KR100546079B1 - Polymer Electrolyte Complex Membrane for Separation of Polar Organic Mixture and Its Manufacturing Method - Google Patents

Polymer Electrolyte Complex Membrane for Separation of Polar Organic Mixture and Its Manufacturing Method Download PDF

Info

Publication number
KR100546079B1
KR100546079B1 KR1020040052126A KR20040052126A KR100546079B1 KR 100546079 B1 KR100546079 B1 KR 100546079B1 KR 1020040052126 A KR1020040052126 A KR 1020040052126A KR 20040052126 A KR20040052126 A KR 20040052126A KR 100546079 B1 KR100546079 B1 KR 100546079B1
Authority
KR
South Korea
Prior art keywords
polymer
polar organic
membrane
support
complex
Prior art date
Application number
KR1020040052126A
Other languages
Korean (ko)
Other versions
KR20060003297A (en
Inventor
이규호
김상균
이기섭
이동욱
이윤규
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020040052126A priority Critical patent/KR100546079B1/en
Publication of KR20060003297A publication Critical patent/KR20060003297A/en
Application granted granted Critical
Publication of KR100546079B1 publication Critical patent/KR100546079B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00791Different components in separate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/74Natural macromolecular material or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/02Hydrophilization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21813Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/36Introduction of specific chemical groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/028321-10 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 극성 유기혼합물 분리용 고분자 전해질 착물막과 이의 제조방법에 관한 것으로서, 더욱 상세하게는 친수화된 다공성 고분자 지지체위에 음이온 고분자 매트릭스 도핑층을 형성하고, 상기 매트릭스 표면에 존재하는 음이온과 착결합을 형성하는 양이온 금속의 착층이 순차적으로 적층된 고분자 착물막을 제조하여, 상기 다공성 고분자 지지체의 친수화로 착물 반응시 도핑층의 탈리 현상을 개선함으로써, 보다 효율적인 분자수준에서의 단위격자간 몰폴로지 제어가 가능하여 물리·화학적 물성치가 유사한 극성유기혼합물 분리용 고분자 전해질 착물막과 이의 제조방법에 관한 것이다.The present invention relates to a polymer electrolyte complex membrane for separating a polar organic mixture and a method of manufacturing the same, and more particularly, to form an anionic polymer matrix doped layer on a hydrophilized porous polymer support, and to complex with anions present on the surface of the matrix. By preparing a polymer complex membrane in which a complex layer of a cationic metal forming a sequential layer is formed and improving the desorption phenomenon of the doped layer during the complex reaction by hydrophilization of the porous polymer support, more efficient intermolecular morphology control at the molecular level The present invention relates to a polymer electrolyte complex membrane for separating a polar organic mixture having similar physical and chemical properties and a method for preparing the same.

고분자 전해질 착물막, 친수화된 다공성 고분자 지지체, 극성 유기혼합물 분리Separation of polymer electrolyte complex membrane, hydrophilized porous polymer support, and polar organic mixture

Description

극성 유기혼합물 분리용 고분자 전해질 착물막과 이의 제조방법{Polyelectrolyte complex membranes for separating polar organic mixtures and method for preparation the same} Polyelectrolyte complex membranes for separating polar organic mixtures and method for preparation the same}             

도 1은 본 발명에 따른 실시예 1에서 제조된 친수화된 고분자 지지체의 절단면에 대한 전자주사현미경 사진(×200)을 나타낸 것이다.Figure 1 shows an electron scanning micrograph (× 200) of the cut surface of the hydrophilized polymer support prepared in Example 1 according to the present invention.

도 2는 본 발명에 따른 실시예 1에서 제조된 고분자 전해질 착물막의 절단면에 대한 전자주사현미경 사진(×1000)을 나타낸 것이다.Figure 2 shows an electron scanning micrograph (x1000) of the cut surface of the polymer electrolyte complex membrane prepared in Example 1 according to the present invention.

본 발명은 극성 유기혼합물 분리용 고분자 전해질 착물막과 이의 제조방법에 관한 것으로서, 더욱 상세하게는 친수화된 다공성 고분자 지지체위에 음이온 고분자 매트릭스 도핑층을 형성하고, 상기 매트릭스 표면에 존재하는 음이온과 착결합을 형성하는 양이온 금속의 착층이 순차적으로 적층된 고분자 착물막을 제조하여, 상기 다공성 고분자 지지체의 친수화로 착물 반응시 도핑층의 탈리 현상을 개선함 으로써, 보다 효율적인 분자수준에서의 단위격자간 몰폴로지 제어가 가능하여 물리·화학적 물성치가 유사한 극성유기혼합물 분리용 고분자 전해질 착물막과 이의 제조방법에 관한 것이다.The present invention relates to a polymer electrolyte complex membrane for separating a polar organic mixture and a method of manufacturing the same, and more particularly, to form an anionic polymer matrix doped layer on a hydrophilized porous polymer support, and to complex with anions present on the surface of the matrix. By preparing a polymer complex membrane in which a complex layer of a cationic metal forming a sequential layer was formed and improving the desorption phenomenon of the doped layer during the complex reaction by hydrophilization of the porous polymer support, morphology between units lattice at a more efficient molecular level The present invention relates to a polymer electrolyte complex membrane for separating polar organic mixtures having similar physical and chemical properties and to a method of manufacturing the same.

분리막 공정으로서 투과증발 및 증기투과 방식은 공비혼합물 및 비등점이 비슷한 혼합물, 이성질체 혼합물 등의 물질분리에 효과적이며, 유기 혼합물에 소량 녹아 있는 성분 제거에 적합한 탈수 공정과 탈유기 공정에 이용되는 특성을 갖고 있다. 그러나, 물-메탄올과 같이 물리-화학적 성질의 차가 너무 적은 혼합물의 경우, 기존의 한외여과, 정밀여과, 나노여과, 역삼투막 등의 탈수공정용 분리막으로는 효과적인 물질분리를 기대하기가 어렵고, 그 효율성 또한 대체적으로 낮아, 현재로써 상기의 물질분리에 적절한 분리막이 개발되지 못한 상태에 있다. Permeation evaporation and vapor permeation are effective for separation of azeotrope, mixture with similar boiling point, isomer mixture, etc., and are suitable for dehydration process and deorganization process to remove small amount of dissolved components in organic mixture. have. However, in the case of mixtures with too little difference in physico-chemical properties such as water-methanol, it is difficult to expect effective separation of materials with conventional membranes for dehydration processes such as ultrafiltration, microfiltration, nanofiltration and reverse osmosis membranes. In addition, it is generally low, and currently there is a state in which a separator suitable for the separation of materials has not been developed.

이와 관련하여, 현재 개발된 물-메탄올 분리용 무기막에는 실리카막[Membrane, Vol.25(2000), page 73; Ceramics Transition, Vol.31(1992), page 411], 제올라이트-A형 막[Microporous Material, Vol.12(1997), page 305], 제올라이트 X형 및 Y형 막[In ACS Symposium Series 744, Membrane Formation, Washington D.C.(2000), page 330], 모던나이트막 [Microporous Material, Vol.7(1996), page 299]등이 있으며, 이중 제올라이트 NaA형[미국특허 제5554286호(1996); International Congress on Membranes and Membrane Processes, ICOM '99, Toronto, Canada, 1999; page 35] 막이 물-메탄올 혼합조성 5, 10 중량비에 대해 0.2 ∼ 0.5 kg/m2·hr의 투과도와 2100 ∼ 2500 선택도를 50 ℃에서 나타내고 있다. 반면, 고분자막의 경우 폴리이미드막[Koubunnshironnbunnshu, Vol.46(1989), page 405]과 가교 폴리비닐알코올 계열막[Journal of Applied Polymer Science, Vol. 79(2001), page 703; Separation and Purification Technology, Vol.12(1999), page 77; Vol.105(1997), page 145; Journal of Applied Polymer Science, Vol. 68(1998), page 1717] 등이 개발되었으나, 투과도와 선택도 면에서 효과적이지 못하다[폴리이미드막의 투과도와 선택도는 물-메탄올 혼합조성 20 중량비에 대해 1 ×10-3, 20]In this regard, currently developed inorganic membranes for water-methanol separation include silica membranes [Membrane, Vol. 25 (2000), page 73; Ceramics Transition, Vol. 31 (1992), page 411], Zeolite-A Type Membrane [Microporous Material, Vol. 12 (1997), page 305], Zeolite Type X and Y Type Membrane [In ACS Symposium Series 744, Membrane Formation , Washington DC (2000), page 330, Modernite membranes [Microporous Material, Vol. 7 (1996), page 299], etc., double zeolite NaA type (US Pat. No. 5,526,86 (1996); International Congress on Membranes and Membrane Processes, ICOM '99, Toronto, Canada, 1999; The membrane shows permeability of 0.2 to 0.5 kg / m 2 · hr and 2100 to 2500 selectivity at 50 ° C with respect to the water and methanol mixture composition 5 and 10 weight ratio. On the other hand, in the case of the polymer membrane, a polyimide membrane [Koubunnshironnbunnshu, Vol. 46 (1989), page 405] and a crosslinked polyvinyl alcohol series membrane [Journal of Applied Polymer Science, Vol. 79 (2001), page 703; Separation and Purification Technology, Vol. 12 (1999), page 77; Vol. 105 (1997), page 145; Journal of Applied Polymer Science, Vol. 68 (1998), page 1717] have been developed, but are not effective in terms of permeability and selectivity [The permeability and selectivity of polyimide membrane is 1 × 10 -3 , 20 for 20 weight ratio of water-methanol mixture composition].

이에 본 발명자는 물성치가 유사한 극성 유기혼합물에 대한 효과적인 선택성 및 투과성을 가진 고분자막을 제조하기 위하여 연구 노력한 결과, 나노크기의 미세기공을 갖는 친수화된 다공성 고분자 지지체, 음이온 고분자 매트릭스 도핑층 및 상기 매트릭스 표면에 존재하는 음이온과 착결합을 형성하는 양이온 금속의 착막층이 순차적으로 적층된 고분자 착물막을 제조하여, 상기 다공성 고분자 지지체의 친수화로 착물 반응시 도핑층의 탈리 현상을 개선함으로써, 보다 효율적인 분자수준에서의 단위격자간 몰폴로지 제어가 가능하다는 것을 알게되어 본 발명을 완성하게 되었다. Accordingly, the present inventors have made efforts to prepare polymer membranes having effective selectivity and permeability for polar organic mixtures having similar physical properties, resulting in a hydrophilized porous polymer support having an nano-sized micropores, an anionic polymer matrix doping layer, and the matrix surface. By preparing a polymer complex membrane in which a membrane layer of a cationic metal forming a complex bond with an anion present in the polymer layer was sequentially laminated, and improving the desorption phenomenon of the doping layer during the complex reaction by hydrophilization of the porous polymer support, at a more efficient molecular level The present invention was completed by knowing that morphology control between unit grids is possible.

따라서, 본 발명은 친수화된 다공성 고분자 지지체 존재하에서, 고-액 착물법에 의해 형성하여 화학적·물리적 물성 차이가 적은 극성 유기혼합물 분리에 효 과적인 고분자 전해질 착물막 및 이의 제조방법을 제공하는데 그 목적이 있다.
Accordingly, the present invention provides a polymer electrolyte complex membrane and a method for preparing the same, which are formed by a solid-liquid complex method in the presence of a hydrophilized porous polymer support and are effective for separating a polar organic mixture having a small difference in chemical and physical properties. There is a purpose.

본 발명은 (1) 친수화된 다공성 고분자 지지체; (2) 상기 지지체 위에 형성된 음이온 고분자 매트릭스 도핑층; 및 (3) 상기 매트릭스 도핑층 표면에 존재하는 음이온과 착결합을 형성하는 양이온 금속의 착막층이 차례로 적층되어 이루어진 극성 유기혼합물 분리용 고분자 전해질 착물막에 그 특징이 있다.The present invention (1) hydrophilized porous polymer support; (2) an anionic polymer matrix doped layer formed on the support; And (3) a polymer electrolyte complex membrane for separating polar organic mixtures, which is formed by sequentially stacking a membrane layer of a cationic metal forming a complex bond with an anion present on the surface of the matrix doped layer.

또한, 본 발명은 폴리술폰, 폴리이서술폰, 폴리이서이미드, 폴리아미드, 폴리아크릴로니트릴 및 폴리비닐리덴플루오라이드 중에서 선택된 1종 또는 2종 이상의 고분자와, 수산기를 가진 알루미나, 이온성 층상실리케이트 및 친수성 티타니아 중에서 선택된 1종 또는 2종 이상의 무기충진재를 혼합하여 제조한 고분자 혼합 용액을, 용액-침지형으로 상전이 시켜 제조된 친수화된 다공성 고분자 지지체를 형성하는 1단계;In addition, the present invention is one or two or more polymers selected from polysulfone, polyisulfone, polyimide, polyamide, polyacrylonitrile and polyvinylidene fluoride, alumina having hydroxy group, ionic layer silicate and A step 1 of forming a hydrophilized porous polymer support prepared by mixing a polymer mixed solution prepared by mixing one or two or more inorganic fillers selected from hydrophilic titania into a solution-immersion type;

상기 친수화된 다공성 지지체의 표면을 음이온 고분자 용액으로 코팅하여 음이온 고분자 매트릭스 도핑층을 형성하는 2단계; 및Coating the surface of the hydrophilized porous support with an anionic polymer solution to form an anionic polymer matrix doping layer; And

상기 매트릭스 도핑층 표면에 2 ∼ 3가의 양이온 금속 수용액을 코팅하여 매트릭스 코팅층 도핑층 표면에 존재하는 음이온과 양이온이 착막 반응하여 착층막을 형성하는 3단계를 포함하여 이루어지는 극성 유기혼합물 분리용 고분자 전해질 착물막의 제조방법에 또 다른 특징이 있다.A polymer electrolyte complex membrane for separating a polar organic mixture comprising three steps of coating a 2-3 trivalent cation aqueous metal solution on the surface of the matrix doped layer to form an adhesion layer by anion and cation reacting on the surface of the matrix doped layer. There is another feature of the manufacturing method.

이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명은 통상의 미세 다공층 지지체 화합물과 특정의 무기충진재를 일정비로 혼합하여 형성한 친수화된 다공성 고분자 지지체, 상기 고분자 지지체 위에 음이온성 고분자를 혼합하여 형성한 고상의 고분자 매트릭스의 도핑층, 상기 도핑된 매트릭스 표면에 존재하는 음이온과 양이온성 고분자를 고-액 착물법으로 형성한 착막층이 순차적으로 적층되어, 분자수준의 단위격자간 몰폴로지의 제어가 가능한 고분자 전해질 착물막에 대한 것이다. The present invention is a hydrophilized porous polymer support formed by mixing a typical microporous layer support compound and a specific inorganic filler in a predetermined ratio, a doped layer of a solid polymer matrix formed by mixing an anionic polymer on the polymer support, The present invention relates to a polymer electrolyte complex membrane capable of controlling molecular morphologies between unit grids at a molecular level by sequentially stacking a layer of anion and a cationic polymer present on a doped matrix surface by a solid-liquid complex method.

종래의 음이온성 고분자와 양이온성 고분자를 이용한 착물막에 대해 본 발명자들에 의해 여러 가지 발표된 바[대한민국 특허공개 2001-37062호, 대한민국 특허등록 제376379호]있다. 그러나, 상기한 착물막은 단위격자간의 몰폴로지의 제어시 지지체 변형에 따른 도핑층이 착화되면서 탈리되는 현상이 발생하는 문제가 있었다. 본 발명은 공지의 지지체 제조시 사용되는 미세 다공성 지지체 화합물과 특정의 무기충진재를 일정비로 혼합하여 형성한 친수화된 다공성 고분자 지지체를 사용하여 도핑되는 음이온 고분자 매트릭스층과의 결합력을 향상시켜 고분자 전해질 착물막의 안정성을 개선시키므로써, 물리·화학적 물성치가 유사한 극성 유기화합물의 효율적 분리가 용이하다. Conventional complex membranes using anionic polymers and cationic polymers have been published by the present inventors [Korean Patent Publication No. 2001-37062, Korean Patent Registration No. 376379]. However, the above-mentioned complex film has a problem in that the doping layer is detached as the doping layer is complexed according to the deformation of the support when the morphology between the unit grids is controlled. The present invention improves the binding force of the anionic polymer matrix layer doped using a hydrophilized porous polymer support formed by mixing a predetermined amount of a microporous support compound and a specific inorganic filler used in the preparation of a known support, a polymer electrolyte complex By improving the stability of the membrane, it is easy to efficiently separate polar organic compounds having similar physical and chemical properties.

또한, 상기한 착물막은 증기-투과 열처리하는 방법으로 개질하여 사용될 수 있는 바, 착물막의 단위격자간 몰폴로지는 착물구조의 금속이온을 중심으로 열처리 온도에 따라 제공하는 증기상의 분자크기 및 증기압 등의 물리-화학적 성질에 의해, 막내에서 분자체 형태로 구성되는 착물구조의 크기가 좌우되며, 제조된 매트릭스의 혼화성 정도에 따라, 증기상의 투과특성이 결정되어 투과면에서의 고분자 사 슬의 배향도가 몰폴로지에 영향을 주는 형태로 제어된다.In addition, the complex membrane may be modified and used by a method of steam-permeation heat treatment, and the morphology between the unit grids of the complex membrane may include molecular size and vapor pressure of the vapor phase provided according to the heat treatment temperature based on the metal ions of the complex structure. The physico-chemical properties determine the size of the complex structure composed of molecular sieves in the membrane, and the permeability of the vapor phase is determined by the degree of miscibility of the prepared matrix, resulting in the orientation of the polymer chain in the permeate plane. It is controlled in a form that affects morphology.

본 발명에 따른 극성 유기혼합물 분리용 고분자 전해질 착물막의 각 층을 구체적으로 살펴보면 다음과 같다.Looking at each layer of the polymer electrolyte complex membrane for separating the polar organic mixture according to the present invention in detail.

먼저, 친수화된 다공성 고분자 지지체는 공지의 미세 다공성 지지체 형성에 사용되는 고분자와 특정의 무기충진재가 일정비로 혼합된 고분자 용액을 용액-침지형으로 상전이 시켜 제조한다. 즉, 상기 혼합된 균일상의 고분자 용액은 일정 두께로 주조(casting)됨과 동시에 비용매에 침지시켜 상전이 시키는 용액-침지형 상전이에 의해 제조된 친수화된 다공성 고분자 필름을 본 발명에서 지지체로 사용한다. 이렇게 형성된 친수화된 다공성 고분자 지지체는 기공 크기가 10 ∼ 1000 Å 범위로 한외여과 공극 수준의 비대칭 구조의 고분자 막을 형성한다. 상기 고분자는 예를 들면 폴리술폰, 폴리이서술폰, 폴리이서이미드, 폴리아미드, 폴리아크릴로니트릴 및 폴리비닐리덴플루오라이드 중에서 선택된 1종 또는 2종 이상을 사용할 수 있으며, 무기충진재는 예를 들면 수산기를 가진 알루미나, 이온성 층상실리케이트 및 친수성 티타니아 중에서 선택된 1종 또는 2종 이상을 사용할 수 있다. 상기한 고분자와 무기충진재는 용매에 대하여 15 ∼ 25 중량%와 0.1 ∼ 35 중량% 사용하며, 상기 고분자의 사용량이 15 중량% 미만이면 지지체의 기계적 물성이 저하되고, 25 중량%를 초과하는 경우에는 용액제조가 어렵고 다공성 형태의 지지체를 제조하는데 문제가 발생하며, 또한 무기충진재의 사용량이 0.1 중량% 미만이면 착물반응 단계에서 코팅층이 탈리될 수 있고, 35 중량%를 초과하는 경우에는 지지체막에 취약성이 증가하는 문제가 발생한다.First, a hydrophilized porous polymer support is prepared by phase-transferring a polymer solution in which a polymer used to form a known microporous support and a specific inorganic filler are mixed at a predetermined ratio. That is, the mixed homogeneous polymer solution is cast to a certain thickness and at the same time, a hydrophilized porous polymer film prepared by a solution-immersion type phase transition, which is immersed in a non-solvent, is used as a support in the present invention. The hydrophilized porous polymer support thus formed forms a polymer membrane having an asymmetric structure of ultrafiltration pores with a pore size in the range of 10 to 1000 mm 3. The polymer may be used, for example, one or two or more selected from polysulfone, polyisulfone, polyimide, polyamide, polyacrylonitrile, and polyvinylidene fluoride, and the inorganic filler may be, for example, a hydroxyl group. One or two or more selected from alumina, ionic layer silicate and hydrophilic titania having When the polymer and the inorganic filler are used in an amount of 15 to 25% by weight and 0.1 to 35% by weight with respect to the solvent, when the amount of the polymer is less than 15% by weight, the mechanical properties of the support decrease, and when the amount exceeds 25% by weight, It is difficult to prepare a solution, and there is a problem in preparing a porous support, and when the amount of the inorganic filler is less than 0.1% by weight, the coating layer may be detached in the complex reaction step. This increasing problem occurs.

상기 용매는 고분자 물질과 무기충진재에 대하여 모두 용해 가능한 유기용매로, 예를 들면 디메틸아세트아미드, 메틸피롤리돈 및 디메틸설폭사이드 등을 사용할 수 있으며, 상전이에 사용된 비용매는 통상적으로 순수를 사용하는 것이 좋다. The solvent is an organic solvent that can be dissolved in both a polymer material and an inorganic filler, and for example, dimethylacetamide, methylpyrrolidone and dimethyl sulfoxide may be used, and the non-solvent used in the phase transition is usually pure water. It is good.

다음으로, 상기 친수화된 다공성 고분자 지지체의 표면을 음이온 고분자 용액으로 코팅하여 음이온 고분자 매트릭스 도핑층을 형성한다. 상기한 음이온 고분자는 음이온 폴리사카라이드계 고분자 단독 또는 상기 음이온 폴리사카라이드계 고분자와 선형 폴리아크릴산, 소듐 폴리스티렌술포네이트 및 폴리비닐알콜 중에서 선택된 1종 또는 2종 이상을 사용할 수 있다. 음이온 폴리사카라이드계 고분자는 측쇄에 이온기 및 다수의 수산기가 있는 피라노오스 고리형 고분자 또는 선형 사슬형태의 고분자로 예를 들면 아가로스류, 카라기난류, 알기네이트류, 셀룰로오즈류, 덱스트란류, 글리코사미노글리칸류, 테이코인산류, 키실란류, 폴리사카라이드류 및 아가로스 설페이트류, 보다 구체적으로 알긴산, 카파형-카라기난, 아이오타형-카라기난, 람타형-카라기난, 카파형-퍼셀라난, 콘드로이틴-4-설페이트, 콘드로이틴-6-설페이트, 데르마탄 설페이트, 헤파란 설페이트, 케라탄 설페이트, 히알루로네이트, 헤파린, 숙시니글리칸. 테이코인산, 셀룰로오즈 설페이트, 소디움 카르복시메틸 셀룰로오즈, 키실란 설페이트, 셀룰로오즈 키산테이트, 스타취 포스페이트 에테르와 설페이트, 금속 킬레이트 포스포릴레이트된 키틴과 키토산의 유도체 등에서 선택 사용될 수 있다. Next, the surface of the hydrophilized porous polymer support is coated with an anionic polymer solution to form an anionic polymer matrix doping layer. The anionic polymer may be an anionic polysaccharide-based polymer alone or one or two or more selected from the anionic polysaccharide-based polymer and linear polyacrylic acid, sodium polystyrenesulfonate and polyvinyl alcohol. Anionic polysaccharide-based polymers are pyranose cyclic polymers or linear chain polymers having ionic groups and many hydroxyl groups in the side chains, for example, agaroses, carrageenans, alginates, celluloses, and dextrans. , Glycosaminoglycans, teicophosphates, xylans, polysaccharides and agarose sulfates, more specifically alginic acid, kappa-carrageenan, iota-carrageenan, lambta-carrageenan, kappa-perselanan , Chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate, heparan sulfate, keratan sulfate, hyaluronate, heparin, succiniglycans. Teicoinic acid, cellulose sulfate, sodium carboxymethyl cellulose, xylan sulfate, cellulose chianthate, starch phosphate ethers and sulfates, metal chelate phosphorylated chitin and chitosan, and the like can be used.

상기와 같이 본 발명은 음이온 폴리사카라이드 고분자를 단독 사용하거나, 기계적 강도와 보다 높은 수착 투과 특성을 부여하기 위하여 상기한 고분자에 음이 온성 고분자 및 폴리비닐알콜 등의 화합물을 일정량 첨가 혼합하여 고분자 매트릭스를 형성한다. 상기 물질을 혼합 사용하는 경우에는 음이온 폴리사카라이드 고분자에 대하여 각각 0.1 ∼ 60 중량% 정도 사용하는 것이 바람직하며, 0.1 중량% 미만이면 그 양이 미미하여 목적으로 하는 효과를 얻을 수 없으며, 60 중량%를 초과하는 경우에는 물질간 혼화성이 크게 떨어지는 문제가 발생한다. 음이온성 고분자는 사슬간 반복단위가 짧은 형태에서 음이온기를 가지고 있어, 보다 높은 밀도의 착물구조를 매트릭스에 유도할 수 있는 특성을 갖는 것으로 예를 들면 선형 폴리아크릴산 또는 소듐 폴리스티렌술포네이트를 사용하는 것이 좋다.As described above, the present invention uses the anionic polysaccharide polymer alone or adds and mixes a certain amount of compounds such as anionic polymer and polyvinyl alcohol to the polymer in order to give mechanical strength and higher sorption permeation characteristics. To form. In the case of mixing and using the above materials, it is preferable to use about 0.1 to 60% by weight with respect to the anionic polysaccharide polymer, respectively, when the amount is less than 0.1% by weight, the desired effect is not obtained, and 60% by weight is used. If exceeded, there is a problem in that the miscibility between materials greatly decreases. Anionic polymers have anionic groups in the form of short chain repeating units, and have a property of inducing a higher density complex structure into the matrix. For example, it is preferable to use linear polyacrylic acid or sodium polystyrenesulfonate. .

상기한 화합물을 상온에서 12 시간이상 균일하게 혼합한 수용액을 친수화된 다공성 지지체 표면에 공지의 방법으로 코팅한 후, 상온에서 12 ∼ 24 시간동안 건조하여 음이온 고분자 매트릭스 도핑층을 형성한다. 상기 코팅은 공지의 방법으로 특별히 한정하지는 않으나, 본 발명에서는 딥-코팅(dip-coating)법을 이용하였으며, 이렇게 형성된 도핑층은 0.01 ∼ 20 ㎛ 범위의 두께를 유지하는 것이 고투과 고선택성을 갖는데 유리하다.The aqueous solution of the above-mentioned compound uniformly mixed at room temperature for at least 12 hours is coated on a surface of a hydrophilized porous support by a known method, followed by drying at room temperature for 12 to 24 hours to form an anionic polymer matrix doping layer. The coating is not particularly limited by a known method, but in the present invention, a dip-coating method is used, and the doped layer thus formed has a high permeability and high selectivity to maintain a thickness in the range of 0.01 to 20 μm. Do.

다음으로, 상기 고상의 음이온 고분자 매트릭스와 다가의 양이온 금속 수용액에 침지하여 상호 침투 형태법에 의해 착물 반응하여 전해질 고분자 착물막을 제조한다.Next, the solid anionic polymer matrix and a polyvalent cation aqueous metal solution are immersed in a complex reaction by a mutual penetration method to prepare an electrolyte polymer complex membrane.

상기한 양이온 금속은 종래 특허공개 2001-37062호에서 사용된 폴리사카라이드계 양이온 고분자와는 다르게 저분자량의 금속이온이 수용액 상태에서 매트릭스 내부에 착체가 형성되고, 매트릭스에 적층되지 않으므로 종래의 막보다 활성층의 두께가 얇은 특징을 갖는 것으로 바륨, 카드늄, 칼슘, 크롬, 구리, 철, 납, 마그네슘, 망간, 수은, 스트론튬, 니켈, 아연 및 주석 중에서 선택된 2가 양이온 또는 알루미늄, 크롬 및 철 중에서 선택된 3가 양이온을 사용할 수 있다. 양이온 금속은 물에 대하여 0.1 ∼ 35 중량% 사용하는 것이 바람직하며, 사용량이 0.1 중량% 미만이면 착체 형성 시간이 많이 소요되는 문제가 있고 35 중량%를 초과하는 경우에는 착체 형성이 과도하게 진행되어 짧은 시간에 강직한 구조로 진행되어 부분적으로 막성형에 문제가 발생할 수 있다. 또한 착화시간은 1분 ∼ 12분 정도 착화시키는 것이 바람직하다.Unlike the polysaccharide-based cationic polymers used in Korean Patent Laid-Open Publication No. 2001-37062, the cationic metal has a complex structure formed inside the matrix in an aqueous solution state, and is not laminated to the matrix. The thickness of the active layer is characterized by a thin, divalent cation selected from barium, cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, mercury, strontium, nickel, zinc and tin or 3 selected from aluminum, chromium and iron A valent cation can be used. The cationic metal is preferably used in an amount of 0.1 to 35% by weight with respect to water, and when the amount is less than 0.1% by weight, there is a problem in that complex formation takes much time. Rigid structures in time can lead to problems with film formation. Moreover, it is preferable to make ignition time ignite about 1 to 12 minutes.

상기한 바와 같이 제조된 착물막은 다공성 고분자 지지체의 친수화로 착물 반응시 도핑층의 탈리 현상을 개선하고, 고-액 착물법에 의해 형성하여, 분자수준에서의 단위격자간 몰폴로지 제어가 가능하므로 화학적·물리적 물성 차이가 적은 극성 유기혼합물 분리에 효과적인 고분자 전해질 착물막이다.The complex membrane prepared as described above improves the detachment phenomenon of the doped layer during the complex reaction by hydrophilization of the porous polymer support, and is formed by the solid-liquid complex method, thereby controlling the morphology between unit grids at the molecular level. It is a polymer electrolyte complex membrane that is effective for separating polar organic mixtures with little difference in chemical and physical properties.

또한, 상기에서 제조된 고분자 전해질 착물막을 90 ∼ 120 ℃ 온도에서, 1 ∼ 4 시간동안 밀폐된 공간에서 증기-투과 열처리 형태로 개질하는 경우 메탄올 분자보다 작은 분자체 효과를 나타낼 수 있다.In addition, when the polymer electrolyte complex membrane prepared above is modified in a vapor-permeation heat treatment form in a closed space at a temperature of 90 to 120 ° C. for 1 to 4 hours, a molecular sieve effect may be smaller than that of methanol molecules.

이하, 본 발명을 실시예에 의거하여 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following Examples, but the present invention is not limited by the Examples.

실시예Example 1 :  One : 블랜드된Blended 알긴산나트륨/ Sodium Alginate / 카라기난Carrageenan (95/5) (95/5) 착물막의 Complex 제조  Produce

알긴산 나트륨(벌크 제품)과 카라기난을 순수에 대하여 각 2 중량%비로 별도 의 용기 내에 있는 순수에 넣은 후, 상온에서 24시간 이상 교반하여 균일한 고분자 전해질 수용액을 각각 제조하였다. 제조된 각 용액을 혼합비 95/5 중량비의 알긴산 나트륨과 카라기난 용액을 혼합한 다음, 상온에서 12시간 이상 교반하여 균일한 도핑용액을 제조하였다.Sodium alginate (bulk product) and carrageenan were added to pure water in a separate container at a ratio of 2% by weight relative to pure water, followed by stirring at room temperature for at least 24 hours to prepare a homogeneous polymer electrolyte solution. Each prepared solution was mixed with sodium alginate and carrageenan solution in a mixing ratio of 95/5 by weight, and then stirred at room temperature for 12 hours or more to prepare a uniform doping solution.

또한, 용매인 디메틸아세트아미드에 대해 알루미나 5 중량%와 15 중량%의 폴리이서이미드를 혼합하여 상온에서 24시간 이상 교반하여 지지체 제조용 고분자 용액을 제조한 후, 청정실(Clean Room)에서 주조용 칼을 이용하여 120 ㎛ 두께로 주조(casting)와 동시에 비용매인 다량의 순수에 침지시켜 고분자 용액을 상전이 시켰다. 상기와 같이 상전이된 고분자 지지체를 동일한 장소에서 12시간 이상 상온 건조시켜 한외여과수준(분획분자량 30000 정도)의 공극을 가지는 알루미나 다분산 고분자 지지체를 제조하였다.In addition, 5% by weight of alumina and 15% by weight of polyisimide are mixed with a solvent, dimethylacetamide, and stirred at room temperature for at least 24 hours to prepare a polymer solution for preparing a support, and then a casting knife is placed in a clean room. The polymer solution was phase-transformed by casting to a thickness of 120 μm and immersing in a large amount of non-solvent pure water. The above-described phase-transferred polymer support was dried at room temperature for at least 12 hours to prepare an alumina polydisperse polymer support having pores of ultrafiltration level (fraction molecular weight of about 30000).

상기의 고분자 지지체는 95/5 중량%비의 알긴산 나트륨/카라기난 혼합 용액 속에 딥-코팅(Dip-coating) 방식으로 지지체 표면에 일정 두께의 도핑층을 도입하고, 상온에서 24시간 동안 건조하였다. 이와 같이 제조된 알긴산 나트륨/카라기난 복합막을 5 중량% 2가 칼슘수용액 속에서 일정시간 동안 착물반응을 유도하고, 3회 이상 순수에서 침지-세척한 다음, 청정실에서 12시간 이상 상온 건조하여 알긴산 나트륨/카라기난 착물 복합막을 제조하였다.The polymer support was introduced into a 95/5% by weight ratio of sodium alginate / carrageenan mixed solution by a dip-coating method on a surface of the support and dried at room temperature for 24 hours. The sodium alginate / carrageenan composite membrane thus prepared was subjected to complex reaction in a 5 wt% divalent calcium aqueous solution for a predetermined time, immersed and washed three times in pure water, and then dried at room temperature in a clean room for at least 12 hours. Carrageenan complex composite membranes were prepared.

상기에서 제조된 착물막을 메탄올 배제 분자체 효과를 가지게 하기 위하여, 착물 복합막을 110 ℃에서 증기화된 물/메탄올 혼합용액이 도핑층에서 지지체 방향으로 빠져나가도록 하여 개질하였다. 개질된 착물막을 이용하여, 물/메탄올 (50/50 몰%) 혼합물에 대하여 투과실험을 수행하였고, 그 결과를 다음 표 1에 나타내었다.In order to have the methanol exclusion molecular sieve effect of the complex membrane prepared above, the complex composite membrane was modified by allowing the water / methanol mixed solution vaporized at 110 ° C. to exit from the doping layer toward the support. Using the modified complex membrane, permeation experiments were performed on a water / methanol (50/50 mole%) mixture and the results are shown in Table 1 below.

비교예Comparative example 1 :  One : 블랜드된Blended 알긴산나트륨/ Sodium Alginate / 카라기난Carrageenan (95/5) (95/5) 착물막의 Complex 제조  Produce

상기 실시예 1과 동일하게 실시하되, 지지체 제조과정과 도핑과정 없이 80 ㎛ 두께로 제조된 알긴산 나트륨/카라기난 착물막을 실시예 1과 동일한 투과조건으로 물-메탄올의 투과도 및 선택도를 측정하여 그 결과를 표 1에 나타내었다.The same procedure as in Example 1, except that the sodium alginate / carrageenan complex membrane prepared in 80 ㎛ thickness without the preparation and doping process of the support under the same permeation conditions as in Example 1 by measuring the permeability and selectivity of water-methanol Is shown in Table 1.

막 종류Membrane type 투과도 (g/m2hr)Permeability (g / m 2 hr) 선택도Selectivity 실시예 1 (복합막)Example 1 (composite membrane) > 2400> 2400 > 103 > 10 3 비교예 1 (균일막)Comparative Example 1 (Uniform Film) 6060 8 ×103 8 × 10 3

실시예Example 2 :  2 : 블랜드된Blended 알긴산나트륨/ Sodium Alginate / 폴리비닐알콜Polyvinyl alcohol (95/5) (95/5) 착물 Complex 복합막의Of composite membrane 제조 Produce

상기 실시예 1과 동일하게 실시하되, 도핑용액이 알긴산 나트륨과 폴리비닐알코올의 혼합용액을 이용하였고, 실시예 1과 동일한 투과조건으로 물-메탄올의 투과도 및 선택도를 측정하여 그 결과를 표 2에 나타내었다.In the same manner as in Example 1, the doping solution was used as a mixed solution of sodium alginate and polyvinyl alcohol, and the results of measuring the permeability and selectivity of water-methanol under the same permeation conditions as in Example 1 Table 2 Shown in

비교예Comparative example 2 :  2 : 블랜드된Blended 알긴산나트륨/ Sodium Alginate / 폴리비닐알콜Polyvinyl alcohol (95/5) (95/5) 착물막의 Complex 제조  Produce

상기 실시예 1과 동일하게 실시하되, 지지체 제조과정과 도핑과정 없이 80 ㎛ 두께로 제조된 알긴산 나트륨/폴리비닐알콜 착물막을 실시예 1과 동일한 투과조건으로 물-메탄올의 투과도 및 선택도를 측정하여 그 결과를 표 2에 나타내었다.In the same manner as in Example 1, but the sodium alginate / polyvinyl alcohol complex membrane prepared in 80 ㎛ thickness without the support preparation process and doping process by measuring the permeability and selectivity of water-methanol under the same permeation conditions The results are shown in Table 2.

막 종류Membrane type 투과도 (g/m2hr)Permeability (g / m 2 hr) 선택도Selectivity 실시예 2 (복합막)Example 2 (composite membrane) > 1800> 1800 > 103 > 10 3 비교예 2 (균일막)Comparative Example 2 (Uniform Film) 4040 6 ×103 6 × 10 3

비교예Comparative example 3 :  3: 친수화된Hydrophilized 다공성  Porosity 지지체를Support 사용하지 않은 경우 If not used

상기 실시예 1과 동일하게 실시하되, 미세 다공성 고분자인 폴리이서이미드를 이용한 지지체를 사용하여 제조된 알긴산 나트륨/카라기난 착물막을 실시예 1과 동일한 투과조건으로 물-메탄올의 투과도 및 선택도를 측정하여 그 결과를 표 3에 나타내었다.In the same manner as in Example 1, the sodium alginate / carrageenan complex membrane prepared using a support using a polyimide, which is a microporous polymer, by measuring the permeability and selectivity of water-methanol under the same permeation conditions as in Example 1 The results are shown in Table 3.

친수화 형태Hydrophilic form 투과도 (g/m2hr)Permeability (g / m 2 hr) 선택도Selectivity 실시예 1 (복합막)Example 1 (composite membrane) > 2.4 ×103 > 2.4 × 10 3 > 103 > 10 3 비교예 3 (복합막)Comparative Example 3 (Composite Film) > 10 ×103 > 10 × 10 3 < 1<1

상기 표 1 ∼ 2에 보여진 바와 같이, 본 발명에 따라 친수화된 다공성 고분자 지지체, 음이온 고분자 매트릭스 도핑층 및 양이온과 착물반응으로 형성된 착층으로 이루어진 복합막 형태의 실시예 1 ∼ 2가 단일층의 비교예 1 ∼ 2에 비해 투과도와 선택도 면에서 월등하게 향상되었음을 확인할 수 있었다.As shown in Tables 1 to 2, Examples 1 to 2 in the form of a composite membrane consisting of a hydrophilized porous polymer support, an anionic polymer matrix doping layer, and a complex layer formed by a complex reaction with a cation according to the present invention are compared. Compared with Examples 1 to 2, it was confirmed that the coating was improved in terms of permeability and selectivity.

또한, 비교예 3은 실시예 1에서 사용한 친수화된 다공성 지지체 대신에 폴리이미드 미세 다공성 지지체를 사용한 것으로, 상기 지지체의 친수화에 유·무에 따라 투과도와 선택도도 현격한 차이를 나타내었다. 상기 투과도와 선택도의 차이는 착물반응 진행 시 도핑층과의 탈리로 인한 결과임을 확인할 수 있었다.In addition, Comparative Example 3 uses a polyimide microporous support instead of the hydrophilized porous support used in Example 1, and showed a marked difference in permeability and selectivity with or without hydrophilization of the support. The difference between the permeability and the selectivity was confirmed to be the result of desorption with the doped layer during the complex reaction.

상기에서 상술한 바와 같이, 본 발명에 따른 친수화된 다공성 고분자 지지체, 음이온 고분자 매트릭스 도핑층 및 양이온과 착물반응으로 형성된 착층으로 이루어진 고분자 전해질 착물막은 매우 우수한 투과 선택성을 가지며, 특히, 물리·화학적 물성이 유사한 물-메탄올 등의 극성 유기혼합물의 분리에 매우 유용하다.As described above, the polymer electrolyte complex membrane composed of a hydrophilized porous polymer support, an anionic polymer matrix doping layer, and a complex layer formed by a complex reaction with a cation according to the present invention has very excellent permeability and, in particular, physical and chemical properties. This is very useful for the separation of polar organic mixtures such as water-methanol.

Claims (9)

(1) 친수화된 다공성 고분자 지지체; (1) a hydrophilized porous polymer support; (2) 상기 지지체 위에 형성된 음이온 고분자 매트릭스 도핑층; 및 (2) an anionic polymer matrix doped layer formed on the support; And (3) 상기 매트릭스 도핑층 표면에 존재하는 음이온과 착결합을 형성하는 양이온 금속의 착막층(3) A coating layer of a cationic metal forming a complex bond with an anion present on the surface of the matrix doped layer 이 차례로 적층되어 이루어진 것임을 특징으로 하는 극성 유기혼합물 분리용 고분자 전해질 착물막.A polymer electrolyte complex membrane for separating polar organic mixtures, which is formed by being laminated in this order. 제 1 항에 있어서, 상기 친수화된 다공성 고분자 지지체는 The method of claim 1, wherein the hydrophilized porous polymer support 폴리술폰, 폴리이서술폰, 폴리이서이미드, 폴리아미드, 폴리아크릴로니트릴 및 폴리비닐리덴플루오라이드 중에서 선택된 1종 또는 2종 이상의 고분자와, One or two or more polymers selected from polysulfone, polyisulfone, polyisimide, polyamide, polyacrylonitrile and polyvinylidene fluoride, 수산기를 가진 알루미나, 이온성 층상실리케이트 및 친수성 티타니아 중에서 선택된 1종 또는 2종 이상의 무기충진재가 혼합된 고분자 혼합 용액을 용액-침지형으로 상전이 되어 형성된 것임을 특징으로 하는 극성 유기혼합물 분리용 고분자 전해질 착물막. A polymer electrolyte complex membrane for separation of a polar organic mixture, characterized in that the polymer mixed solution of one or two or more inorganic fillers selected from alumina having a hydroxyl group, an ionic layered silicate, and a hydrophilic titania is formed into a solution-immersion phase. 제 1 항 또는 제 2 항에 있어서, 상기 친수화된 다공성 고분자 지지체는 기 공 크기가 10 ∼ 1000 Å 범위인 상전이 막인 것임을 특징으로 하는 극성 유기혼합물 분리용 고분자 전해질 착물막. The polymer electrolyte complex membrane of claim 1 or 2, wherein the hydrophilized porous polymer support is a phase change membrane having a pore size in the range of 10 to 1000 mm 3. 제 1 항에 있어서, 상기 매트릭스 도핑층을 형성하는 음이온 고분자는 The method of claim 1, wherein the anionic polymer forming the matrix doped layer 음이온 폴리사카라이드계 고분자 단독, 또는 상기 음이온 폴리사카라이드계 고분자와 선형 폴리아크릴산, 소듐 폴리스티렌술포네이트 및 폴리비닐알콜 중에서 선택된 1종 또는 2종 이상과 혼합된 것임을 특징으로 하는 극성 유기혼합물 분리용 고분자 전해질 착물막. Anionic polysaccharide-based polymer alone, or a polar organic mixture separation polymer, characterized in that the anionic polysaccharide-based polymer and mixed with one or two or more selected from linear polyacrylic acid, sodium polystyrene sulfonate and polyvinyl alcohol Electrolyte complex membrane. 제 4 항에 있어서, 상기 음이온 폴리사카라이드계 고분자는 The method of claim 4, wherein the anionic polysaccharide-based polymer 아가로스류, 카라기난류, 알기네이트류, 셀룰로오즈류, 덱스트란류, 글리코사미노글리칸류, 테이코인산류, 키실란류, 폴리사카라이드류 및 아가로스 설페이트류에서 선택된 1종 또는 2종 이상인 것임을 특징으로 하는 극성 유기혼합물 분리용 고분자 전해질 착물막. It is one or two or more selected from agarose, carrageenan, alginate, cellulose, dextran, glycosaminoglycans, teicophosphates, chisilanes, polysaccharides and agarose sulfates. A polymer electrolyte complex membrane for separating polar organic mixtures. 제 1 항에 있어서, 상기 양이온 금속은 바륨, 카드뮴, 칼슘, 크롬, 구리, 철, 납, 마그네슘, 망간, 수은, 스트론튬, 니켈, 아연 및 주석 중에서 선택된 2가 이 온, 또는 알루미늄, 크롬 및 철 중에서 선택된 3가 이온인 것임을 특징으로 하는 극성 유기혼합물 분리용 고분자 전해질 착물막. The method of claim 1, wherein the cationic metal is a divalent ion selected from barium, cadmium, calcium, chromium, copper, iron, lead, magnesium, manganese, mercury, strontium, nickel, zinc and tin, or aluminum, chromium and iron. Polymer electrolyte complex membrane for polar organic mixture separation, characterized in that the trivalent ions selected from. 폴리술폰, 폴리이서술폰, 폴리이서이미드, 폴리아미드, 폴리아크릴로니트릴 및 폴리비닐리덴플루오라이드 중에서 선택된 1종 또는 2종 이상의 고분자와, 수산기를 가진 알루미나, 이온성 층상실리케이트 및 친수성 티타니아 중에서 선택된 1종 또는 2종 이상의 무기충진재를 혼합하여 제조한 고분자 혼합 용액을, 용액-침지형으로 상전이 시켜 제조된 친수화된 다공성 고분자 지지체를 형성하는 1단계;One or two or more polymers selected from polysulfone, polyisulfone, polyisimide, polyamide, polyacrylonitrile, and polyvinylidene fluoride, and one selected from alumina, ionic layered silicate, and hydrophilic titania having hydroxyl groups A step of forming a hydrophilized porous polymer support prepared by phase-transferring a polymer mixed solution prepared by mixing a species or two or more inorganic fillers into a solution-immersion type; 상기 친수화된 다공성 지지체의 표면을 음이온 고분자 용액으로 코팅하여 음이온 고분자 매트릭스 도핑층을 형성하는 2단계; 및Coating the surface of the hydrophilized porous support with an anionic polymer solution to form an anionic polymer matrix doping layer; And 상기 매트릭스 도핑층 표면에 2 ∼ 3가의 양이온 금속 수용액을 코팅하여 매트릭스 코팅층 도핑층 표면에 존재하는 음이온과 양이온이 착막 반응하여 착층막을 형성하는 3단계3-step coating of an aqueous solution of a bivalent trivalent cation metal on the surface of the matrix doped layer to form a layered film by anionic and cation reacting on the surface of the doped layer of the matrix coating layer. 를 포함하여 이루어지는 것을 특징으로 하는 극성 유기혼합물 분리용 고분자 전해질 착물막의 제조방법.Method for producing a polymer electrolyte complex membrane for polar organic mixture separation comprising a. 제 7 항에 있어서, 상기 매트릭스 도핑층의 두께가 0.01 ∼ 20 ㎛인 것을 특징으로 하는 극성 유기혼합물 분리용 고분자 전해질 착물막의 제조방법.The method of claim 7, wherein the matrix doped layer has a thickness of 0.01 to 20 μm. 제 7 항에 있어서, 상기 착막층을 형성한 후에, 90 ∼ 120 ℃ 온도에서, 1 ∼ 4 시간동안 밀폐된 공간에서 증기-투과 열처리하는 단계를 추가로 수행하여 이루어지는 것을 특징으로 하는 극성 유기혼합물 분리용 고분자 전해질 착물막의 제조방법.8. The polar organic mixture separation of claim 7, further comprising, after forming the coating layer, further performing a vapor-permeation heat treatment in a closed space at a temperature of 90 to 120 DEG C for 1 to 4 hours. Method for producing a polymer electrolyte complex membrane for use.
KR1020040052126A 2004-07-05 2004-07-05 Polymer Electrolyte Complex Membrane for Separation of Polar Organic Mixture and Its Manufacturing Method KR100546079B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040052126A KR100546079B1 (en) 2004-07-05 2004-07-05 Polymer Electrolyte Complex Membrane for Separation of Polar Organic Mixture and Its Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040052126A KR100546079B1 (en) 2004-07-05 2004-07-05 Polymer Electrolyte Complex Membrane for Separation of Polar Organic Mixture and Its Manufacturing Method

Publications (2)

Publication Number Publication Date
KR20060003297A KR20060003297A (en) 2006-01-10
KR100546079B1 true KR100546079B1 (en) 2006-01-24

Family

ID=37105810

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040052126A KR100546079B1 (en) 2004-07-05 2004-07-05 Polymer Electrolyte Complex Membrane for Separation of Polar Organic Mixture and Its Manufacturing Method

Country Status (1)

Country Link
KR (1) KR100546079B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8899964B2 (en) 2012-03-16 2014-12-02 Mold-Masters (2007) Limited Edge-gated injection molding apparatus
CN108636129B (en) * 2018-05-24 2021-09-28 天津工业大学 Preparation method of ceramic hollow fiber oxygen permeable membrane
CN113332867A (en) * 2021-06-08 2021-09-03 天津工业大学 Cationic polyacrylamide modified polyether sulfone polymeric membrane, and preparation method and application thereof

Also Published As

Publication number Publication date
KR20060003297A (en) 2006-01-10

Similar Documents

Publication Publication Date Title
Li et al. ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery
US3855122A (en) Process for the preparation of anisotropic semi-permeable membranes of polyaryl ether/sulphones
CN101905125B (en) Preparation method of polystyrolsulfon acid salt/polyethyleneimine crosslinking nanofiltration membrane
CN105617882A (en) Chitosan modified graphene oxide nano composite positive osmotic membrane and preparation method thereof
KR101522681B1 (en) Preparation method of nanofiltration composite membrane impregnated graphene oxide and the nanofiltration composite membrane thereby
KR101750770B1 (en) Graphene oxide loaded polyelectrolyte complex membrane for separation of alcohol-water mixture and the preparation method thereof
US4894159A (en) Method of manufacturing a reverse osmosis membrane and the membrane so produced
KR100546079B1 (en) Polymer Electrolyte Complex Membrane for Separation of Polar Organic Mixture and Its Manufacturing Method
KR101161711B1 (en) Method of producing forward osmosis membranes based on acetylated alkyl cellulose
JP2000117074A (en) Production of reverse osmosis membrane
JP2513460B2 (en) Composite semipermeable membrane and manufacturing method thereof
Hatori et al. Preparation of macroporous carbons from phase‐inversion membranes
CN112191114A (en) Polymer ultrafiltration membrane applied to polyamide composite membrane support and preparation method thereof
KR101433841B1 (en) Composite Membrane and Manufacturing Method Thereof
KR100562047B1 (en) Polyelectrolyte complex membrane for separating water-methanol mixtures and method for preparation the same
US5646205A (en) Ion complex membrane and a method for producing same
KR102084359B1 (en) Resin composition for membrane to purify or diagnose biological products and method of preparing the same
KR100562521B1 (en) Polyelectrolyte complex membrane having an asymmetric structure and method for preparation the same
Eren et al. The role of polyvinylpyrrolidone as a pore former on microstructure and performance of polysulfone membranes
JPH0761432B2 (en) Method for producing highly functional asymmetric membrane
KR101726656B1 (en) Mixed-matrix membrane and the preparation method thereof
JPH0554375B2 (en)
Uragami Chitin and Chitosan Derivative Membranes in Resources, Energy, Environmental and Medical Field
KR100460454B1 (en) A swollen cation exchange membrane using water-soluble polymer and preparation method thereof
KR100418859B1 (en) Composition for producing polyethersulfone membrane and method for preparing microfilteration membrane using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140102

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151221

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190115

Year of fee payment: 14