KR100544724B1 - Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet - Google Patents

Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet Download PDF

Info

Publication number
KR100544724B1
KR100544724B1 KR1020010084609A KR20010084609A KR100544724B1 KR 100544724 B1 KR100544724 B1 KR 100544724B1 KR 1020010084609 A KR1020010084609 A KR 1020010084609A KR 20010084609 A KR20010084609 A KR 20010084609A KR 100544724 B1 KR100544724 B1 KR 100544724B1
Authority
KR
South Korea
Prior art keywords
steel
steel sheet
plastic strain
cold rolled
rolled steel
Prior art date
Application number
KR1020010084609A
Other languages
Korean (ko)
Other versions
KR20030054448A (en
Inventor
최시훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020010084609A priority Critical patent/KR100544724B1/en
Publication of KR20030054448A publication Critical patent/KR20030054448A/en
Application granted granted Critical
Publication of KR100544724B1 publication Critical patent/KR100544724B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 자동차 외판등의 재료에 사용되는 냉연강판 및 그 제조방법에 관한 것으로서, 평균 소성변형비가 비교적 높고 소성변형비 이방성계수가 작은 가공성이 우수한 냉연강판과 그 제조방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a cold rolled steel sheet and a method for manufacturing the same, which are used for materials such as automobile exterior panels, and to provide a cold rolled steel sheet having a high average plastic strain ratio and a small plastic strain ratio anisotropy coefficient and excellent workability, and a method of manufacturing the same. There is this.

본 발명은 중량%로 C: 0.001~0.01%, Mn: 0.1~1.5%, P: 0.003~0.1%, S: 0.01%이하, Ti: 0.015~0.07%, 산가용성 Al: 0.04~0.5%, N: 0.005%이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어지고; 그리고 In the present invention, C: 0.001 to 0.01%, Mn: 0.1 to 1.5%, P: 0.003 to 0.1%, S: 0.01% or less, Ti: 0.015 to 0.07%, acid soluble Al: 0.04 to 0.5%, N : 0.005% or less, balance Fe and other unavoidable impurities; And

평균소성변형비(rm)가 1.8 이상이고, 소성변형비 이방성계수(Δr)가 0.3이하인 가공성이 우수한 냉연강판 및 그 제조방법을 그 요지로 한다.A cold rolled steel sheet excellent in workability having an average plastic strain ratio r m of 1.8 or more and a plastic strain ratio anisotropy coefficient Δr of 0.3 or less, and a method of manufacturing the same.

소성변형비, 가공성, 소성변형비 이방성계수, 알루미늄, 냉연강판 Plastic strain ratio, processability, plastic strain ratio anisotropy coefficient, aluminum, cold rolled steel sheet

Description

가공성이 우수한 냉연강판 및 그 제조방법{Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet}Cold rolled steel sheet with excellent workability and manufacturing method {Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet}

도 1은 비교강 및 발명강들에 대한 방위분포함수의 ψ2 = 45°단면을 나타내는 결과도로서, (a)는 비교강(1)을, (b)는 발명강(1)을, (c)는 발명강(2)를, 그리고 (d)는 발명강(3)을 나타냄.1 is a result diagram showing ψ 2 = 45 ° cross section of the azimuth distribution function for the comparative steels and the inventive steels, where (a) represents comparative steel (1), (b) represents inventive steel (1), ( c) represents invention steel (2) and (d) represents invention steel (3).

본 발명은 자동차 외판등의 재료에 사용되는 냉연강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 평균 소성변형비(rm)가 비교적 높고 소성변형비 이방성계수(Δr)가 작은 가공성이 우수한 냉연강판 및 그 제조방법에 관한 것이다. The present invention relates to a cold-rolled steel sheet used in materials such as automotive shell plates and a method for manufacturing the same, and more particularly cold rolled steel having excellent workability with a relatively high average plastic strain ratio (r m ) and a small plastic strain ratio anisotropy coefficient (Δr). It relates to a steel sheet and a method of manufacturing the same.

종래의 자동차 외판의 재료로 가공결함 없이 프레스 성형을 실시하고 성형 후 원하는 모양의 부품을 원활하게 제작하기 위하여 자동차용 강판으로 가공성이 우수한 냉연강판이 요구된다. In order to perform a press molding without processing defects of the conventional automobile outer plate material and to smoothly manufacture a component having a desired shape after molding, a cold rolled steel sheet having excellent workability is required as a steel sheet for automobiles.

연신율이 높고 소성변형비가 큰 냉연강판으로 자동차 외판을 성형하면 원하는 모양의 부품을 제작하는데 유리하다. It is advantageous to manufacture parts of a desired shape by forming a car shell with a cold rolled steel sheet having a high elongation and a high plastic deformation ratio.

연신율은 인장 시 균열 발생 없이 연신되는 강판의 성질을 나타내는 값이므로 연신율이 크면 허용되는 강판의 변형이 크다고 할 수 있다. The elongation is a value representing the property of the steel sheet to be elongated without cracking when tensile, so when the elongation is large, the allowed deformation of the steel sheet is large.

연신율은 강종이 결정되면 크게 변화하지 않는 강의 기계적 성질이다. Elongation is a mechanical property of steel that does not change significantly once the steel grade is determined.

또한, 소성변형비 r값은 두께방향의 변형률에 대한 폭방향의 변형률의 비로 정의되는 값이다. The plastic strain ratio r value is a value defined by the ratio of the strain in the width direction to the strain in the thickness direction.

상기 소성변형비가 큰 강판은 폭방향의 변형량이 일정하다고 가정하고 일정 변형량만큼 판재를 임의 방향으로 인장하였을 때 두께방향의 변형률이 적으므로 큰 변형까지 재료의 네킹이 발생하지 않고 가공이 가능하다는 것을 의미한다. The steel sheet having a large plastic deformation ratio assumes that the deformation amount in the width direction is constant, and when the plate is stretched in a certain direction by a certain amount of deformation, the strain in the thickness direction is small, which means that the material can be processed without causing necking until a large deformation. do.

결국 판재의 가공성을 향상시키기 위해서는 연신율 및 소성변형비를 증가시켜야 한다. As a result, in order to improve the workability of the plate, the elongation and plastic strain must be increased.

한편, 가공성의 정도를 나타내는 중요한 기계적 성질로 소성변형비 이방성이 있다. 소성변형비는 판재의 이방성 성질에 기인하여 인장방향에 따라 다른 값을 가진다. 인장 방향에 따른 소성변형비의 변화 정도를 나타내는 것이 평균 소성변형비, rm와 소성변형비 이방성계수, Δr 이다. On the other hand, the plastic deformation ratio anisotropy is an important mechanical property indicating the degree of workability. The plastic strain ratio has a different value depending on the tensile direction due to the anisotropic property of the sheet. The average plastic strain ratio, r m and the plastic strain ratio anisotropy coefficient, Δr, represent the degree of change in the plastic strain ratio along the tensile direction.

일반적으로 소성변형비를 측정하는 방법으로는 각 판재의 r0, r45, r90를 측정하여 하기 관계식(1) 및 (2)에 의해 rm과 Δr을 결정하는 방법을 들수 있다.In a manner that generally measures the plastic strain ratio in deulsu is a method of determining the r m and Δr by the following measures the r 0, r 45, r 90 of each plate member relational expression (1) and (2).

[관계식 1][Relationship 1]

rm=(r0+2r45+r90)/4, r m = (r 0 + 2r 45 + r 90 ) / 4,

[관계식 2][Relationship 2]

Δr=(r0-2r45+r90)/2Δr = (r 0 -2r 45 + r 90 ) / 2

여기서, r0, r45, r90은 인장방향이 판재의 압연방향에 대하여 각각 0° 45° 90°방향의 소성변형비의 값을 의미한다. Here, r 0 , r 45 , r 90 means the value of the plastic strain ratio in the tensile direction of 0 ° 45 ° 90 ° direction with respect to the rolling direction of the plate, respectively.

Δr값이 작기 위해서는 각 방향으로 인장하였을 때 소성변형비의 차이가 작아야 한다. In order for Δr to be small, the difference in plastic strain ratio should be small when tensioned in each direction.

Δr값이 작다는 것은 프레스 성형 시 변형률의 분포가 균일하다는 것을 의미하므로 스트레칭 모드의 변형에서 큰 변형까지 성형하는데 유리하다. Small Δr values mean that the distribution of strains during press molding is uniform, which is advantageous for molding from deformation in stretching mode to large deformation.

높은 Δr값과 높은 rm값을 가진 강은 스트레칭모드 뿐만 아니라, 디프드로잉 모드의 변형에서도 가공성이 향상된다. Steels with high Δr and high r m values improve machinability not only in stretching mode but also in deformation of deep drawing mode.

종래의 자동차용 강판의 성형성을 향상시키기 위하여 냉연강판에 Ti나 Nb를 첨가하여 고용 C 및 N을 탄화물이나 질화물로 석출시키거나(일본특개평9-296226, 일본특개평9-296226), 중저탄소강에 Ti와 N양을 조절하여 집합조직을 조절하였다 (DE3843732).In order to improve the formability of conventional steel sheet for automobiles, Ti or Nb is added to the cold rolled steel sheet to precipitate solid solution C and N as carbides or nitrides (Japanese Patent Laid-Open No. 9-296226, Japanese Patent Laid-Open No. 9-296226), or The texture was controlled by controlling the amount of Ti and N in the carbon steel (DE3843732).

그러나, 단독 Ti첨가강은 Δr값이 비교적 높아 스트레칭성이 열악하다는 문제점이 있고, 중저탄소강의 경우는 시효문제로 BAF를 사용한다는 문제점을 갖고 있다. However, the Ti-added steel alone has a problem of poor stretching property due to a relatively high Δr value, and has a problem of using BAF as a aging problem in the case of low and medium carbon steels.

본 발명자는 상기한 종래기술의 문제점을 해결하기 위하여 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은 평균 소성변형비가 비교적 높고 소성변형비 이방성계수가 작은 가공성이 우수한 냉연강판과 그 제 조방법을 제공하고자 하는데, 그 목적이 있다.The present inventors have conducted research and experiments to solve the above problems of the prior art, and based on the results, the present invention proposes the present invention, which has a relatively high average plastic strain ratio and a small plastic strain ratio anisotropy coefficient. To provide an excellent cold rolled steel sheet and a method of manufacturing the same, the purpose is.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량%로 C: 0.001~0.01%, Mn: 0.1~1.5%, P: 0.003~0.1%, S: 0.01%이하, Ti: 0.015~0.07%, 산가용성 Al: 0.04~0.5%, N: 0.005%이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어지고; 그리고 In the present invention, C: 0.001 to 0.01%, Mn: 0.1 to 1.5%, P: 0.003 to 0.1%, S: 0.01% or less, Ti: 0.015 to 0.07%, acid soluble Al: 0.04 to 0.5%, N : 0.005% or less, balance Fe and other unavoidable impurities; And

평균소성변형비(rm)가 1.8 이상이고, 소성변형비 이방성계수(Δr)가 0.3이하인 가공성이 우수한 냉연강판에 관한 것이다.It is related with the cold rolled steel sheet excellent in workability whose average plastic deformation ratio (r m ) is 1.8 or more and plastic strain ratio anisotropy coefficient ((DELTA) r) is 0.3 or less.

또한, 본 발명은 중량%로 C: 0.001~0.01%, Mn: 0.1~1.5%, P: 0.003~0.1%, S: 0.01%이하, Ti: 0.015~0.07%, 산가용성 Al: 0.04~0.5%, N:0.005%이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 강을 1050~1300℃에서 재가열하고, 890~950℃의 마무리압연온도 및 600~750℃의 권취온도조건으로 열간압연한 후, 65~90%의 압하율로 냉간압연하고, 750~870℃의 균열대온도, 20~100℃/s의 급냉대 냉각속도 및 350~500℃의 과시효대 온도조건으로 연속소둔한 다음, 0.5~2%의 압하율로 조질압연하여 가공성이 우수한 냉연강판을 제조하는 방법에 관한 것이다.In the present invention, C: 0.001 to 0.01%, Mn: 0.1 to 1.5%, P: 0.003 to 0.1%, S: 0.01% or less, Ti: 0.015 to 0.07%, and acid soluble Al: 0.04 to 0.5% , N: 0.005% or less, steel with remainder Fe and other unavoidable impurities is reheated at 1050-1300 ℃, hot-rolled at finishing rolling temperature of 890 ~ 950 ℃ and winding temperature of 600 ~ 750 ℃, and then 65 ~ Cold rolling at 90% reduction rate, continuous annealing at 750 ~ 870 ℃ crack zone temperature, 20 ~ 100 ℃ / s cooling zone cooling rate and 350 ~ 500 ℃ overaging zone temperature, 0.5 ~ 2% The present invention relates to a method of manufacturing a cold rolled steel sheet having excellent workability by rough rolling at a reduction ratio of.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에서 강중 C는 침입형 고용원소로서, 냉연 및 소둔과정에서 강판의 집합조직형성에 매우 큰 영향을 미친다. In the present invention, steel C is an invasive solid solution, and has a great influence on the texture of the steel sheet in the cold rolling and annealing process.

강중에 포함된 고용탄소량이 많을수록 rm값의 증가 및 Δr값의 감소에 유리한 {111} 집합조직의 성분이 약해져 소둔판의 성형성을 저하시킨다. The higher the amount of solid solution carbon contained in the steel, the weaker the component of the {111} texture structure, which is advantageous for the increase of the r m value and the decrease of the Δr value, thereby lowering the formability of the annealing plate.

강중 C함량이 0.003중량%을 초과하게 되면, 탄화물로 석출시키기 위한 Ti, Nb함량이 상대적으로 높아져 재료원가상승 측면에서 불리하나, 석출되는 미세한 TiC는 강의 강도를 향상시켜 항복강도 확보 및 인장강도 향상에 효과적이다. When the C content in the steel exceeds 0.003% by weight, the Ti and Nb contents for precipitation as carbides are relatively high, which is disadvantageous in terms of material cost increase, but the precipitated fine TiC improves the strength of the steel to secure yield strength and improve tensile strength. Effective in

상기 C 함량의 하한값을 0.001중량%로 제한 한 이유는 통상적인 제강기술로 생산가능한 조성으로 제한하고자 함이고, 그 상한을 0.01중량%로 제한한 이유는 상기 C 의 함량이 0.01중량%이상인 경우에는 연속소둔방식으로 제조시 고용 C에 의해 상온시효의 문제가 발생하기 때문이다.The reason for limiting the lower limit of the C content to 0.001% by weight is to limit the composition to produceable by conventional steelmaking techniques, and the reason for limiting the upper limit to 0.01% by weight is the case where the content of C is 0.01% by weight or more. This is because the problem of room temperature aging occurs due to the solid solution C during manufacturing by the continuous annealing method.

강중 Mn은 고용강화 효과에 유효한 원소이며, 특히 강중 S를 MnS로 석출시켜 열간압연 시 S에 의한 판파단 발생 및 고온취화를 억제시킨다. Mn in steel is an effective element for the solid solution strengthening effect, in particular, precipitates S in steel with MnS, thereby suppressing plate breakage and high temperature embrittlement caused by S during hot rolling.

그러나, 본 발명과 관련된 실험에 의하면, Mn함량이 0.1중량%미만의 경우에는 강도 상승효과를 얻을 수 없고, 강중 S를 Mn으로 완전히 석출시키지 못하기 때문에 성형성 확보에 문제가 있다.However, according to the experiments related to the present invention, when the Mn content is less than 0.1% by weight, a strength synergistic effect cannot be obtained, and there is a problem in securing moldability because the steel S cannot be precipitated completely into Mn.

고용강화를 위해서는 다량 함유하는 것이 강도측면에서 유리하지만, Mn의 입계편석에 의한 연신율하락도 우려되므로 그 상한은 1.5중량%로 설정하는 것이 바람직하다.Although it is advantageous in terms of strength to contain a large amount for solid solution strengthening, it is also possible to lower the elongation due to grain boundary segregation of Mn, so the upper limit is preferably set to 1.5% by weight.

강중 P는 함량이 많을수록 강도상승에는 매우 유리하지만 과잉의 P첨가는 취성파괴 발생가능성을 높혀 열간압연 도중 슬라브의 판파단의 발생가능성이 증가되고, 소둔완료 후 결정입계로의 확산 및 편석이 용이해짐에 따라 DBTT(Ductile Brittle Transition Temperature)를 상승시켜 성형시 2차가공 취성 발생에 대한 문제점이 증대되기 때문에, 그 상하은 0.1중량%로 설정하는 것이 바람직하고, 그 하한은 강도 30kgf/mm2 이상을 확보하기 위하여 0.003중량%로 제한하는 것이 바람직하다.The higher the content of P in the steel, the more favorable for the increase in strength, but the excessive addition of P increases the possibility of brittle fracture, which increases the probability of slab breakage during hot rolling, and facilitates diffusion and segregation to the grain boundary after annealing is completed. In accordance with this, the problem of secondary brittleness is increased during molding by increasing the DBTT (Ductile Brittle Transition Temperature). Therefore, the upper and lower sides are preferably set to 0.1% by weight, and the lower limit is 30kgf / mm 2 or more. It is preferable to limit the amount to 0.003% by weight.

상기 S와 N은 강중 불순물로써 불가피하게 첨가되는 원소들이기 때문에 가능한 한 낮게 관리하는 것이 중요하다. 그러나, 그 함량들이 적게 관리할수록 강의 정련 비용이 높아진다. Since S and N are elements that are inevitably added as impurities in steel, it is important to manage them as low as possible. However, the less they manage, the higher the refining cost of the steel.

따라서, 조업조건을 고려하여 S함량은 0.01중량%이하, N함량은 0.005중량% 이하로 제한하는 것이 바람직하다.Therefore, in consideration of operating conditions, the S content is preferably 0.01% by weight or less, and the N content is preferably limited to 0.005% by weight or less.

상기 Ti는 강중에 C 및 N을 탄화물과 질화물로 형성시켜 항복점 형성을 억제하고, {111}집합조직 성분의 발달을 유리하게 하여 가공성을 향상시키는 원소로서, 그 함량이 0.015중량%이하인 경우에는 C 및 N을 탄화물과 질화물로 결합시키는데 불충분하고, 0.07중량%이상인 경우에는 과다한 고용 Ti으로 연신율이 감소하기 때문에 그 함량은 0.015∼0.07중량%로 설정하는 것이 바람직하다.The Ti is an element for forming C and N in carbide and nitride to inhibit yield point formation and to promote the development of {111} assembly structure components, and to improve processability, when the content is 0.015% by weight or less. And N is insufficient to bind carbide and nitride, and when it is 0.07% by weight or more, the elongation is reduced by excessive solid solution Ti, and the content thereof is preferably set to 0.015 to 0.07% by weight.

상기 산가용 Al은 기존에 강의 입도 미세화와 탈산을 위해서 첨가되는 원소인데, 본 발명에서는 rm값이 1.8이상이고 Δr값이 0.3이하인 강을 개발하기 위해 첨가하므로 인정적인 Δr값을 확보하기 위하여 그 하한값은 0.04중량%로 제한하는 것이 바람직하다.The acid-soluble Al is an element that is conventionally added to refine the particle size and deoxidation of the steel, in the present invention is added to develop a steel having an r m value of 1.8 or more and a Δr value of 0.3 or less, so as to secure an acceptable Δr value. It is preferable to limit a lower limit to 0.04 weight%.

일반적으로 Ti첨가 냉연강판에 발달하는 재결정 집합조직은 {111}<112>와 {111}<110>을 포함하는 γ- fibre집합조직인데, 이 집합조직성분은 소성변형비 이방성을 감소시키는 효과를 가지고 있다. In general, the recrystallized aggregates developed in Ti-added cold rolled steel sheets are γ-fiber aggregates including {111} <112> and {111} <110>. These textures have the effect of reducing plastic strain ratio anisotropy. Have.

상기 산가용 Al의 함량이 0.04%이상 첨가되면 {111}<112>와 {111}<110>을 포함하는 γ- fibre집합조직이 강해져서 소성변형비 이방성이 줄어들게 된다.When the content of the acid-soluble Al is added more than 0.04%, the γ-fiber aggregate structure including {111} <112> and {111} <110> becomes stronger, thereby reducing plastic deformation ratio anisotropy.

그러나, 산가용 Al이 너무 많이 함유되는 경우에는 연신율 및 rm값을 감소시키므로 그 상한값은 0.5중량%로 제한하는 것이 바람직하다.However, when too much acid value Al is contained, since the elongation and r m value are reduced, it is preferable to limit the upper limit to 0.5 weight%.

즉, 상기 산가용 Al의 함량은 0.04∼0.5중량%로 설정하는 것이 바람직하다.That is, the content of the acid-soluble Al is preferably set to 0.04 to 0.5% by weight.

상기와 같이 조성되는 강을 Ar3온도 이상에서 강의 조직이 오스테나이트 상태에서 열간압연한 후, 권취한다.The steel formed as described above is wound up after the steel structure is hot rolled in the austenite state at an Ar3 temperature or higher.

열간압연 후 코일의 권취온도는 고온으로 하여 권취상태에서 원활히 TiC를 형성시켜 고용탄소를 최소화시킨다. After hot rolling, the coiling temperature of the coil is set to a high temperature to form TiC smoothly in the wound state to minimize the solid solution carbon.

상기와 같이 제조된 열연강판을 냉간압연, 연속소둔, 및 조질압연공정을 거치게 된다.The hot rolled steel sheet manufactured as described above is subjected to cold rolling, continuous annealing, and temper rolling.

본 발명의 제조조건은 특별히 한정되는 것은 아니며, 통상적인 조건이면 어느 것이나 가능하며, 바람직한 제조방법의 일례는 다음과 같다.The manufacturing conditions of the present invention are not particularly limited, and any of them can be used under ordinary conditions, and an example of a preferable manufacturing method is as follows.

즉, 상기와 같이 조성되는 강을 1050~1300℃에서 재가열한 후 890~950℃의 열간 마무리 온도조건으로 열간압연한 다음, 600~750℃의 온도에서 권취하고, 65~90%의 압하율로 냉간압연하고 연속소둔을 실시한 다음, 0.5~2%의 압하율로 조질압연을 행하여 항복점현상을 제거하여 준다. That is, after reheating the steel composition as described above at 1050 ~ 1300 ℃ hot rolled to hot finish temperature conditions of 890 ~ 950 ℃, then wound at a temperature of 600 ~ 750 ℃, with a reduction ratio of 65 ~ 90% After cold rolling and continuous annealing, temper rolling is carried out at a reduction ratio of 0.5 to 2% to remove the yield point phenomenon.

상기 연속소둔은 균열대온도를 750~870℃로 하고 급냉대 냉각속도를 20~100℃/s로 급냉한 후 과시효대 온도 350~500℃에서 열처리하는 방식으로 행하는 것이 바람직 하다. The continuous annealing is preferably carried out in a manner that the cracking zone temperature is 750 ~ 870 ° C and the quenching zone cooling rate is quenched at 20 ~ 100 ° C / s and then heat treated at an overaging temperature of 350 ~ 500 ° C.

상기와 같이 제조된 강은 1.8이상의 rm값 및 0.3이하의 Δr값을 갖는다.The steel produced as described above has an r m value of 1.8 or more and a Δr value of 0.3 or less.

따라서, 본 발명에 따라 제조된 강은 스트레칭 모드 및 디프드로잉 모드의 변형에서 우수한 가공성을 갖게 된다.Therefore, the steel produced according to the present invention has excellent workability in deformation of the stretching mode and the deep drawing mode.

이와 같이, 본 발명에 의하면, 고용Al을 갖고 있음에도 불구하고 연신율이 유지되면서 rm값이 1.8이상이고 Δr값이 0.3이하인 스트레칭 모드 및 디프드로잉 모드의 변형에서의 가공성이 우수한 냉연강판이 제조된다.As described above, according to the present invention, a cold rolled steel sheet having excellent workability in deformation of the stretching mode and the deep drawing mode in which the r m value is 1.8 or more and the Δr value is 0.3 or less while the elongation is maintained despite having a solid solution Al is produced.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표 1의 성분을 갖는 강을 용해하고 열간압연을 실시하였다. Steels having the components shown in Table 1 below were dissolved and hot rolled.

열간압연 시 재가열온도는 1200℃, 마무리 온도는 920℃, 권취온도는 630℃이였다.상기와 같이 제조된 열간압연판의 표면 산화층을 산세로 제거한 후 74% 냉간압연을 실시하였다. In the hot rolling, the reheating temperature was 1200 ° C., the finishing temperature was 920 ° C., and the winding temperature was 630 ° C. 74% cold rolling was performed after pickling off the surface oxide layer of the hot rolled plate manufactured as described above.

냉간압연한 강판을 연속 소둔로에서 열처리하였다. 열처리시 균열대의 온도는 830℃이고, 균열대의 유지시간은 35초로 하였다. The cold rolled steel sheet was heat treated in a continuous annealing furnace. The temperature of the cracks during the heat treatment was 830 ° C., and the holding time of the cracks was 35 seconds.

과시효대 온도는 430℃이었다. 열처리 후 0.7%의 압하율로 조질압연을 실시하였다. The overaging temperature was 430 ° C. After heat treatment, temper rolling was carried out at a reduction ratio of 0.7%.

상기와 같이 제조된 시편들에 대하여 인장강도, 총연신율, 평균소성변형비 및 소성변형비 이방성계수를 조사하고, 그 결과를 하기 표 2에 나타내었다.Tensile strength, total elongation, average plastic strain and plastic strain ratio anisotropy coefficients were examined for the specimens prepared as described above, and the results are shown in Table 2 below.

또한, 비교강(1)과 발명강(1-3)에 대하여 방위분포함수의 ψ2 = 45°단면을 조사하 고, 그 결과를 도 1에 나타내었다.The comparative steel (1) and the inventive steel (1-3) were examined for the cross section of ψ 2 = 45 ° of the azimuth distribution function, and the results are shown in FIG.

CC MnMn PP SS Sol-AlSol-Al TiTi NN 발명강1Inventive Steel 1 0.00370.0037 0.340.34 0.030.03 0.0110.011 0.110.11 0.0520.052 0.00210.0021 발명강2Inventive Steel 2 0.00390.0039 0.340.34 0.030.03 0.0110.011 0.210.21 0.0540.054 0.00160.0016 발명강3Invention Steel 3 0.00390.0039 0.330.33 0.030.03 0.0110.011 0.400.40 0.0530.053 0.00150.0015 비교강1Comparative Steel 1 0.00320.0032 0.360.36 0.030.03 0.0110.011 0.0150.015 0.050.05 0.00190.0019 비교강2Comparative Steel 2 0.00320.0032 0.350.35 0.030.03 0.0110.011 0.0220.022 0.0580.058 0.00120.0012 비교강3Comparative Steel 3 0.00340.0034 0.340.34 0.030.03 0.0110.011 0.0220.022 0.0470.047 0.00180.0018 비교강4Comparative Steel 4 0.00300.0030 0.350.35 0.030.03 0.0110.011 0.0350.035 0.0530.053 0.00190.0019 비교강5Comparative Steel 5 0.00320.0032 0.350.35 0.030.03 0.0110.011 0.0220.022 0.0580.058 0.00240.0024

인장강도(kgf/mm2)Tensile strength (kgf / mm 2 ) 총연신율(%)% Total elongation rm r m ΔrΔr 발명강1Inventive Steel 1 32.9732.97 43.743.7 1.821.82 0.280.28 발명강2Inventive Steel 2 33.5533.55 43.543.5 1.881.88 0.260.26 발명강3Invention Steel 3 33.4833.48 43.143.1 1.831.83 0.290.29 비교강1Comparative Steel 1 31.1931.19 45.145.1 1.731.73 0.560.56 비교강2Comparative Steel 2 32.2632.26 44.944.9 1.741.74 0.340.34 비교강3Comparative Steel 3 31.9231.92 44.644.6 1.751.75 0.410.41 비교강4Comparative Steel 4 31.4331.43 45.545.5 1.721.72 0.570.57 비교강5Comparative Steel 5 30.8130.81 46.046.0 1.611.61 0.700.70

상기 표 2에 나타난 바와 같이, 본 발명에 따라 제조된 발명강(1-3)의 경우에는 Δr값이 0.3보다 낮고, rm값이 1.8보다 높음을 알 수 있다.As shown in Table 2, in the case of the inventive steel (1-3) manufactured according to the present invention, it can be seen that the Δr value is lower than 0.3 and the r m value is higher than 1.8.

반면에, 본 발명의 범위를 벗어나는 비교강(1-5)의 경우에는 Δr값이 0.3보다 높고, rm값이 1.8보다 낮음을 알 수 있다.On the other hand, in the case of the comparative steel (1-5) outside the scope of the present invention it can be seen that the Δr value is higher than 0.3, the r m value is lower than 1.8.

이와 같이, 본 발명에 부합되는 강은 본 발명을 벗어나는 비교강에 비하여 Δr값이 작고 rm값이 높아 프레스 성형 시 균일한 변형분포를 얻을 수 있게 되어 안정하게 부품성형을 할 수 있다. As described above, the steel conforming to the present invention has a smaller Δr value and a higher r m value than the comparative steel outside the present invention, thereby obtaining uniform deformation distribution during press molding, thereby stably forming parts.

도 1에 나타난 바와 같이, 본 발명에 따라 제조된 발명강(1-3)의 경우에는 γ-fibre집합조직이 상대적으로 강하게 발달하고 있음을 알 수 있다.As shown in Figure 1, in the case of the invention steel (1-3) prepared according to the present invention it can be seen that the γ-fibre aggregate tissue is relatively strong development.

상술한 바와 같이, 본 발명은 rm 값이 1.8이상이고 Δr값이 0.3이하인 가공성이 우수한 냉연강판을 제공하므로써 자동차 부품분야에 효과적으로 적용될 수 있는 효과가 있으며, 특히 본 발명에 의한 강을 사용하여 자동차 부품을 성형하는 경우 스트레칭 모드 및 디프드로잉 모드의 변형에서 우수한 가공성으로 인하여 부품을 용이하게 가공할 수 있다. As described above, the present invention has an effect that can be effectively applied to the field of automobile parts by providing a cold rolled steel sheet having excellent workability with an r m value of 1.8 or more and a Δr value of 0.3 or less, and particularly, the automobiles using the steel according to the present invention. When forming a part, the part can be easily machined due to excellent workability in deformation of the stretching mode and the deep drawing mode.

Claims (2)

중량%로 C: 0.001~0.01%, Mn: 0.1~1.5%, P: 0.003~0.1%, S: 0.01%이하, Ti: 0.015~0.07%, 산가용성 Al: 0.04~0.5%, N: 0.005%이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어지고; 그리고 By weight% C: 0.001-0.01%, Mn: 0.1-1.5%, P: 0.003-0.1%, S: 0.01% or less, Ti: 0.015-0.07%, acid soluble Al: 0.04-0.5%, N: 0.005% Hereinafter consisting of balance Fe and other unavoidable impurities; And 평균소성변형비(rm)가 1.8 이상이고, 소성변형비 이방성계수(Δr)가 0.3이하인 것을 특징으로 하는 가공성이 우수한 냉연강판The average plastic strain ratio (r m ) is 1.8 or more, and the plastic strain ratio anisotropy coefficient (Δr) is 0.3 or less. Cold rolled steel sheet with excellent workability 중량%로 C: 0.001~0.01%, Mn: 0.1~1.5%, P: 0.003~0.1%, S: 0.01%이하, Ti: 0.015~0.07%, 산가용성 Al: 0.04~0.5%, N:0.005%이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 강을 1050~1300℃에서 재가열하고, 890~950℃의 마무리압연온도 및 600~750℃의 권취온도조건으로 열간압연한 후, 65~90%의 압하율로 냉간압연하고, 750~870℃의 균열대온도, 20~100℃/s의 급냉대 냉각속도 및 350~500℃의 과시효대 온도조건으로 연속소둔한 다음, 0.5~2%의 압하율로 조질압연하는 것을 특징으로 하는 가공성이 우수한 냉연강판의 제조방법By weight% C: 0.001-0.01%, Mn: 0.1-1.5%, P: 0.003-0.1%, S: 0.01% or less, Ti: 0.015-0.07%, acid-soluble Al: 0.04-0.5%, N: 0.005% Hereinafter, a steel having a balance of Fe and other unavoidable impurities is reheated at 1050 to 1300 ° C., hot rolled at a finish rolling temperature of 890 to 950 ° C. and a winding temperature of 600 to 750 ° C., and then a reduction ratio of 65 to 90%. Cold-rolled and then continuously annealed at 750 ~ 870 ℃ crack zone temperature, 20 ~ 100 ℃ / s quench zone cooling rate and 350 ~ 500 ℃ overaging band condition, and then adjusted to 0.5 ~ 2% reduction rate. Manufacturing method of cold rolled steel sheet excellent in workability, characterized in that rolling
KR1020010084609A 2001-12-26 2001-12-26 Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet KR100544724B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010084609A KR100544724B1 (en) 2001-12-26 2001-12-26 Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010084609A KR100544724B1 (en) 2001-12-26 2001-12-26 Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet

Publications (2)

Publication Number Publication Date
KR20030054448A KR20030054448A (en) 2003-07-02
KR100544724B1 true KR100544724B1 (en) 2006-01-24

Family

ID=32213078

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010084609A KR100544724B1 (en) 2001-12-26 2001-12-26 Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet

Country Status (1)

Country Link
KR (1) KR100544724B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980726A (en) * 1982-10-27 1984-05-10 Kawasaki Steel Corp Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy
JPH05117758A (en) * 1991-10-29 1993-05-14 Kawasaki Steel Corp Manufacture of cold rolled steel sheet excellent in secondary working brittleness and small in plane anisotropy
JPH0718382A (en) * 1993-07-05 1995-01-20 Nisshin Steel Co Ltd Production of cold rolled steel sheet excellent in deep drawability
KR20000043786A (en) * 1998-12-29 2000-07-15 이구택 Low-carbon cold-rolled steel plate with small anisotropy coefficient of plastic strain and excellent in process ability and method of manufacturing the same
KR20010017609A (en) * 1999-08-12 2001-03-05 이구택 Low carbon cold rolled with low plastic deformation ratio and anisotropic coefficient

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5980726A (en) * 1982-10-27 1984-05-10 Kawasaki Steel Corp Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy
JPH05117758A (en) * 1991-10-29 1993-05-14 Kawasaki Steel Corp Manufacture of cold rolled steel sheet excellent in secondary working brittleness and small in plane anisotropy
JPH0718382A (en) * 1993-07-05 1995-01-20 Nisshin Steel Co Ltd Production of cold rolled steel sheet excellent in deep drawability
KR20000043786A (en) * 1998-12-29 2000-07-15 이구택 Low-carbon cold-rolled steel plate with small anisotropy coefficient of plastic strain and excellent in process ability and method of manufacturing the same
KR20010017609A (en) * 1999-08-12 2001-03-05 이구택 Low carbon cold rolled with low plastic deformation ratio and anisotropic coefficient

Also Published As

Publication number Publication date
KR20030054448A (en) 2003-07-02

Similar Documents

Publication Publication Date Title
US20070181232A1 (en) Cold rolled steel sheet and hot dipped steel sheet with superior strength and bake hardenability and method for manufacturing the steel sheets
WO2006118423A1 (en) Cold rolled steel sheet having superior formability , process for producing the same
KR20230056822A (en) Ultra-high strength steel sheet having excellent ductility and mathod of manufacturing the same
KR102098478B1 (en) Hot rolled coated steel sheet having high strength, high formability, excellent bake hardenability and method of manufacturing the same
KR20040059293A (en) High strength cold rolled steel sheet having superior workability
KR100544724B1 (en) Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet
KR101143139B1 (en) Cold Rolled Steel Sheet and Hot-dip Zinc Plated Steel Sheet with Superior Press Formability and Bake Hardenability and Method for Manufacturing the Steel Sheets
KR101125916B1 (en) Non-aging cold rolled steel sheet having less anisotropy and process for producing the same
KR100400867B1 (en) Low carbon cold rolled steel sheet with low plastic anisotropy coefficient and excellent workability and manufacturing method
KR101126012B1 (en) Non-aging cold rolled steel sheet having excellent recrstance to second work embrittlement and high strength, process for producing the same
KR101125930B1 (en) Non-aging cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, process for producing the same
WO2006118425A1 (en) Cold rolled steel sheet having superior formability and high yield ratio, process for producing the same
KR100555581B1 (en) Cold Rolled Steel Sheet Having Homogeneous Plastic Deformation Property And Manufacturing Method Thereof
KR100584755B1 (en) Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press
KR101143240B1 (en) Non aging cold rolled steel sheet having superior workability and process for producing the same
KR101115703B1 (en) Non aging cold rolled steel sheet having high strength, and process for producing the same
KR100411278B1 (en) Deep drawing steel sheet having high strength and superior formability and method for manufacturing it
KR101143098B1 (en) High strength cold rolled steel sheet having aging resistance and superior workability, and process for producing the same
KR100481364B1 (en) A method for manufacturing high strength cold rolled steel sheet with excellent workability
KR101125962B1 (en) Non-aging cold rolled steel sheet having excellent recrstance to second work embrittlement and high strength, process for producing the same
KR101143159B1 (en) Non aging cold rolled steel sheet having superior workability and high strength, and process for producing the same
KR101125974B1 (en) Non-aging cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, process for producing the same
KR101115764B1 (en) Non aging cold rolled steel sheet having high strength and process for producing the same
KR101143084B1 (en) Cold rolled steel sheet having aging resistance superior workability and process for producing the same
KR100729125B1 (en) High strength steets which have good average plastic strain ratio and the method of developing those steels

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180115

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20200110

Year of fee payment: 15