KR100460454B1 - A swollen cation exchange membrane using water-soluble polymer and preparation method thereof - Google Patents

A swollen cation exchange membrane using water-soluble polymer and preparation method thereof Download PDF

Info

Publication number
KR100460454B1
KR100460454B1 KR10-2001-0077047A KR20010077047A KR100460454B1 KR 100460454 B1 KR100460454 B1 KR 100460454B1 KR 20010077047 A KR20010077047 A KR 20010077047A KR 100460454 B1 KR100460454 B1 KR 100460454B1
Authority
KR
South Korea
Prior art keywords
membrane
cation exchange
exchange membrane
weight
water
Prior art date
Application number
KR10-2001-0077047A
Other languages
Korean (ko)
Other versions
KR20030052252A (en
Inventor
문승현
최용진
강문성
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR10-2001-0077047A priority Critical patent/KR100460454B1/en
Publication of KR20030052252A publication Critical patent/KR20030052252A/en
Application granted granted Critical
Publication of KR100460454B1 publication Critical patent/KR100460454B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2425/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Abstract

본 발명은 친수성 고분자를 이용한 수팽윤성 양이온교환막 및 그의 제조방법에 관한 것으로서, 더욱 상세하게는 폴리비닐알콜(PVA, poly(vinyl alcohol))의 수용성 고분자와 폴리스틸렌 설폰산/말레산 공중합체(PSSA-MA, polystyrene sulfonic acid-co-maleic acid)의 양이온 교환 고분자를 일정량 사용하여 블렌딩 한 뒤 열처리 및 화학적 가교를 통해 수팽윤성 양이온교환막을 제조하여 막에 양이온교환기로서 폴리스틸렌 설폰산의 벤젠설폰산 그룹과 말레산의 다중 카르복실산 그룹을 동시에 가지게 함으로써, 종래에 비해 함수율을 감소시키면서 동시에 이온교환능이 향상되고, 가교도 조절이 가능하여 막의 구조제어가 용이하며, 동시에 비교적 분자량이 큰 유기/금속 화합물의 분리 및 정제에 적합할 뿐만 아니라, 유기용매를 쓰지 않아 환경 친화적이며 경제적인 수팽윤성 양이온교환막 및 그의 제조방법에 관한 것이다.The present invention relates to a water-swellable cation exchange membrane using a hydrophilic polymer and a method for preparing the same, and more particularly, a water-soluble polymer of polyvinyl alcohol (PVA, poly (vinyl alcohol)) and a polystyrene sulfonic acid / maleic acid copolymer (PSSA-). MA and polystyrene sulfonic acid-co-maleic acid (MA) were blended using a certain amount of cation exchange polymer, followed by heat treatment and chemical crosslinking to prepare a water swellable cation exchange membrane. By simultaneously having multiple carboxylic acid groups of the acid, the ion exchange capacity is improved and the crosslinking degree can be improved while reducing the water content compared with the conventional one, and the structure of the membrane is easily controlled, and at the same time, the separation of the organic / metal compound having a relatively high molecular weight Not only suitable for cleaning and refining, but also with no organic solvents St. relates to a cation-exchange membrane and a process for producing the same.

Description

친수성 고분자를 이용한 수팽윤성 양이온교환막 및 그의 제조방법{A swollen cation exchange membrane using water-soluble polymer and preparation method thereof}A swollen cation exchange membrane using water-soluble polymer and preparation method

본 발명은 친수성 고분자를 이용한 수팽윤성 양이온교환막 및 그의 제조방법에 관한 것으로서, 더욱 상세하게는 폴리비닐알콜(PVA, poly(vinyl alcohol))의 수용성 고분자와 폴리스틸렌 설폰산/말레산 공중합체(PSSA-MA, polystyrene sulfonic acid-co-maleic acid)의 양이온 교환 고분자를 일정량 사용하여 블렌딩 한 뒤 열처리 및 화학적 가교를 통해 수팽윤성 양이온교환막을 제조하여 막에 양이온교환기로서 폴리스틸렌 설폰산의 벤젠설폰산 그룹과 말레산의 다중 카르복실산 그룹을 동시에 가지게 함으로써, 종래에 비해 함수율을 감소시키면서 동시에 이온교환능이 향상되고, 가교도 조절이 가능하여 막의 구조제어가 용이하며, 동시에 비교적 분자량이 큰 유기/금속 화합물의 분리 및 정제에 적합할 뿐만 아니라, 유기용매를 쓰지 않아 환경친화적이며 경제적인 수팽윤성 양이온교환막 및 그의 제조방법에 관한 것이다.The present invention relates to a water-swellable cation exchange membrane using a hydrophilic polymer and a method for preparing the same, and more particularly, a water-soluble polymer of polyvinyl alcohol (PVA, poly (vinyl alcohol)) and a polystyrene sulfonic acid / maleic acid copolymer (PSSA-). MA and polystyrene sulfonic acid-co-maleic acid (MA) were blended using a certain amount of cation exchange polymer, followed by heat treatment and chemical crosslinking to prepare a water swellable cation exchange membrane. By simultaneously having multiple carboxylic acid groups of the acid, the ion exchange capacity is improved and the crosslinking degree can be improved while reducing the water content compared with the conventional one, and the structure of the membrane is easily controlled, and at the same time, the separation of the organic / metal compound having a relatively high molecular weight Not only suitable for cleaning and purification, but also using organic solvent, eco-friendly and economical St. relates to a cation-exchange membrane and a process for producing the same.

이온교환막은 고분자분리막의 한 종류로서 막에 도입된 이온교환기(ion-exchangeable group) 종에 따라 음이온 또는 양이온을 선택적으로 분리할 수 있다. 상업용으로 사용되어 지고있는 양이온교환막의 경우, 이온교환기로서는 크게 강산성인 설폰산 그룹(-SO3-)과 약산성인 카르복실산 그룹(-COO-)으로 대별되어지며, 음이온 교환막의 경우에 있어서는 주로 강염기성인 사급암모늄 그룹(-NR3 +)을 이온교환기로 갖게 된다. 이러한 이온교환막을 이용한 분리공정은 증류 및 화학적인 처리를 이용한 분리방법에 비하여 비교적 고순도의 분리정제가 가능하고, 에너지의 소비가 적으며, 연속공정이 가능하여 시간당 처리능력이 우수하다는 점에서 각종 산업분야의 분리정제공정으로서 주목받고 있다. 현재 산업분야에 적용 예로서는 탈염 및 정제를 위한 전기투석공정(electrodialysis)과 물분해전기투석공정(water-splitting electrodialysis) 그리고 산세폐액에서 산을 회수하는 확산투석(diffusion dialysis) 및 초순수생산을 위한 전기탈염공정(electrodeionization)등을 들 수가 있다. 특히 최근에 걸쳐서는 고분자 전해질 연료전지가 우수한 성능을 나타낼 수 있는 가능성을 시사함에 따라 이온교환막에 대한 관심이 증가되어 지고 있다.An ion exchange membrane is a kind of polymer separation membrane that can selectively separate anions or cations depending on the species of ion-exchangeable groups introduced into the membrane. For the cation exchange membrane which is being used for commercial, large adult strong acid sulfonic acid group (-SO 3-) and the weak acid is a carboxylic acid group (-COO -) as the ion exchange group becomes is divided into, mainly in the case of an anion exchange membrane Strongly basic quaternary ammonium groups (-NR 3 + ) have ion exchange groups. The separation process using the ion exchange membrane is capable of separating and purifying relatively high purity, using less energy, and performing a continuous process than the separation method using distillation and chemical treatment. It is attracting attention as a separate purification process in the field. Examples of applications in the present industry include electrodialysis and water-splitting electrodialysis for desalination and purification, diffusion dialysis to recover acids from pickling liquor and electrodesalting for ultrapure water production. Electrodeionization and the like. In particular, in recent years, interest in ion-exchange membranes has been increasing, suggesting the possibility that the polymer electrolyte fuel cell may exhibit excellent performance.

일반적으로 상용막의 경우에는 높은 이온선택투과성(> 0.95 ∼ 0.98), 낮은 전기적 저항(< 3.0 ∼ 4.0 Ωcm2), 적절한 함수율, 높은 기계적 강도 및 화학적 내성을 갖고 있어야 한다. 기존의 상용막들은([예] NEOSEPTATM(Tokuyama Co. Ltd., Japan), SELEMIONTM(Asahi Glass Company, Japan)) 기본소재로 매우 소수성인 폴리설폰(PSf, polysulfone) 및 폴리스티렌(PS, polystyrene) 등을 이용하여 제조되어 왔으며 비교적 좋은 전기화학적 특성을 갖고 있다. 그러나 이들의 제조공정은 이온교환기를 도입하기 위해서 가혹한 화학적 반응을 행하여야만 한다. 양이온교환막을 예를 들자면, 이온교환기를 도입하기 위해서는 설폰화(sulfonation)공정이 수반되어지며, 미약한 설폰화는 미량의 이온교환기가 도입되어지고, 이는 전기화학적인 특성의 저하와 더불어 분리능력의 감소를 초래한다. 반대로 다량의 이온교환기를 도입하기 위해 과다한 설폰화의 진행은 고분자의 주쇄를 분해시킴으로서, 기계적성질의 저하와 부반응의 발생으로 인해 막의 전기화학성능저하를 초래하는 등 이온교환기의 도입이 제한적이다. 한편 막의 기계적특성을 향상시키기 위해 가교제를 도입하기는 하나, 가교제를 통한 막의 구조효과의 변화가 비교적 제한적이기 때문에, 구조효과를 이용한 분리선택성의 특성을 기대할 수 없다. 특히 이러한 방법을 통하여 제조된 막은 분자량이 적은 금속이온의 제거 및 농축에 응용되어지고, 비교적 분자량이 큰 유기/금속화합물의 분리 및 정제에는 제한적이다. 또한, 이들 상용막들의 경우 막의 가격이 매우 고가이며 제조과정이 복잡한 단점이 있다. 더욱이 상기의 제조공정은 다량의 유기용매를 사용하기 때문에 이로 인한 또 다른 환경문제를 야기 시킬 우려가 있다.In general, commercial membranes should have high ion selective permeability (> 0.95 to 0.98), low electrical resistance (<3.0 to 4.0 Ωcm 2 ), adequate water content, high mechanical strength and chemical resistance. Existing commercial membranes (eg NEOSEPTA TM (Tokuyama Co. Ltd., Japan), SELEMION TM (Asahi Glass Company, Japan)) are very hydrophobic polysulfones (PSf, polysulfone) and polystyrene (PS, polystyrene). ) And has a relatively good electrochemical properties. However, their manufacturing process must undergo harsh chemical reactions to introduce ion exchange groups. For example, a cation exchange membrane may include a sulfonation process to introduce an ion exchange group, and a weak sulfonation introduces a small amount of an ion exchange group, which may lead to a decrease in electrochemical properties and a separation ability. Results in a decrease. On the contrary, excessive sulfonation in order to introduce a large amount of ion exchange groups decomposes the main chain of the polymer, thereby limiting the introduction of ion exchange groups such as deterioration of mechanical properties and deterioration of electrochemical performance of the membrane due to side reactions. On the other hand, although the crosslinking agent is introduced to improve the mechanical properties of the membrane, since the change of the structural effect of the membrane through the crosslinking agent is relatively limited, the separation selectivity using the structural effect cannot be expected. In particular, the membrane produced through this method is applied to the removal and concentration of metal ions having a low molecular weight, and is limited to the separation and purification of relatively high molecular weight organic / metal compounds. In addition, these commercial membranes have the disadvantage that the membrane is very expensive and the manufacturing process is complicated. Moreover, the above manufacturing process uses a large amount of organic solvents, which may cause other environmental problems.

이러한 문제를 극복하기 위해, 분자량이 큰 유기/금속이온의 분리 및 연료전지용 양이온교환막을 기초로 한 환경친화적인 제조공정이 활발히 연구되어왔다. 환경친화적이며 막의 완화된 구조특성을 나타내는 수팽윤성 PVA/PSSA 막의 제조공정 또한 이러한 형태의 연구로서 보고되어있다[참고문헌: T. Uragami, R. Nakamura, and M. Sugihara, Makromol. Chem., Rapid Commun. Vol. 3, pp467, 1982 및 Nakano et al., US Patent No. 5,409,785, 1995]. PVA/PSSA 막과 같이 수용성고분자로 제조된 막은 일반적인 탈염용도의 양이온교환막에 비해 큰 함수율을 가지고 있으며 따라서 금속이온 및 고 분자량 유기성이온의 투석(dialysis)용 막으로서 응용이 가능하다. 그러나 이들은 큰 함수율을 가지므로 일반적인 상용 이온교환막(예. NafionTM(DuPont))에 비해 이온투과선택도(permselectivity) 및 화학적 안정성이 떨어지는 단점이 있다. 이러한 큰 함수율로 인한 막의 성능저하를 극복하고자, 알리파틱형 설폰산기를 함유하고 다중의 카르복실산을 함유한 PVA브랜딩 수팽윤성 고분자막의 제조 방법도 보고되어지고 있으나, 이들의 경우는 알리파틱형슬폰산을 분리관능기로 사용하기 때문에 아로마틱형 설폰산을 모체로하는 막에 비하여 분리효능이 감소한다(일반적으로, 아로마틱형 설폰산은 알리파틱형 설폰산보다 우수한 분리성능을 나타내고 있다). 따라서 상기와 같은 막의 문제점을 해결하기 위해 이온교환능력, 이온투과선택도 및 화학적 안정성이 증가된 막의 개발이 절실한 실정이다.In order to overcome this problem, environmentally friendly manufacturing processes based on the separation of large molecular weight organic / metal ions and cation exchange membranes for fuel cells have been actively studied. Processes for the preparation of water-swellable PVA / PSSA membranes that are environmentally friendly and exhibit the relaxed structural properties of the membranes have also been reported as studies of this type [T. Uragami, R. Nakamura, and M. Sugihara, Makromol. Chem., Rapid Commun. Vol. 3, pp 467, 1982 and Nakano et al., US Patent No. 5,409,785, 1995]. Membranes made of water-soluble polymers, such as PVA / PSSA membranes, have a greater water content than cation exchange membranes for general desalting applications, and thus are applicable as dialysis membranes of metal ions and high molecular weight organic ions. However, since they have a large moisture content, they have disadvantages of poor permselectivity and chemical stability compared to general commercial ion exchange membranes (eg, Nafion (DuPont)). In order to overcome the performance degradation of the membrane due to such a large moisture content, a method of preparing a PVA-branded water-swellable polymer membrane containing an aliphatic sulfonic acid group and containing multiple carboxylic acids has been reported, but in this case, an aliphatic sulfonic acid Because of the use as a separation function, the separation efficiency is reduced compared to the membrane based on the aromatic sulfonic acid (generally, aromatic sulfonic acid shows a superior separation performance than aliphatic sulfonic acid). Therefore, in order to solve the above problems of the membrane, the development of membranes with increased ion exchange ability, ion permeability, and chemical stability are urgently needed.

이에, 본 발명자는 상기한 문제점을 해결하기 위하여 폴리비닐알콜(PVA, poly(vinyl alcohol))의 수용성 고분자와 폴리스틸렌 설폰산/말레산 공중합체(PSSA-MA, polystyrene sulfonic acid-co-maleic acid)의 양이온 교환 고분자를 일정량 사용하여 블렌딩 한 뒤 열처리 및 화학적 가교를 통해 수팽윤성 양이온교환막을 제조하여 막에 양이온교환기로서 아로마틱형 설폰산인 벤젠설폰산 그룹과 다중의 카르복실산 그룹을 동시에 가지게 함으로써, 본 발명을 완성하였다.Therefore, the present inventors have solved the above problems, polyvinyl alcohol (PVA, poly (vinyl alcohol)) water-soluble polymer and polystyrene sulfonic acid / maleic acid copolymer (PSSA-MA, polystyrene sulfonic acid-co-maleic acid) By blending with a certain amount of cation exchange polymer of, a water-swellable cation exchange membrane was prepared through heat treatment and chemical crosslinking, and the membrane had a benzene sulfonic acid group, which is an aromatic sulfonic acid, and multiple carboxylic acid groups simultaneously as a cation exchange group. The invention has been completed.

따라서, 본 발명은 양이온교환막에 벤젠설폰산 그룹과 다중의 카르복실산 그룹을 동시에 가지게 하여 종래에 비해 함수율을 감소시키면서 동시에 이온교환능이 향상되고, 가교도 조절이 가능하여 막의 구조제어가 용이하며, 동시에 비교적 분자량이 큰 유기/금속 화합물의 분리 및 정제에 적합할 뿐만 아니라, 유기용매를 쓰지 않아 환경친화적이며 경제적인 수팽윤성 양이온교환막 및 그의 제조방법을 제공하는데 목적이 있다.Therefore, the present invention is to have a benzene sulfonic acid group and a plurality of carboxylic acid groups in the cation exchange membrane at the same time, while reducing the water content as compared to the conventional ion exchange capacity is improved, and the degree of crosslinking can be adjusted, the structure of the membrane is easy to control, At the same time, the present invention is not only suitable for the separation and purification of relatively large molecular weight organic / metal compounds, but also to provide an environmentally friendly and economical water-swellable cation exchange membrane and a method for producing the same, without using an organic solvent.

도 1은 본 발명의 PVA/PSSA-MA 막의 제조공정도를 나타낸 것이다.Figure 1 shows the manufacturing process of the PVA / PSSA-MA membrane of the present invention.

도 2은 본 발명의 실시예 1에 따른 양이온교환막의 표면(a) 및 단면(b)을 전자주사현미경(SEM)을 사용하여 나타낸 것이다.Figure 2 shows the surface (a) and the cross-section (b) of the cation exchange membrane according to Example 1 of the present invention using an electron scanning microscope (SEM).

도 3는 본 발명에 따른 실시예 4와 상용막(CMX, Tokuyama Co. Ltd.)의 전압-전류 곡선을 비교한 그래프이다.3 is a graph comparing voltage-current curves of Example 4 and a commercial film (CMX, Tokuyama Co. Ltd.) according to the present invention.

도 4는 본 발명에 따른 실시예 4의 폴리에틸렌(부직포)에 PVA/PSSA-MA 막이 코팅된 복합막의 단면을 전자주사현미경(SEM)을 사용하여 나타낸 것이다.4 is a cross-sectional view of a composite film coated with a PVA / PSSA-MA film on polyethylene (nonwoven fabric) of Example 4 according to the present invention using an electron scanning microscope (SEM).

본 발명은 폴리비닐알콜 고형분 50 ∼ 90 중량%와 폴리스틸렌 설폰산/말레산 공중합체 고형분 10 ∼ 50 중량%가 함유되어 양이온교환기로 벤젠설폰산 그룹과 다중의 카르복실산 그룹이 함께 도입된 양이온교환막을 그 특징으로 한다.The present invention is a cation exchanger containing 50 to 90% by weight of polyvinyl alcohol solids and 10 to 50% by weight of polystyrene sulfonic acid / maleic acid copolymer solids, wherein benzenesulfonic acid groups and multiple carboxylic acid groups are introduced together as a cation exchanger. The membrane is characterized by that.

본 발명은 폴리비닐알콜 고형분 50 ∼ 90 중량%와 폴리스틸렌 설폰산/말레산 공중합체 고형분 10 ∼ 50 중량%를 블렌딩시키는 과정, 상기 혼합물을 상온에서 자연건조 시켜 필름을 얻는 과정, 상기 필름을 70 ∼ 150 ℃에서 0.5 ∼ 5 시간동안 열처리하여 양이온교환기로 벤젠설폰산 그룹과 다중의 카르복실산 그룹을 도입하는 과정, 그리고 상기 양이온교환막을 0.05 ∼ 10 중량%의 글루타알데히드와 1 ∼ 5 중량%의 HCl을 아세톤에 혼합한 혼합용액에 함침시켜 15 ∼ 50 ℃에서 1 ∼ 10시간동안 가교시키는 과정이 포함된 양이온교환막의 제조방법을 또 다른 특징으로 한다.The present invention is a process of blending 50 to 90% by weight of polyvinyl alcohol solids and 10 to 50% by weight of polystyrene sulfonic acid / maleic acid copolymer solids, a process of naturally drying the mixture at room temperature to obtain a film, 70 to 70 Heat treatment at 150 ° C. for 0.5 to 5 hours to introduce benzenesulfonic acid group and multiple carboxylic acid groups into a cation exchanger, and to the cation exchange membrane with 0.05 to 10 wt% glutaaldehyde and 1 to 5 wt% Another method is to prepare a cation exchange membrane including a step of impregnating HCl with a mixed solution mixed with acetone and crosslinking at 15 to 50 ° C. for 1 to 10 hours.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 가교도의 변화에 의해 막의 구조 변화가 큰 수팽윤성 수화물로서 친수성 고분자인 폴리비닐알콜과 폴리스틸렌 설폰산/말레산 공중합체를 일정량 함유시켜 양이온교환기로 벤젠설폰산 그룹과 다중의 카르복실산 그룹이 동시에 도입된 양이온교환막을 제조함으로써, 이온교환능력을 향상시키고, 가교도의 조절을 통한 막의 구조를 변화시켜 분리대상물질의 분리선택성을 증가시킴과 동시에, 제조상 유기용제의 사용을 억제시켜 환경친화적인 친수성 양이온교환막 및 그의 제조방법에 관한 것이다.The present invention is a water swellable hydrate having a large change in the structure of the membrane due to the change in the degree of crosslinking. At the same time, by introducing a cation exchange membrane, the ion exchange capacity is improved and the structure of the membrane is changed by controlling the degree of crosslinking to increase the separation selectivity of the substance to be separated, while at the same time suppressing the use of organic solvents in manufacturing. A hydrophilic cation exchange membrane and a method for producing the same.

본 발명에 따른 양이온교환막은 기계적 물성을 향상시키는 지지체의 역할을행함과 동시에 비교적 분자량이 큰 유기/금속 화합물의 분리에 적합하도록 수팽윤적 역할을 하는 폴리비닐알콜(PVA)을 전체 양이온교환막 중에 50 ∼ 90 중량%, 바람직하게는 60 ∼ 80 중량% 함유하는 것이 바람직하며, 만일 그 함유량이 50 중량% 미만이면 상대적으로 이온교환기의 다량의 도입으로 인하여 물에 용해되어 이온교환막을 제조 할 수 없으며, 90 중량%를 초과하면 상대적으로 이온교환기의 소량의 도입으로 인하여 분리효능의 저하를 초래한다. 상기 PVA는 중량평균분자량이 30,000 ∼ 150,000이고, 검화도가 70 ∼ 100%, 바람직하게는 중량평균분자량이 50,000 ∼ 120,000이고, 검화도가 80 ∼ 100%인 PVA 수화물을 사용한다.The cation exchange membrane according to the present invention serves as a support to improve the mechanical properties and at the same time 50 polyvinyl alcohol (PVA) to the water swelling role to be suitable for the separation of the organic / metal compound having a relatively high molecular weight in the whole cation exchange membrane It is preferable to contain from 90 to 90% by weight, preferably from 60 to 80% by weight, and if the content is less than 50% by weight, it is relatively dissolved in water due to the introduction of a large amount of the ion exchanger, so that the ion exchange membrane cannot be prepared. If it exceeds 90% by weight, a relatively small amount of ion exchanger is introduced, leading to a decrease in separation efficiency. The PVA uses a PVA hydrate having a weight average molecular weight of 30,000 to 150,000, a degree of saponification of 70 to 100%, preferably a weight average molecular weight of 50,000 to 120,000, and a degree of saponification of 80 to 100%.

그리고, 본 발명의 양이온교환막에서 이온교환능력을 향상시킴과 동시에 함수율을 감소시키기 위해 폴리스틸렌 설폰산(PSSA)에 말레산(MA)이 첨가된 PSSA-MA 공중합체를 전체 양이온교환막 중에 10 ∼ 50 중량% 함유하는 것이 바람직하며, 만일 그 함유량이 10 중량% 미만이면 상대적으로 PVA의 증가로 인하여 기계적인 물성은 향상될지라도, 소량의 이온교환기가 도입되어 분리효능 및 전기화학적 특성의 저하를 초래하고, 50 중량%를 초과하면, 상대적으로 PVA의 감소로 인하여 기계적인 물성의 저하 뿐만 아니라, 물에 용해되어 이온교환막의 제조가 불가능하다. 상기 PSSA는 30% 원액을 사용할 수 있다. 그리고, 상기 MA는 단량체 1몰당 두 개의 카르복실산 이온교환그룹을 가짐으로서 당량당 이온교환능이 높은 특성을 가지고 있으며, 또한 설포닐 그룹에 비해 낮은 수화도를 가짐으로서 막의 과도한 함수율을 감소시킬 수 있다. 상기 PSSA-MA 공중합체는 중량평균분자량이 5,000 ∼ 40,000이고, 바람직하게는 중량평균분자량이 10,000 ∼ 30,000인 것을 사용하는 것이 좋다. 상기 PSSA와 MA의 공중합비는 1/3 ∼ 10/1 몰비, 바람직하게는 1/1 ∼ 5/1 몰비가 좋다.In addition, the PSSA-MA copolymer in which maleic acid (MA) was added to polystyrene sulfonic acid (PSSA) was added to the total cation exchange membrane in order to improve ion exchange capacity and reduce water content in the cation exchange membrane of the present invention. It is preferable to contain%, if the content is less than 10% by weight, even if the mechanical properties are improved due to the increase of the PVA relatively, a small amount of ion exchanger is introduced, leading to a decrease in separation efficiency and electrochemical properties, If the content exceeds 50% by weight, it is impossible to prepare the ion exchange membrane by dissolving in water as well as the decrease in mechanical properties due to the relatively decrease in PVA. The PSSA may use 30% stock solution. In addition, the MA has a high ion exchange capacity per equivalent by having two carboxylic acid ion exchange groups per mole of monomer, and also has a low degree of hydration compared to sulfonyl groups, thereby reducing excessive moisture content of the membrane. . The PSSA-MA copolymer may have a weight average molecular weight of 5,000 to 40,000, preferably a weight average molecular weight of 10,000 to 30,000. The copolymerization ratio of said PSSA and MA is 1/3 to 10/1 molar ratio, Preferably 1/1 to 5/1 molar ratio is good.

상기와 같은 폴리비닐알콜과 폴리스틸렌 설폰산/말레산 공중합체가 함유된 본 발명의 양이온교환막은 벤젠설폰산 그룹과 다중의 카르복실산 그룹을 동시에 함유함으로써 함수율을 감소시키면서 이온교환능이 우수한 장점을 가진다.The cation exchange membrane of the present invention containing the polyvinyl alcohol and the polystyrene sulfonic acid / maleic acid copolymer as described above has an advantage of excellent ion exchange capacity while reducing water content by simultaneously containing a benzene sulfonic acid group and multiple carboxylic acid groups. .

이하, 본 발명에 따른 양이온교환막의 제조방법을 도 1을 참고로 하여 더욱 상세히 설명하면 다음과 같다.Hereinafter, a method of manufacturing a cation exchange membrane according to the present invention will be described in more detail with reference to FIG. 1.

먼저, PSSA-MA 공중합체는 PSSA와 MA를 1/3 ∼ 10/1 몰비, 바람직하게는 1/1 ∼ 5/1 몰비로 공중합시켜 나트륨이온(NA+) 형으로 치환되어 있는 PSSA-MA 공중합체를 이용한다. 상기 나트륨이온(NA+) 형으로 치환되어 있는 PSSA-MA 공중합체를 확산 투석(Donnan dialysis)을 이용해 H+-형으로 재치환 하여 사용한다. PSSA-MA 공중합체를 H+-형으로 치환시키는 이유는 열가교시, 설포닐 그룹 혹은 카르복실산 그룹이 PVA의 하이드록실 그룹과의 수소결합력을 촉진시켜 막의 안정성을 유지하여 기계적 물성을 향상시키기 위함이다(일반적으로 NA+-형의 경우는 수소결합에 의한 이차결합이 형성되기 어려운 것으로 알려져 있다). 도난(Donnan) 투석은 두 개의 전해액조로 이루어진 셀을 이용하여 수행되었다. 도난 투석조 사이에 양이온교환막(CMX, Tokuyama Co. Ltd., Japan)을 고정시키고(유효면적: 약 20 cm2)한쪽 전해액조에는 PSSA-MA 수용액(Na+-형)을 그리고 다른 한쪽에는 2N HCl 수용액을 넣고 일정 pH(약 0.5)에 도달할 때까지 교반을 시켜주어 PSSA-MA(Na+-형)을 PSSA-MA(H+-형)으로 치환시켰다.First, the PSSA-MA copolymer copolymerizes PSSA and MA in a molar ratio of 1/3 to 10/1, preferably 1/1 to 5/1, and is substituted with a sodium ion (NA + ) type PSSA-MA air. Use coalescing The PSSA-MA copolymer substituted with the sodium ion (NA + ) type is used by re-substituting the H + − type using diffusion dialysis (Donnan dialysis). The reason why the PSSA-MA copolymer is substituted with H + -type is that in thermal crosslinking, sulfonyl group or carboxylic acid group promotes hydrogen bonding force with hydroxyl group of PVA to maintain membrane stability to improve mechanical properties. (In general, in the case of NA + -type, it is known that secondary bonding by hydrogen bonding is difficult to form). Donnan dialysis was performed using a cell consisting of two electrolyte baths. A cation exchange membrane (CMX, Tokuyama Co. Ltd., Japan) was fixed between the stolen dialysis tanks (effective area of about 20 cm 2 ), one solution of PSSA-MA solution (Na + -type), and the other side of 2N HCl aqueous solution was added and stirred until reaching a constant pH (about 0.5) to replace PSSA-MA (Na + -type) with PSSA-MA (H + -type).

상기와 같은 방법으로 얻은 H+-형으로 치환된 PSSA-MA 공중합체를 수용액으로 제조하고, 이와 별도로 폴리비닐알콜을 수용액으로 제조한다.The PSSA-MA copolymer substituted with the H + -type obtained by the above method is prepared in an aqueous solution, and separately polyvinyl alcohol is prepared in an aqueous solution.

그리고나서, 상기 PVA 수용액과 PSSA-MA 수용액을 거름종이로 여과시켜 불순물을 제거한 뒤 블렌딩시킨 후 플라스틱 페트리 디쉬에 부어 5 ∼ 7일 동안 클린 룸에서 자연 건조시킨다. 상기 혼합물에는 폴리비닐알콜 고형분 함량이 50 ∼ 90 중량%, 폴리스틸렌 설폰산/말레산 공중합체 고형분 함량이 10 ∼ 50 중량% 함유되어 있다.Then, the PVA aqueous solution and the PSSA-MA aqueous solution are filtered through a filter paper to remove impurities, and then blended and poured into a plastic petri dish and naturally dried in a clean room for 5 to 7 days. The mixture contains 50 to 90% by weight of polyvinyl alcohol solids and 10 to 50% by weight of polystyrene sulfonic acid / maleic acid copolymer solids.

그런 다음, 상기에서 얻은 PVA/PSSA-MA 필름을 70 ∼ 150 ℃에서 0.5 ∼ 5 시간동안, 바람직하게는 80 ∼ 130 ℃에서 1 ∼ 3시간 열처리하여 양이온교환기로 벤젠설폰산 그룹과 다중의 카르복실산 그룹이 동시에 도입된 양이온교환막을 제조한다.Then, the PVA / PSSA-MA film obtained above was heat-treated at 70 to 150 ° C. for 0.5 to 5 hours, preferably at 80 to 130 ° C. for 1 to 3 hours, and a carboxyl group and multiple carboxyl groups were used as a cation exchanger. A cation exchange membrane was prepared in which acid groups were introduced simultaneously.

마지막으로, 상기 열처리된 양이온교환막을 0.05 ∼ 10 중량%의 글루타알데히드(Glutaraldehyde)와 1 ∼ 5 중량%의 HCl을 아세톤에 혼합한 혼합용액, 바람직하게는 0.1 ∼ 6 중량%의 글루타알데히드와 1 ∼ 3 중량%의 HCl을 아세톤에 혼합한 혼합용액에 함침시켜 15 ∼ 50 ℃에서 1 ∼ 10시간동안 화학적 가교시키는 과정을거친다. 상기와 같은 화학적 가교는 PVA와 글루타알데히드의 아세틸화 반응을 이용한 에테르 결합에 의한 가교결합으로 가교도가 글루타알데히드의 농도의 증가에 따라 증가되어질 수 있으며, 이를 통하여 양이온교환막의 구조적 특성을 변화시켜 분리대상 물질의 분리 선택성을 증가시킨다.Finally, the heat-treated cation exchange membrane was mixed with 0.05 to 10% by weight of glutaraldehyde and 1 to 5% by weight of HCl in acetone, preferably 0.1 to 6% by weight of glutaaldehyde 1 to 3% by weight of HCl is impregnated into a mixed solution mixed with acetone and subjected to chemical crosslinking at 15 to 50 ° C. for 1 to 10 hours. Such chemical crosslinking is crosslinking by ether bonding using acetylation reaction of PVA and glutaraldehyde, and the degree of crosslinking can be increased with increasing concentration of glutaldehyde, thereby changing the structural characteristics of the cation exchange membrane. Increase the separation selectivity of the material to be separated.

상기와 같은 과정을 거쳐 제조된 본 발명에 따른 양이온교환막은 세척과 건조를 통해 최종 양이온교환막을 얻는다. 보관은 하루이상 증류수에 함침시킨 뒤, 0.5 M NaCl 전해질 용액에 담구어 보관한다.The cation exchange membrane according to the present invention prepared through the above process is washed and dried to obtain a final cation exchange membrane. Storage is impregnated with distilled water for at least one day, and then immersed in 0.5 M NaCl electrolyte solution.

상기와 같은 본 발명에 따른 양이온교환막은 함수율(water content)이 40 ∼ 250 %이고, 이온교환능(ion exchange capacity)이 0.5 ∼ 3.5 meq./g이고, 전기적 저항(electrical resistance)은 0.98 ∼ 2.35 Ωcm2의 범위에 있어 함수율은 감소하면서 동시에 이온교환능이 향상된다. 또한, 상기 양이온교환막의 이온선택성, 즉 양이온(Na+)에 대한 수송수(transport number)는 0.93 ∼ 0.98으로 이온선택성이 우수하다.The cation exchange membrane according to the present invention as described above has a water content of 40 to 250%, an ion exchange capacity of 0.5 to 3.5 meq./g, and an electrical resistance of 0.98 to 2.35 Ωcm. In the range of 2 , the water content is decreased while the ion exchange capacity is improved. In addition, the ion selectivity of the cation exchange membrane, that is, the transport number for the cation (Na + ) is 0.93 to 0.98, which is excellent in ion selectivity.

또한, 본 발명에서 제조된 막의 기계적 물성을 향상시키기 위해 폴리에틸렌(PE, poly(ethylene)) 지지체(부직포)에 본 발명에 따른 양이온교환막을 딥 코팅(dip coating) 한 막을 포함한다. 코팅층인 양이온교환막의 두께는 약 50 ∼ 70 ㎛가 바람직하며, 만일 그 두께가 50 ㎛ 미만이면 막의 이온 투과선택도가 저하될 우려가 있으며, 그 두께가 70 ㎛를 초과이면 막의 전기저항이 증가하여 불필요한 전력의 낭비를 초래 할 수 있다.In addition, in order to improve the mechanical properties of the membrane prepared in the present invention, a polyethylene (PE, poly (ethylene)) support (non-woven fabric) is a film which dip coating the cation exchange membrane according to the present invention (dip coating). The thickness of the cation exchange membrane, which is the coating layer, is preferably about 50 to 70 μm. If the thickness is less than 50 μm, the ion permeability of the membrane may be lowered. If the thickness is more than 70 μm, the electrical resistance of the membrane is increased. It may cause unnecessary waste of power.

이와같이, 본 발명에 따른 PVA/PSSA-MA 막은 우수한 이온선택성, 전기적특성 및 기계적 물성은 확산 투석(Donnan dialysis) 및 전기투석용 막으로서 응용이 가능하다. 또한, 본 발명의 양이온교환막 제조방법은 유기용매의 사용을 억제하고 수용화물을 사용하기 때문에 보다 환경친화적인 방법이다.As such, PVA / PSSA-MA membrane according to the present invention can be applied as a membrane for diffusion dialysis (Donnan dialysis) and electrodialysis with excellent ion selectivity, electrical properties and mechanical properties. In addition, the method for producing a cation exchange membrane of the present invention is more environmentally friendly because it suppresses the use of an organic solvent and uses a solvate.

이하, 본 발명을 실시예에 의거 상세히 설명하겠는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by Examples.

실시예 1 ∼ 3Examples 1-3

먼저 PSSA와 MA를 1:1의 몰비로한 PSSA-MA 공중합체를 Aldrich(USA)부터 구입하여 사용하였다. 상기 PSSA-MA 공중합체는 Na+-형이므로 확산 투석(Donnan 투석)을 이용하여 H+-형으로 전환시켰다(양이온교환막을 이용한 Donnan 투석의 경우 고분자용액의 조성을 그대로 유지하며 Na+이온과 H+이온만을 선택적으로 상호 교환할 수 있는 장점을 가지고 있다). 그리고나서, PVA 10 중량%를 증류수 90 중량%에 녹이고, PSSA-MA (H+-형) 20 중량%를 증류수 80 중량%에 녹였다. 상기 PVA 수용액과 PSSA-MA 수용액을 블렌딩하여(실시예 1 ∼ 3의 경우 PVA/PSSA-MA 용액의 블랜딩 중량비 = 3/1) 상온에서 자연 건조 후 100 ℃에서 2시간 30분 동안 열처리하여 두께 90 ㎛의 양이온교환막을 제조하였다. 상기 열처리된 양이온교환막을 글루타알데히드/아세톤/HCl[1 중량%] 가교혼합액에 함침시켜 25 ℃에서 4시간화학적 가교시켰다. 이때, 글루타알데히드의 함량은 0.1 중량%(실시예 1), 1 중량%(실시예 2), 3 중량%(실시예 3)이었다.First, a PSSA-MA copolymer having PSSA and MA in a molar ratio of 1: 1 was purchased from Aldrich (USA) and used. Since the PSSA-MA copolymer is Na + -type, it was converted to H + -type using diffusion dialysis (Donnan dialysis) (In the case of Donnan dialysis using a cation exchange membrane, the composition of the polymer solution is maintained and the Na + ions and H + are maintained. Has the advantage of selectively interchange only ions). Then, 10% by weight of PVA was dissolved in 90% by weight of distilled water, and 20% by weight of PSSA-MA (H + -type) was dissolved in 80% by weight of distilled water. Blending the PVA aqueous solution and the PSSA-MA aqueous solution (in the case of Examples 1 to 3, the blending weight ratio of the PVA / PSSA-MA solution = 3/1), followed by natural drying at room temperature, followed by heat treatment at 100 ° C. for 2 hours and 30 minutes, thickness 90 A micron cation exchange membrane was prepared. The heat-treated cation exchange membrane was impregnated in glutaaldehyde / acetone / HCl [1 wt.%] Crosslinking mixture and chemically crosslinked at 25 ° C. for 4 hours. At this time, the content of glutaraldehyde was 0.1% by weight (Example 1), 1% by weight (Example 2), 3% by weight (Example 3).

상기 실시예 1 ∼ 3의 양이온교환막의 특성을 분석하기 위하여 이온교환능, 함수율, 양이온에 대한 수송수, 면적 저항 및 가교도를 다음과 같은 방법으로 측정하였으며, 그 결과를 다음 표 1에 나타내었다. 막의 특성분석은 참고문헌[J.-H., Choi, H.-J., Lee, and S.-H., Moon, J. Colloid & Interf. Sci., Vol. 238, p188, 2001; J.-H., Choi, S.-H., Kim, and S.-H., Moon, J. Colloid & Interf. Sci., Vol. 241, p120, 2001]을 근거로 실시하였으며, 결과는 다음 표 1과 같다.In order to analyze the properties of the cation exchange membranes of Examples 1 to 3, ion exchange capacity, water content, transport water for cations, area resistance, and degree of crosslinking were measured by the following methods, and the results are shown in Table 1 below. Membrane characterization is described in J.-H., Choi, H.-J., Lee, and S.-H., Moon, J. Colloid & Interf. Sci., Vol. 238, p188, 2001; J.-H., Choi, S.-H., Kim, and S.-H., Moon, J. Colloid & Interf. Sci., Vol. 241, p120, 2001], and the results are shown in Table 1 below.

[막의 특성분석 방법][Measurement Method of Membrane]

(1) 함수율 : 막의 젖은 무게와 60 ℃ 오븐에서 24 시간 건조한 후의 무게 차를 건조후의 무게로 나누어 계산하였다.(1) Water content: The difference between the wet weight of the membrane and the weight difference after drying in an oven at 60 ° C. for 24 hours was divided by the weight after drying.

(2) 이온교환능 : 1M HCl 수용액에 24 시간이상 함침시키고 막표면을 세척한 후 1M NaCl 수용액에 재함침하여 산염기 적정에 의해 막내부에 이온교환 되어진 수소이온의 양으로 결정하였다(meq./ g dry membrane).(2) Ion-exchange capacity: 1M HCl aqueous solution was impregnated for 24 hours or more, the membrane surface was washed, re-impregnated in 1M NaCl aqueous solution, and determined by the amount of hydrogen ions ion-exchanged inside the membrane by acidic titration (meq./ g dry membrane).

(3) 전기적 저항 : 0.5M NaCl 수용액에서 LCZ 미터를 이용하여 측정되어진 임피던스값과 위상각을 이용하여 계산하였다.(3) Electrical resistance: Calculated by using impedance value and phase angle measured by LCZ meter in 0.5M NaCl aqueous solution.

(4) 수송수 및 V-I curve : 양 전해액조를 갖는 구조의 셀(막 유효면적: 0.785 ㎠)을 이용하여 측정하였다. 수송수는 양 전해액조에 다른 농도의 NaCl 수용액(0.001M/0.005M NaCl)을 넣고 막의 양단에 고정된 Ag/AgCl 전극의 전압차를 측정하여 계산하였으며, V-I curve는 동일한 셀을 이용하여 전류밀도를 증가시키며 막 양단의 전압차를 측정하였으며 전해액으로 0.025M NaCl 수용액을 사용하였다.(4) Transport water and V-I curve: It measured using the cell (film effective area: 0.785 cm <2>) of the structure which has both electrolyte tanks. The transport water was calculated by adding different concentrations of aqueous NaCl solution (0.001M / 0.005M NaCl) to both electrolyte baths and measuring the voltage difference between the Ag / AgCl electrodes fixed at both ends of the membrane.The VI curve was calculated using the same cell. The voltage difference across the membrane was measured while increasing, and 0.025M NaCl aqueous solution was used as the electrolyte.

(5) 가교도 : 본 발명에서의 가교도는 열가교를 제외한 화학적가교도에 관한 평가를 의미한다. 가교도는 열가교후 PVA/PSSA-MA막의 중량과 이 막의 글루타알데히드 처리후의 막의 중량의 차를 이용하여 아래의 식에 의하여 산출하였다.(5) Crosslinking degree: The crosslinking degree in this invention means the evaluation regarding the chemical crosslinking degree except a thermal crosslinking. The degree of crosslinking was calculated by the following equation using the difference between the weight of the PVA / PSSA-MA membrane after thermal crosslinking and the weight of the membrane after glutaraldehyde treatment.

본 발명에서의 가교도는 글루타알데히드의 농도의 증가에 따라 증가하였으며 가교도의 범위는 3 ∼ 50%의 범위까지 조절하였다.The degree of crosslinking in the present invention was increased with the increase of the concentration of glutaraldehyde and the range of the degree of crosslinking was adjusted to the range of 3 to 50%.

상기 표 1에 나타난 바와 같이, 본 발명에 따른 실시예 1 ∼ 3의 막은 함수율은 50 ∼ 100%로 커진 반면, 이온교환능이 약 2.20 meq./g로 우수함을 확인할 수있었다. 또한, 양이온 (Na+)에 대한 수송수는 약 0.93 ∼ 0.98 정도로, 비교예 1에 비해 높은 수송수를 나타냄을 확인할 수 있었다. 그리고, 면적 저항은 실시예의 경우 1.3 ∼ 2.25 Ωcm2정도로, 비교예 1에 비해 낮은 전기적 저항을 가짐을 확인할 수 있었다.As shown in Table 1, the membranes of Examples 1 to 3 according to the present invention were found to have an excellent water exchange rate of 50 to 100%, while having an ion exchange capacity of about 2.20 meq./g. In addition, it was confirmed that the transport water for the cation (Na + ) is about 0.93 to 0.98, which is higher than that of Comparative Example 1. In addition, in the case of the Example, the area resistance was about 1.3 to 2.25 Ωcm 2 , and it was confirmed that the area resistance was lower than that of Comparative Example 1.

한편 가교도는 글루타알데히드 농도의 증가에 따라 증가되고 있음을 상기 표 1에 나타나고 있으며, 가교도의 증가에 따라 거의 동일한 이온교환능에도(실시예 1 ∼ 3)불구하고(일반적으로 이온교환능의 증가는 높은 함수율의 증가를 유도한다), 함수율이 급격히 감소함으로서, 간접적으로 막의 구조가 가교도의 변화에 의해 제어되고 있음을 나타내고 있다. 즉 높은 가교도는 물을 함유할 수 있는 막 내부의 자유체적을 감소시키고 있다. 그리고, 가교도와 양이온(Na+)에 대한 수송수 관계에 있어서도, 가교도가 감소함에 따라, 막의 구조는 넓은 자유체적을 허용 양이온이온(Na+)의 선택성이 떨어져 수송수가 감소되고 있음을 나타낸다. 아울러, 가교도의 증가는 막 구조의 치밀성을 증가시켜, 막의 면적저항을 증가시켰다.On the other hand, it is shown in Table 1 that the degree of crosslinking is increased with the increase of the glutaaldehyde concentration, and despite the almost same ion exchange capacity (Examples 1 to 3) with the increase of the degree of crosslinking (in general, the increase in the ion exchange capacity is high. This leads to an increase in the water content), which indicates that the structure of the membrane is indirectly controlled by a change in the degree of crosslinking. In other words, the high degree of crosslinking reduces the free volume inside the membrane, which may contain water. In addition, also in the crosslinking degree and the transport water relationship to the cation (Na + ), as the degree of crosslinking decreases, the structure of the membrane indicates that the transport water is reduced because the selectivity of the cation ion (Na + ) is reduced to allow a large free volume. In addition, the increase in the degree of crosslinking increases the compactness of the membrane structure, thereby increasing the area resistance of the membrane.

비교예 1Comparative Example 1

PVA 10 중량%를 증류수 90 중량%에 녹이고, PSSA 20 중량%를 증류수 80 중량%에 녹였다. 상기 PVA 수용액과 PSSA 수용액을 블렌딩하여(PVA/PSSA 용액의 블랜딩 중량비 = 3/1) 상온에서 자연 건조 후 100 ℃에서 2시간 30분 동안 열처리하여 두께 90 ㎛의 양이온교환막을 제조하였다. 상기 열처리된 양이온교환막을 글루타알데히드[3 중량%]/아세톤/HCl[1 중량%] 가교혼합액에 함침시켜 25 ℃에서 4시간 화학적 가교시켰다.10 wt% of PVA was dissolved in 90 wt% of distilled water, and 20 wt% of PSSA was dissolved in 80 wt% of distilled water. The PVA aqueous solution and the PSSA aqueous solution were blended (the blending weight ratio of PVA / PSSA solution = 3/1), followed by natural drying at room temperature, followed by heat treatment at 100 ° C. for 2 hours 30 minutes to prepare a cation exchange membrane having a thickness of 90 μm. The heat treated cation exchange membrane was impregnated in glutaaldehyde [3 wt%] / acetone / HCl [1 wt%] crosslinking mixture and chemically crosslinked at 25 ° C. for 4 hours.

상기 비교예 1의 양이온교환막의 특성을 분석하기 위하여 이온교환능, 함수율, 양이온에 대한 수송수, 면적 저항을 상기 실시예 1의 방법으로 측정하였으며, 그 결과를 상기 표 1에 나타내었다.In order to analyze the characteristics of the cation exchange membrane of Comparative Example 1, ion exchange capacity, water content, transport water for cations, and area resistance were measured by the method of Example 1, and the results are shown in Table 1 above.

시험예 1Test Example 1

실시예 1에서 제조한 PVA/PSSA-MA 양이온교환막의 표면(a) 및 단면(b)을 전자주사현미경(SEM)으로 측정하였으며, 그 결과를 도 2에 나타내었다.The surface (a) and cross section (b) of the PVA / PSSA-MA cation exchange membrane prepared in Example 1 were measured by an electron scanning microscope (SEM), and the results are shown in FIG. 2.

도 2에 나타난 바와 같이, 본 발명에 따른 실시예 1의 양이온교환막은 막 전체에 상분리 현상 및 핀홀이 발견되지 않아 PVA수지와 PSSA-MA수지가 균일한 상을 이루어 균일하고 결함이 없는 막이 제조되었음을 확인 할 수 있었다.As shown in FIG. 2, in the cation exchange membrane of Example 1 according to the present invention, a phase separation phenomenon and no pinholes were found in the entire membrane, and thus a uniform and defect-free membrane was prepared by forming a uniform phase between the PVA resin and the PSSA-MA resin. Could confirm.

실시예 4Example 4

먼저 PSSA와 MA를 1:1의 몰비로한 PSSA-MA 공중합체를 Aldrich(USA)부터 구입하여 사용하였다. 상기 PSSA-MA 공중합체는 Na+-형이므로 확산 투석(Donnan 투석)을 이용하여 H+-형으로 전환시켰다. 그리고 나서, PVA 10 중량%를 증류수 90 중량%에 녹이고, PSSA-MA(H+-형) 20 중량%를 증류수 80 중량%에 녹였다. 상기 PVA 수용액과 PSSA-MA 수용액을 블렌딩한 후, 이 혼합액에 폴리에틸렌 지지체(부직포)를 함침시켜 막을 제조한 후 상온에서 자연 건조하였다. 그런 다음, 100 ℃에서 2시간 30분 동안 열처리하고, 글루타알데히드[3 중량%]/아세톤/HCl[1 중량%] 가교혼합액에 함침시켜 25 ℃에서 4시간 화학적 가교시켜 폴리에틸렌 지지체에 양이온교환막을 코팅시킨 복합막을 제조하였다.First, a PSSA-MA copolymer having PSSA and MA in a molar ratio of 1: 1 was purchased from Aldrich (USA) and used. Since the PSSA-MA copolymer is Na + -type, it was converted to H + -type using diffusion dialysis (Donnan dialysis). Then, 10% by weight of PVA was dissolved in 90% by weight of distilled water, and 20% by weight of PSSA-MA (H + -type) was dissolved in 80% by weight of distilled water. After blending the PVA aqueous solution and the PSSA-MA aqueous solution, the mixture was impregnated with a polyethylene support (nonwoven fabric) to prepare a membrane, and then naturally dried at room temperature. Then, heat treated at 100 ° C. for 2 hours and 30 minutes, impregnated with glutaaldehyde [3 wt%] / acetone / HCl [1 wt%] crosslinking mixture, and chemical crosslinking at 25 ° C. for 4 hours to form a cation exchange membrane on the polyethylene support. The coated composite membrane was prepared.

상기 제조된 복합막의 이온교환 코팅층의 두께는 약 50 ㎛ 정도였으며 막전체의 두께는 약 170 ㎛였다.The thickness of the ion exchange coating layer of the prepared composite membrane was about 50 μm and the thickness of the whole membrane was about 170 μm.

제조된 복합막의 양이온(Na+)에 대한 수송수는 및 면적 저항을 실시예 1의 방법에 의해 측정하였고, 실시예 1과 마찬가지로 양이온(Na+)에 대한 수송수는 약 0.95 ∼ 0.96 정도였으며 면적 저항은 1.2∼1.5 Ωcm2로 측정되었다.The transport water for the cation (Na + ) and the area resistance of the prepared composite membrane were measured by the method of Example 1, and the transport water for the cation (Na + ) was about 0.95 to 0.96 and the area as in Example 1 The resistance was measured at 1.2-1.5 Ωcm 2 .

또한, 상기 실시예 4의 PE 지지체에 코팅된 PVA/PSSA-MA 막과 상용 양이온교환막(CMX, Tokuyama Co. Ltd., Japan)의 전압-전류밀도 곡선을 도 3에 나타내었다. 전압-전류 곡선은 일반적인 전기화학분석 방법으로서 막표면에서 일어나는 물질전달 현상, 특히 막표면에서의 농도분극 현상을 잘 나타낸다. 도 3에 나타난 바와 같이, 본 발명에 따른 막은 상용막과 거의 유사한 전압-전류밀도 곡선을 나타내고 있으며 이는 제조된 PVA/PSSA-MA 막이 투석뿐만이 아니라 일반적인 탈염용 이온교환막으로도 응용이 가능함을 알 수 있었다.In addition, the voltage-current density curves of the PVA / PSSA-MA membrane and the commercial cation exchange membrane (CMX, Tokuyama Co. Ltd., Japan) coated on the PE support of Example 4 are shown in FIG. 3. The voltage-current curve is a general electrochemical analysis method that shows the mass transfer phenomenon on the surface of the membrane, especially the concentration polarization phenomenon on the surface of the membrane. As shown in FIG. 3, the membrane according to the present invention exhibits a voltage-current density curve almost similar to that of a commercial membrane, and it can be seen that the prepared PVA / PSSA-MA membrane can be applied not only as a dialysis but also as a general desalination ion exchange membrane. there was.

또한 Universal Test Machine(Instron, USA)를 이용하여 상기 실시예 4의 막의 인장강도를 측정한 결과 최대인장강도가 약 38.4 MPa 정도로 PE 지지체의 도입으로 막의 기계적 특성이 크게 향상되었음을 확인 할 수 있었다.In addition, the tensile strength of the membrane of Example 4 was measured using a universal test machine (Instron, USA), and it was confirmed that the mechanical properties of the membrane were greatly improved by introducing a PE support having a maximum tensile strength of about 38.4 MPa.

시험예 2Test Example 2

상기 실시예 4에서 제조한 폴리에틸렌(부직포)에 VA/PSSA-MA 양이온교환막이 코팅된 복합막의 단면을 전자주사현미경(SEM)으로 측정하였으며, 그 결과를 도 4에 나타내었다.The cross section of the composite membrane coated with VA / PSSA-MA cation exchange membrane on the polyethylene (nonwoven fabric) prepared in Example 4 was measured by an electron scanning microscope (SEM), the results are shown in FIG.

도 4에 나타난 바와 같이, 본 발명에 따른 실시예 4의 복합막은 막 전체에 상분리 현상 및 핀홀이 발견되지 않아 PVA수지와 PSSA-MA수지가 균일한 상을 이루어 균일하고 결함이 없는 막이 부직포위에 균일하게 도포되고 있음을 확인 할 수 있었다.As shown in Figure 4, the composite membrane of Example 4 according to the present invention is a phase separation phenomenon and no pinholes are found in the entire membrane, so that the PVA resin and PSSA-MA resin is a uniform phase, uniform and defect-free membrane is uniform on the nonwoven fabric It could be confirmed that it is being applied.

시험예 3Test Example 3

상기 실시예 4에 의해 제조된 복합막을 50 ℃에서 2M HCl과 2M NaOH 수용액에 하루이상 함침시킨 후 0.5M NaCl 용액에서의 막 면적 저항을 측정하였으며, 그 결과를 다음 표 2에 나타내었다.The composite membrane prepared in Example 4 was impregnated with 2M HCl and 2M NaOH aqueous solution at 50 ° C. for at least one day, and the membrane area resistance in 0.5M NaCl solution was measured, and the results are shown in Table 2 below.

표 2에 나타난 바와 같이, 본 발명에 따른 복합막은 전기 면적저항의 변화가 거의 없었다. 따라서 본 발명의 복합막은 우수한 기계적 강도 및 화학적 안정성을 가지고 있음을 알 수 있었다.As shown in Table 2, the composite film according to the present invention had almost no change in electric area resistance. Therefore, the composite membrane of the present invention was found to have excellent mechanical strength and chemical stability.

시험예 4Test Example 4

상기 실시예 4에 의해 제조된 복합막과 상용 양이온교환막(CMX)을 25 ℃에서 0.5M NaCl과 0.5M Lysine-HCl 수용액에 하루이상 함침시킨 후 각각의 용액에서의 막 면적 저항을 측정하였으며, 그 결과를 다음 표 3에 나타내었다.The composite membrane and the commercial cation exchange membrane (CMX) prepared in Example 4 were impregnated with 0.5M NaCl and 0.5M Lysine-HCl aqueous solution at 25 ° C. for at least one day, and the membrane area resistance in each solution was measured. The results are shown in Table 3 below.

표 3에 나타난 바와 같이, 본 발명에 따른 복합막은 고분자량의 유기이온에 대한 면적저항이 상용 양이온교환막에 비해 현저히 낮은 것을 알 수 있으며 따라서 젖산 및 각종 아미노산의 분리에 적용시 탁월한 전력소비 절감효과를 얻을 수 있음을 알 수 있다. 이러한 결과는 막의 구조적인 특성에 기인한 것으로서 수용성고분자로부터 제조되었기 때문에 큰 팽윤효과를 나타내며 따라서 상용막에 비해 넓은 자유체적 (free volume)을 가지기 때문이다. 따라서 본 발명의 복합막은 고분자량의 유기이온 또는 금속이온의 전기투석 및 확산투석에 적합함을 알 수 있다. 또한 본 발명의 양이온교환막의 특징으로서 막의 가교도를 쉽게 조절함으로서 막의 자유체적을 조절하고 따라서 특정 이온성 물질의 분리에 적합한 막을 제조할 수 있다.As shown in Table 3, the composite membrane according to the present invention can be seen that the area resistance to high molecular weight organic ions is significantly lower than the commercial cation exchange membrane, and thus, when applied to the separation of lactic acid and various amino acids, it has an excellent power consumption reduction effect. It can be seen that. This result is due to the structural properties of the membrane, and because it is made from water-soluble polymers, it shows a large swelling effect, and thus has a wider free volume than a commercial membrane. Therefore, it can be seen that the composite membrane of the present invention is suitable for electrodialysis and diffusion dialysis of high molecular weight organic ions or metal ions. It is also a feature of the cation exchange membrane of the present invention to easily control the crosslinking degree of the membrane to control the free volume of the membrane and thus to prepare a membrane suitable for the separation of certain ionic materials.

상술한 바와 같이, 본 발명에 따른 양이온교환막은 막에 양이온교환기로 폴리스틸렌 설폰산의 벤젠설폰산 그룹과 말레산의 다중 카르복실산 그룹을 동시에 가지므로 다량의 이온교환기의 도입이 가능하며 이것은 이온교환능력을 향상시킬 수 있는 한편, 이온교환능은 변화시키지 않으며 가교도의 조절에 따른 막구조의 변화의 폭이 커, 이를 적절히 조절함으로서 분리하고자 하는 이온성물질에 적합하도록 막특성을 변화시킬 수 있기 때문에, 비교적 분자량이 큰 유기/금속화합물의 분리와 정제에 응용이 가능하다. 또한, 본 발명은 유기용매의 사용을 억제시켜 환경친화적이며, 제조방법이 간단하고 저렴하며, 기존 상용 이온교환막과 전기적 특성이 유사하므로 이온교환수지를 이용하던 기존공정들을 대신하여 청정기술인 이온교환막을 이용한 각종 공정을 도입할 수 있게 할 수 있으며 이를 통해 환경오염의 저감과 이온교환수지의 재생에 필요한 비용 등을 저감시킬 수 있는 장점을 가진다.As described above, the cation exchange membrane according to the present invention has a benzene sulfonic acid group of polystyrene sulfonic acid and multiple carboxylic acid groups of maleic acid as a cation exchange group in the membrane, so that a large amount of ion exchange groups can be introduced. In addition to improving the capacity, the ion exchange capacity is not changed, and the change in the membrane structure due to the control of the degree of crosslinking is large, and by controlling it appropriately, the membrane properties can be changed to suit the ionic material to be separated. It can be applied to the separation and purification of relatively high molecular weight organic / metal compounds. In addition, the present invention is environmentally friendly by suppressing the use of organic solvents, the manufacturing method is simple and inexpensive, and the electrical properties similar to the conventional commercial ion exchange membrane, so that instead of the existing processes using the ion exchange resin, the clean technology of the ion exchange membrane It is possible to introduce the various processes used, and through this has the advantage of reducing the environmental pollution and the cost required for the regeneration of the ion exchange resin.

Claims (6)

폴리비닐알콜 고형분 50 ∼ 90 중량%와 폴리스틸렌 설폰산/말레산 공중합체 고형분 10 ∼ 50 중량%가 함유되어 양이온교환기로 벤젠설폰산 그룹과 다중의 카르복실산 그룹이 함께 도입된 것을 특징으로 하는 양이온교환막.A cation containing 50 to 90% by weight of polyvinyl alcohol solids and 10 to 50% by weight of polystyrene sulfonic acid / maleic acid copolymer solids, wherein a benzenesulfonic acid group and a plurality of carboxylic acid groups are introduced together as a cation exchanger. Exchange membrane. 제 1 항에 있어서, 상기 폴리비닐알콜은 중량평균분자량 30,000 ∼ 150,000이고, 검화도 70 ∼ 100%인 것을 사용하고, 상기 폴리스티렌산/말레산 공중합체는 중량평균분자량이 5,000 ∼ 40,000이고, 스티렌과 말레산의 공중합비가 1/3 ∼ 10/1 몰비인 것을 사용하는 것을 특징으로 하는 양이온교환막.The polyvinyl alcohol has a weight average molecular weight of 30,000 to 150,000, a saponification degree of 70 to 100%, and the polystyrene / maleic acid copolymer has a weight average molecular weight of 5,000 to 40,000, and A cation exchange membrane, wherein the copolymerization ratio of maleic acid is from 1/3 to 10/1 molar ratio. 폴리비닐알콜 고형분 50 ∼ 90 중량%와 폴리스틸렌 설폰산/말레산 공중합체 고형분 10 ∼ 50 중량%를 블렌딩시키는 과정,Blending 50 to 90% by weight of polyvinyl alcohol solids with 10 to 50% by weight of polystyrene sulfonic acid / maleic acid copolymer solids, 상기 혼합물을 상온에서 자연건조 시켜 필름을 얻는 과정,Obtaining a film by naturally drying the mixture at room temperature, 상기 필름을 70 ∼ 150 ℃에서 0.5 ∼ 5 시간동안 열처리하여 양이온교환기로 벤젠설폰산 그룹과 다중의 카르복실산 그룹을 도입하는 과정, 그리고Heat-treating the film at 70-150 ° C. for 0.5-5 hours to introduce benzenesulfonic acid groups and multiple carboxylic acid groups into a cation exchanger, and 상기 양이온교환막을 0.05 ∼ 10 중량%의 글루타알데히드와 1 ∼ 5 중량%의 HCl을 아세톤에 혼합한 혼합용액에 함침시켜 15 ∼ 50 ℃에서 1 ∼ 10 시간동안 가교시키는 과정이 포함되는 것을 특징으로 하는 양이온교환막의 제조방법.The cation exchange membrane is impregnated with a mixed solution of 0.05 to 10% by weight of glutaaldehyde and 1 to 5% by weight of HCl in acetone and crosslinked at 15 to 50 ° C. for 1 to 10 hours. A method of producing a cation exchange membrane. 제 3 항에 있어서, 상기 폴리비닐알콜은 중량평균분자량 30,000 ∼ 150,000이고, 검화도 70 ∼ 100%인 것을 사용하고, 상기 폴리스티렌산/말레산 공중합체는 중량평균분자량이 5,000 ∼ 40,000이고, 스티렌과 말레산의 공중합비가 1/3 ∼ 10/1 몰비인 것을 사용하는 것을 특징으로 하는 양이온교환막의 제조방법.4. The polyvinyl alcohol has a weight average molecular weight of 30,000 to 150,000 and a saponification degree of 70 to 100%. The polystyrene / maleic acid copolymer has a weight average molecular weight of 5,000 to 40,000, and A method for producing a cation exchange membrane, characterized in that the copolymerization ratio of maleic acid is from 1/3 to 10/1 molar ratio. 제 3 항에 있어서, 상기 양이온교화폴리스틸렌 설폰산/말레산 공중합체는 Na+-형을 확산 투석에 의해 H+-형으로 전환된 것을 사용하는 것을 특징으로 하는 양이온교환막의 제조방법.The method of claim 3, wherein the cationic crosslinked polystyrene sulfonic acid / maleic acid copolymer is prepared by converting Na + -type into H + -type by diffusion dialysis. 제 1 항에 따른 양이온교환막을 코팅하여 이루어진 폴리에틸렌 복합막.Polyethylene composite membrane formed by coating the cation exchange membrane according to claim 1.
KR10-2001-0077047A 2001-12-06 2001-12-06 A swollen cation exchange membrane using water-soluble polymer and preparation method thereof KR100460454B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0077047A KR100460454B1 (en) 2001-12-06 2001-12-06 A swollen cation exchange membrane using water-soluble polymer and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0077047A KR100460454B1 (en) 2001-12-06 2001-12-06 A swollen cation exchange membrane using water-soluble polymer and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20030052252A KR20030052252A (en) 2003-06-27
KR100460454B1 true KR100460454B1 (en) 2004-12-08

Family

ID=29573465

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0077047A KR100460454B1 (en) 2001-12-06 2001-12-06 A swollen cation exchange membrane using water-soluble polymer and preparation method thereof

Country Status (1)

Country Link
KR (1) KR100460454B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039606B1 (en) 2008-11-03 2011-06-09 한남대학교 산학협력단 Novel methods to improve the membrane performances through coating the hydrophilic polymers onto the hydrophobic membrane surfaces followed by the thermal crosslinking reaction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160213A (en) * 2021-11-30 2022-03-11 江苏美淼环保科技有限公司 Polystyrene sodium sulfonate/polyvinyl alcohol cation exchange membrane and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164734A (en) * 1986-01-16 1987-07-21 Nichibi:Kk Production of cation-exchangeable fiber
JPH02277555A (en) * 1989-04-18 1990-11-14 Tosoh Corp Cation exchange resin and production thereof
KR20010023021A (en) * 1997-08-18 2001-03-26 와이너 길버트 피. Ion exchange membrane
JP2001185116A (en) * 1999-12-28 2001-07-06 Oji Paper Co Ltd Separator for battery and alkaline secondary cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164734A (en) * 1986-01-16 1987-07-21 Nichibi:Kk Production of cation-exchangeable fiber
JPH02277555A (en) * 1989-04-18 1990-11-14 Tosoh Corp Cation exchange resin and production thereof
KR20010023021A (en) * 1997-08-18 2001-03-26 와이너 길버트 피. Ion exchange membrane
JP2001185116A (en) * 1999-12-28 2001-07-06 Oji Paper Co Ltd Separator for battery and alkaline secondary cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101039606B1 (en) 2008-11-03 2011-06-09 한남대학교 산학협력단 Novel methods to improve the membrane performances through coating the hydrophilic polymers onto the hydrophobic membrane surfaces followed by the thermal crosslinking reaction

Also Published As

Publication number Publication date
KR20030052252A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
EP2470290B1 (en) Ion exchange membranes
KR101330571B1 (en) Manufacturing method of hybride ion exchange membrane
KR102064179B1 (en) Bipolar ion-exchange membrane having heterogeneous ion-exchange membrane and method for preparing the same
Khan et al. Porous BPPO-based membranes modified by aromatic amine for acid recovery
KR101586769B1 (en) Manufacturing Method of Thin Ion Exchange Membrane Using High Molecular Support
JP3399531B2 (en) Strongly basic anion exchange membrane and method for producing the same
CN1114237A (en) Ionic exchange membrane using polypropylene micro-porous membrane as basal membrane and making method thereof
KR101188267B1 (en) Anion exchange composite membrane with olefin-based additives and method for preparing the same
KR101670390B1 (en) Method of bi-polar membrane for producing sodium hypochlorite
KR20220063150A (en) Fluorinated-aliphatic hydrocarbon-based stable anion-exchange membrane and method for preparing same
Jiang et al. Pore-filled cation-exchange membranes containing poly (styrenesulfonic acid) gels
KR101726658B1 (en) Vinylbenzene-styrene based anion exchange composite membranes with nitrile rubber and method for preparing the same
CN112742222A (en) Preparation method of PVC aliphatic zwitterionic ion exchange membrane
KR100460454B1 (en) A swollen cation exchange membrane using water-soluble polymer and preparation method thereof
KR100376379B1 (en) Inter-Penetrating Polyvalent Ion Complex Membrane For Separating Organic Mixture And Method For Preparing The Same
KR101799996B1 (en) Styrene-based and tert-butylstyrene-based cation exchange composite membrane having polyvinylidene fluoride and method of preparing thereof
Zarybnicka et al. Preparation of two-layer anion-exchange poly (ethersulfone) based membrane: effect of surface modification
KR20160129423A (en) Bipolar Membrane for Water-Splitting Electrodialysis Process
KR20100123023A (en) Anion exchange composite membrane using fabric supports and method for manufacturing the same
KR101681637B1 (en) Styrene-tert-butyl styrene based cation exchange composite membranes with nitrile rubber and method for preparing the same
KR20190079168A (en) Membrane-electrode assembly prepared from cation exchange membnrane for producing hydrogen water and method for preparing membrane-electrode assembly
KR102170555B1 (en) Anion-exchange membranes and preparation method thereof
KR100447949B1 (en) Preparation of PVC/Polystyren base cation-exchange membrane
KR101190732B1 (en) Cation exchange composite membranes with olefin-based additives and method for preparing the same
WO2019198093A1 (en) Acid and oxidative resistant homogenous cation exchange membrane and its method of preparation thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121005

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee