0.00.0 97.097.0 -3.2-3.2 -8.2-8.2 본 발명 예 1Inventive Example 1 1010 9090 1.671.67 761761 0.10.1 114.8114.8 7.77.7 -5.9-5.9 본 발명 예 2Inventive Example 2 7070 3030 1.611.61 791791 0.10.1 104.4104.4 3.93.9 -2.2-2.2 본 발명 예 3Inventive Example 3 9090 1010 1.541.54 770770 0.30.3 99.799.7 -0.6-0.6 -4.8-4.8 본 발명 예 4Inventive Example 4 1010 6060 3030 1.721.72 835835 0.60.6 99.599.5 11.011.0 3.23.2 본 발명 예 5Inventive Example 5 1010 7070 2020 1.711.71 832832 0.30.3 104.1104.1 10.310.3 2.82.8 본 발명 예 6Inventive Example 6 2020 6060 2020 1.711.71 849849 0.50.5 102.2102.2 10.310.3 4.94.9 본 발명 예 7Inventive Example 7 2020 7070 1010 1.691.69 821821 0.40.4 107.6107.6 9.09.0 1.51.5 본 발명 예 8Inventive Example 8 5050 5050 1.751.75 781781 3.23.2 93.893.8 12.912.9 -3.5-3.5 본 발명 예 9Inventive Example 9 9090 1010 1.731.73 827827 0.40.4 110.6110.6 11.611.6 2.22.2 본 발명 예 10Inventive Example 10 1010 6060 3030 1.721.72 831831 0.40.4 100.9100.9 11.011.0 2.72.7 본 발명 예 11Inventive Example 11 1010 4040 5050 1.731.73 769769 2.22.2 95.295.2 11.611.6 -4.9-4.9 본 발명 예 12Inventive Example 12 1010 8080 1010 1.711.71 807807 0.20.2 110.6110.6 10.310.3 -0.2-0.2 본 발명 예 13Inventive Example 13 6060 4040 1.741.74 897897 5.35.3 88.088.0 12.312.3 10.910.9 본 발명 예 14Inventive Example 14 7070 3030 1.701.70 952952 2.32.3 87.387.3 9.79.7 17.717.7 본 발명 예 15Inventive Example 15 9090 1010 1.601.60 911911 0.60.6 92.292.2 3.23.2 12.612.6 비교 예 1Comparative Example 1 1010 9090 1.51.5 433433 5.25.2 6060 -- -- 비교 예 2Comparative Example 2 2020 8080 1.571.57 519519 8.18.1 6363 -- -- 비교 예 3Comparative Example 3 3030 7070 1.641.64 619619 9.29.2 6666 -- --

COP : 성능계수(Coefficient of performance, 총 냉동효과/압축기에 가해진일)COP: coefficient of performance (Coefficient of performance, total refrigeration effect / day applied to the compressor)

VC : 체적용량(Volumetric capacity)VC: Volumetric capacity

GTD : 온도구배(Gliding temperature difference)GTD: Grading temperature difference

Tdis : 압축기 토출온도(Compressor discharge temperature)T dis : Compressor discharge temperature

COPdiff : CFC12 대비 성능계수 차이COP diff : Performance factor difference compared to CFC12

VCdiff : CFC12 대비 체적용량 차이VC diff : Volumetric difference compared to CFC12

표 2를 통해 본 발명예 1 내지 15의 냉매들이 기존의 CFC12나 R134a에 비해 성능계수가 높거나 비슷하며 체적용량이 비슷함을 알 수 있다. 또 이 혼합냉매들의 온도구배는 현재 상용화되고 있는 혼합냉매의 온도구배인 7℃ 보다 훨씬 작으므로 사용하는 데 문제가 없다. 또한 본 발명예 1 내지 15의 냉매들의 압축기 토출 온도 역시 CFC12와 비슷하므로 사용하는 데 문제가 없다.Table 2 shows that the refrigerants of Examples 1 to 15 of the present invention have higher or similar performance coefficients and similar volume capacities than conventional CFC12 or R134a. In addition, since the temperature gradient of the mixed refrigerants is much smaller than the temperature gradient of the mixed refrigerants currently commercialized, there is no problem in using them. In addition, since the compressor discharge temperature of the refrigerants of Examples 1 to 15 of the present invention is also similar to that of CFC12, there is no problem to use.

본 발명예 1 내지 15의 모든 냉매는 오존파괴지수(ODP)가 0.0으로서 전혀 오존층을 파괴시키지 않으므로 환경 보존 측면에서도 CFC12보다 훨씬 우수하다. 또 CFC12의 대체냉매인 R134a의 경우 지구 온난화 지수가 높아서 교토 의정서에 의거하여 규제를 받으므로 R152a와 DME 혹은 이소부탄같이 지구 온난화 지수가 낮은 냉매들을 써서 혼합냉매를 만들면 HFC 사용량이 줄어들어 지구 온난화도 경감시킬 수 있다.Since all the refrigerants of Examples 1 to 15 of the present invention have an ozone depletion index (ODP) of 0.0 and do not destroy the ozone layer at all, they are much superior to CFC12 in terms of environmental conservation. In addition, R134a, an alternative to CFC12, is regulated under the Kyoto Protocol due to its high global warming potential. Therefore, the use of refrigerants with low global warming potential, such as R152a, DME or Isobutane, reduces the use of HFCs and reduces global warming. You can.

참고로 상기 기술한 본 발명예들의 조성을 벗어나는 다른 조성에서는 온도 구배가 너무 크든지, 용량과 효율이 너무 낮든지, 압축기 토출 온도가 너무 높아서 실제로 냉동/공조기에 적용하는 데 문제가 있으며, 이하에서는 이를 구체적으로 살펴본다. For reference, other compositions that deviate from the compositions of the present inventions described above, whether the temperature gradient is too large, the capacity and the efficiency are too low, or the compressor discharge temperature is too high, there is a problem in the actual application to the refrigeration / air conditioner, Look specifically.

[본 발명예 1, 2, 3][Inventive Example 1, 2, 3]

본 발명예 1, 2, 3에서 보여지듯이, R134a와 RE170으로 구성된 혼합냉매는 R134a와 RE170의 거의 모든 조성비율에서 적절한 성적계수, 체적용량, 온도구배의 값을 갖는다. 다만 RE170의 비율이 증가할수록 압축기 토출온도가 커지므로 압축기 토출온도를 고려하면 RE170의 비율을 작게 하는 것이 바람직하다.As shown in Examples 1, 2, and 3 of the present invention, the mixed refrigerant composed of R134a and RE170 has an appropriate grade coefficient, volume capacity, and temperature gradient at almost all composition ratios of R134a and RE170. However, as the ratio of RE170 increases, the compressor discharge temperature increases, so considering the compressor discharge temperature, it is desirable to reduce the ratio of RE170.

[본 발명예 4, 5, 6, 7][Inventive Example 4, 5, 6, 7]

본 발명예 4, 5, 6, 7에서 보여지듯이, 혼합냉매에서 RE170의 비율이 증가할수록 압축기의 토출온도가 증가하고 체적용량은 감소하므로, RE170은 60 내지 70중량%인 것이 바람직하다. R134a의 비율이 증가하면 혼합냉매의 체적용량이 증가하므로 R134a는 20중량% 이하인 것이 바람직하다. R600a가 증가하면 체적용량이 증가하고 압축기 토출온도가 낮아진다. 따라서 혼합냉매가 적절한 체적용량과 압축기 토출온도를 갖기 위해서는 R600a는 21 내지 30중량%의 범위인 것이 바람직하다.As shown in Examples 4, 5, 6, and 7 of the present invention, since the discharge temperature of the compressor increases and the volume capacity decreases as the ratio of RE 170 increases in the mixed refrigerant, the RE 170 is preferably 60 to 70% by weight. When the ratio of R134a increases, the volumetric capacity of the mixed refrigerant increases, so that R134a is preferably 20% by weight or less. Increasing R600a increases the volumetric capacity and lowers the compressor discharge temperature. Therefore, in order for the mixed refrigerant to have an appropriate volume capacity and a compressor discharge temperature, R600a is preferably in the range of 21 to 30% by weight.

[본 발명예 8, 9][Inventive Examples 8 and 9]

본 발명예 8, 9에서 보여지듯이, R152a와 R600a로 구성된 혼합냉매에서 R152a의 비율이 커지고 R600a의 비율이 감소하면 온도구배가 감소하고 체적용량이 커진다. 따라서 기존 냉매와 유사한 체적용량을 갖고 온도구배를 최소화하려면 R152a는 55중량% 이상으로 포함되고 R600a는 45중량%보다 적게 포함되는 것이 바람직하다.As shown in Examples 8 and 9 of the present invention, when the ratio of R152a increases and the ratio of R600a decreases in the mixed refrigerant composed of R152a and R600a, the temperature gradient decreases and the volumetric capacity increases. Therefore, in order to have a volume capacity similar to that of the existing refrigerant and to minimize the temperature gradient, R152a is preferably included in more than 55% by weight and R600a is less than 45% by weight.

[본 발명예 10, 11, 12][Inventive Examples 10, 11, 12]

본 발명예 10, 11, 12에서 보여지듯이, 혼합냉매에서 R600a의 비율이 증가할수록 온도구배가 커지고 체적용량은 R600a 30중량%를 넘어서거나 그 아래로 내려가면 감소하므로, 온도구배와 체적용량을 고려하여 R600a는 50중량% 이하인 것이 바람직하다. 혼합냉매에서 RE170의 비율이 60중량%를 넘거나 또는 모자라면 체적용량이 감소하고 RE170의 비율이 증가할수록 압축기 토출온도가 높아진다. 따라서 압축기 토출온도와 체적용량을 고려할 때, 혼합냉매에서 RE170의 비율은 40 내지 80중량%의 범위에 있는 것이 바람직하다. R152a의 증가는 체적용량을 증가시키고 압축기 토출온도를 높게 하므로 혼합냉매에서 R152a의 비율은 10중량% 이하인 것이 바람직하다.As shown in Examples 10, 11, and 12 of the present invention, the temperature gradient increases as the ratio of R600a increases in the mixed refrigerant, and the volume capacity decreases when it exceeds or falls below 30% by weight of R600a. Therefore, R600a is preferably 50% by weight or less. If the proportion of RE170 in the mixed refrigerant exceeds or exceeds 60% by weight, the volumetric capacity decreases and the compressor discharge temperature increases as the ratio of RE170 increases. Therefore, considering the compressor discharge temperature and volumetric capacity, the ratio of RE170 in the mixed refrigerant is preferably in the range of 40 to 80% by weight. Since the increase in R152a increases the volumetric capacity and increases the compressor discharge temperature, the ratio of R152a in the mixed refrigerant is preferably 10% by weight or less.

[본 발명예 13, 14, 15 및 비교예 1, 2, 3][Inventive Examples 13, 14, 15 and Comparative Examples 1, 2, 3]

본 발명예 13, 14, 15 및 비교예 1, 2, 3에서 보여지듯이, R134a와 R600a로 구성된 혼합냉매에서 R134a의 비율이 작고 R600a의 비율이 커지면 가 체적용량이 과도하게 작아지고 온도구배가 너무 커지게 되어 부적합하다. 따라서 R134a는 60중량% 이상이고 R600a는 40중량% 이하인 것이 바람직하다.As shown in Examples 13, 14, 15 and Comparative Examples 1, 2, and 3, in a mixed refrigerant composed of R134a and R600a, when the ratio of R134a is small and the ratio of R600a is large, the volumetric capacity becomes excessively small and the temperature gradient is too large. It is not suitable to grow big. Therefore, it is preferable that R134a is 60 weight% or more and R600a is 40 weight% or less.

본 발명의 명세서 전체에 걸쳐 사용된 용어인 냉동시스템은 냉동기/공조기의 의미로 사용되는 것으로서 특별히 구분하지 않은 이상 양자는 동일한 의미로 사용된 것임에 유의할 필요가 있다.It is to be noted that the term "refrigeration system" used throughout the specification of the present invention is used in the meaning of a refrigerator / air conditioner, unless otherwise specified, that both are used in the same meaning.

상기한 구성을 갖는 본 발명의 바람직한 실시예에 따른 R12 대체용 혼합냉매 및 이를 사용한 냉동시스템에 의하면 혼합냉매를 구성하는 물질로서 오존층파괴지수가 0.0이고 지구온난화지수가 매우 작은 1,1,1,2-테트라플루오로에탄, 1,1-디플루오로에탄, 디메틸에테르 및 이소부탄을 사용하므로 냉매의 유출이 있거나 냉매를 폐기하는 경우에도 지구의 오존층파괴와 지구온난화를 방지할 수 있는 현저한 효과가 있다.According to the mixed refrigerant for R12 replacement and the refrigeration system using the same according to a preferred embodiment of the present invention having the above-described configuration, as the material constituting the mixed refrigerant, the ozone layer destruction index is 0.0 and the global warming index is very small 1,1,1, Since 2-tetrafluoroethane, 1,1-difluoroethane, dimethyl ether and isobutane are used, there is a remarkable effect of preventing global ozone layer destruction and global warming even when the refrigerant is leaked or discarded. .

또한 본 발명에 따른 혼합냉매는 1,1,1,2-테트라플루오로에탄, 1,1-디플루오로에탄, 디메틸에테르 및 이소부탄을 적절한 조성으로 혼합하여 혼합냉매의 증기압이나 체적용량이 기존 사용되던 냉매인 R12 냉매와 유사하도록 하였기 때문에 압축기를 교체하거나 기존 냉동시스템을 개조하지 않고 직접 적용할 수 있으므로 시간적 경제적 비용이 감소되는 효과가 있다.In addition, the mixed refrigerant according to the present invention is a mixture of 1,1,1,2-tetrafluoroethane, 1,1-difluoroethane, dimethyl ether and isobutane in an appropriate composition, the vapor pressure or volumetric capacity of the mixed refrigerant is Since it is similar to the used R12 refrigerant, it can be applied directly without replacing the compressor or modifying the existing refrigeration system, thereby reducing the time and economic cost.

본 발명의 혼합냉매는 적절한 조성의 혼합에 의해 온도구배가 매우 작게되므로 냉매의 상변화에 따른 냉매압력의 변동이 거의 없어서 냉동시스템을 안정적으로 사용할 수 있고, 냉매 유출시의 조성 분리 현상이 방지되는 효과가 있다.In the mixed refrigerant of the present invention, since the temperature gradient is very small by mixing the proper composition, there is almost no change in the refrigerant pressure due to the phase change of the refrigerant, so that the refrigeration system can be used stably, and the separation of the composition during the outflow of the refrigerant is prevented. It works.

비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위는 본 발명의 요지에서 속하는 이러한 수정이나 변형을 포함할 것이다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. Accordingly, the appended claims will cover such modifications and variations as fall within the spirit of the invention.

도 1은 본 발명에서 사용한 일반적인 냉동/공조기의 구성도이다.1 is a block diagram of a general refrigeration / air conditioner used in the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on main parts of drawing

Qc: 응축기에서의 열 흐름 방향(냉매→공기)Qc: direction of heat flow in the condenser (from refrigerant to air)

Qe: 증발기에서 열 흐름 방향(공기→냉매)Qe: Heat flow direction from the evaporator (air to refrigerant)

TS1: 증발기 공기 입구온도, TS7: 증발기 공기 출구온도TS1: evaporator air inlet temperature, TS7: evaporator air outlet temperature

TS3: 응축기 공기 출구온도, TS6: 응축기 공기 입구온도TS3: condenser air outlet temperature, TS6: condenser air inlet temperature

Evaporator: 증발기, Compressor: 압축기Evaporator: Compressor: Compressor

Condenser: 응축기, Expansion Valve: 팽창기 Condenser: Condenser, Expansion Valve: Inflator

Claims (8)

삭제delete 삭제delete 삭제delete 냉동/공조기용 혼합냉매에 있어서 R152a(1,1-디플루오로에탄) 1 내지 98중량부, RE170(디메틸에테르) 1 내지 98중량부, R600a(이소부탄) 1 내지 50중량부로 구성된 혼합냉매.A mixed refrigerant consisting of 1 to 98 parts by weight of R152a (1,1-difluoroethane), 1 to 98 parts by weight of RE170 (dimethyl ether), and 1 to 50 parts by weight of R600a (isobutane) in a mixed refrigerant for refrigeration / air conditioner. 제 4 항에 있어서,The method of claim 4, wherein 냉동/공조기용 혼합냉매에 있어서 R152a(1,1-디플루오로에탄) 1 내지 10중량부, RE170(디메틸에테르) 40 내지 80중량부, R600a(이소부탄) 1 내지 50중량부로 구성된 혼합냉매.A mixed refrigerant consisting of 1 to 10 parts by weight of R152a (1,1-difluoroethane), 40 to 80 parts by weight of RE170 (dimethyl ether), and 1 to 50 parts by weight of R600a (isobutane) in a mixed refrigerant for a refrigerator / air conditioner. 냉동/공조기용 혼합냉매에 있어서 R152a(1,1-디플루오로에탄) 55-64% 및 R600a(이소부탄) 36-45%로 구성된 혼합냉매.Mixed refrigerants consisting of 55-64% of R152a (1,1-difluoroethane) and 36-45% of R600a (isobutane) in refrigeration / air conditioning refrigerants. 냉동/공조기용 혼합냉매에 있어서 R152a(1,1-디플루오로에탄) 76-89% 및 R600a(이소부탄) 11-24%로 구성된 혼합냉매.A mixed refrigerant comprising R152a (1,1-difluoroethane) 76-89% and R600a (isobutane) 11-24% in a refrigeration / air conditioning mixed refrigerant. 제 4 항 내지 제 7 항 중에서 선택된 어느 하나의 혼합냉매를 사용하는 냉동/공조기.A refrigeration / air conditioner using any one of mixed refrigerants selected from claim 4.
KR1020040066992A 2004-08-25 2004-08-25 R12 substitute mixed refrigerant and refrigeration system using thereof KR100499259B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020040066992A KR100499259B1 (en) 2004-08-25 2004-08-25 R12 substitute mixed refrigerant and refrigeration system using thereof
JP2007529676A JP2008510870A (en) 2004-08-25 2005-08-17 R502, R12 or R22 alternative mixed refrigerant and refrigeration system using the same
US11/574,202 US20090261289A1 (en) 2004-08-25 2005-08-17 R502, R12 or R22 Substitute Mixed Refrigerant and Refrigeration System Using Thereof
EP05780547A EP1794253A1 (en) 2004-08-25 2005-08-17 R502, r12 or r22 substitute mixed refrigerant and refrigeration system using thereof
PCT/KR2005/002678 WO2006038766A1 (en) 2004-08-25 2005-08-17 R502, r12 or r22 substitute mixed refrigerant and refrigeration system using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040066992A KR100499259B1 (en) 2004-08-25 2004-08-25 R12 substitute mixed refrigerant and refrigeration system using thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020050006151A Division KR100540286B1 (en) 2005-01-24 2005-01-24 R12 substitute mixed refrigerant and refrigeration system using thereof

Publications (1)

Publication Number Publication Date
KR100499259B1 true KR100499259B1 (en) 2005-07-01

Family

ID=37303290

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040066992A KR100499259B1 (en) 2004-08-25 2004-08-25 R12 substitute mixed refrigerant and refrigeration system using thereof

Country Status (1)

Country Link
KR (1) KR100499259B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114989783A (en) * 2022-05-28 2022-09-02 哈尔滨工业大学 Environment-friendly mixed refrigerant and preparation method thereof
CN115627156A (en) * 2022-10-25 2023-01-20 哈尔滨工业大学 Ternary environment-friendly mixed refrigerant and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114989783A (en) * 2022-05-28 2022-09-02 哈尔滨工业大学 Environment-friendly mixed refrigerant and preparation method thereof
CN115627156A (en) * 2022-10-25 2023-01-20 哈尔滨工业大学 Ternary environment-friendly mixed refrigerant and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2008510870A (en) R502, R12 or R22 alternative mixed refrigerant and refrigeration system using the same
KR100976448B1 (en) Near azeotropic refrigerant mixtures
US7459101B2 (en) Environmentally friendly alternative refrigerant for HCFC-22
KR100976449B1 (en) Near azeotropic refrigerant mixtures
KR100492169B1 (en) R502 and r22 substitute mixed refrigerant and refrigeration system using thereof
KR101139377B1 (en) Near azeotropic refrigerant mixtures
KR100261459B1 (en) Composition of refrigerant mixtures for refrigerator/ air conditioner
KR100969257B1 (en) Near azeotropic refrigerant mixtures
KR100499259B1 (en) R12 substitute mixed refrigerant and refrigeration system using thereof
KR100492171B1 (en) R502 and r22 substitute mixed refrigerant and refrigeration system using thereof
KR100540285B1 (en) R12 and r22 substitute mixed refrigerant and refrigeration system using thereof
KR100492174B1 (en) R12 or r22 substitute mixed refrigerant and refrigeration system using thereof
KR100540279B1 (en) R502 and r22 substitute mixed refrigerant and refrigeration system using thereof
KR100540286B1 (en) R12 substitute mixed refrigerant and refrigeration system using thereof
KR100492175B1 (en) R12 and r22 substitute mixed refrigerant and refrigeration system using thereof
KR100492173B1 (en) R502 and r22 substitute mixed refrigerant and refrigeration system using thereof
KR100540284B1 (en) R12 or r22 substitute mixed refrigerant and refrigeration system using thereof
KR100540283B1 (en) R12 or r22 substitute mixed refrigerant and refrigeration system using thereof
KR100492170B1 (en) R502 substitute mixed refrigerant and refrigeration system using thereof
KR100492172B1 (en) R502 and r22 substitute mixed refrigerant and refrigeration system using thereof
KR100540281B1 (en) R502 and r22 substitute mixed refrigerant and refrigeration system using thereof
KR100969258B1 (en) Near azeotropic refrigerant mixtures
KR100540282B1 (en) R502 and r22 substitute mixed refrigerant and refrigeration system using thereof
KR100969256B1 (en) Near azeotropic refrigerant mixtures
KR100540280B1 (en) R502 and r22 substitute mixed refrigerant and refrigeration system using thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100615

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee