KR100507113B1 - Method of controlling fuel under rapid starting after cold starting for vehicle - Google Patents

Method of controlling fuel under rapid starting after cold starting for vehicle Download PDF

Info

Publication number
KR100507113B1
KR100507113B1 KR10-2002-0079589A KR20020079589A KR100507113B1 KR 100507113 B1 KR100507113 B1 KR 100507113B1 KR 20020079589 A KR20020079589 A KR 20020079589A KR 100507113 B1 KR100507113 B1 KR 100507113B1
Authority
KR
South Korea
Prior art keywords
engine
fuel
amount
cold
time
Prior art date
Application number
KR10-2002-0079589A
Other languages
Korean (ko)
Other versions
KR20040051900A (en
Inventor
민곤
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR10-2002-0079589A priority Critical patent/KR100507113B1/en
Publication of KR20040051900A publication Critical patent/KR20040051900A/en
Application granted granted Critical
Publication of KR100507113B1 publication Critical patent/KR100507113B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0223Cooling water temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0225Intake air or mixture temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

냉간 시동후 급출발시에 최적의 연료를 공급하여 공연비의 희박화를 방지하여 이에따른 엔진의 최적 출력으로 가속 성능을 향상시킬 수 있도록 한 차량의 냉간 시동 후 급출발시의 연료 제어방법을 제공할 목적으로;To provide a fuel control method during cold start after cold start of the vehicle to supply the optimum fuel during cold start after cold start to prevent thinning of the air-fuel ratio and improve the acceleration performance by the optimum output of the engine. ;

냉간 엔진 초기 시동후 급출발시 모니터링 조건인가를 판단하는 제1 단계와; 상기 제1 단계를 만족하면, 엔진 냉각수온과 흡기온과의 편차를 계산하여 이의 값이 기준값 이내인가를 판단하는 제2 단계와; 상기 제2 단계의 조건을 만족하면, 엔진 초기시동으로 인식하여 단위시간당 TPS 변화량(ΔTPS/ΔT(시간))이 기준값 이상인가를 판단하는 제3 단계와; 상기 제 3단계를 만족하면, 입력측으로부터 엔진 냉각수온, 엔진 회전수, ΔTPS(TPS 변화량), Δ흡기압(흡기압 변화량)에 따라서 가속 연료량을 계산하여 연료 제어를 실시하는 제4 단계로 이루어지는 차량의 냉간 시동후 급출발시 연료 제어방법을 제공한다. A first step of determining whether the monitoring condition is at the time of rapid start after the cold engine initial start; A second step of determining whether the value is within a reference value by calculating a deviation between the engine cooling water temperature and the intake air temperature if the first step is satisfied; A third step of recognizing the engine start-up when the condition of the second step is satisfied and determining whether the amount of change in TPS per unit time (ΔTPS / ΔT (time)) is equal to or greater than a reference value; If the third step is satisfied, the vehicle comprises a fourth step of performing fuel control by calculating the amount of accelerated fuel according to the engine cooling water temperature, the engine speed, the ΔTPS (TPS change amount), and the Δ intake pressure (intake pressure change amount) from the input side. Provides a fuel control method for rapid start after cold start.

Description

차량의 냉간 시동후 급출발시 연료 제어방법{METHOD OF CONTROLLING FUEL UNDER RAPID STARTING AFTER COLD STARTING FOR VEHICLE}Fuel control method for rapid start after cold start of vehicle {METHOD OF CONTROLLING FUEL UNDER RAPID STARTING AFTER COLD STARTING FOR VEHICLE}

본 발명은 냉간 시동후 급출발시의 연료 제어방법에 관한 것이다.The present invention relates to a fuel control method at the time of rapid start after cold start.

예컨대, 차량의 정지 상태에서 냉간 엔진 초기 시동후 급출발시 엔진 제어유닛(ECU_에서는 도 4에서와 같이, 냉각수온 센서(100)와, 엔진 RPM 센서(102)와, 스로틀 포지션 센서(104)로부터 입력 신호를 받아 필요로 하는 연료량을 계산하고 출력측인 연료계통(106)의 연료 인젝터(Injector)에 전기적인 구동신호를 보내어 연료를 엔진 실린더에 분사시켜 엔진을 구동하며 차량을 출발시킬 수 있도록 출력을 발생시킨다. For example, when the rapid start after the cold engine initial start in the stopped state of the vehicle, the engine control unit (ECU_ as shown in Fig. 4) from the coolant temperature sensor 100, the engine RPM sensor 102, and the throttle position sensor 104 Calculate the amount of fuel required by receiving the input signal and send an electric drive signal to the fuel injector of the fuel system 106 on the output side to inject the fuel into the engine cylinder to drive the engine and start the output to start the vehicle. Generate.

물론 이때의 가속 연료량은 ECU 내에 맵핑 데이터로 제어되는데, 이때, ECU에서는 단위 시간당 스로틀 포지션 센서의 변화량(ΔTPS/ΔT(시간))를 측정하여 일정치 이상이면 입력측으로부터 엔진 냉각수온, 엔진 RPM, ΔTPS(TPS 변화량)에 따라서 보정 연료량을 계산하고 출력측 연료 인젝터에 해당되는 전기적인 구동신호를 보낸다. Of course, the amount of acceleration fuel at this time is controlled by mapping data in the ECU. At this time, the ECU measures the amount of change (ΔTPS / ΔT (time)) of the throttle position sensor per unit time, and if it is above a certain value, the engine coolant temperature, engine RPM, ΔTPS from the input side. The amount of correction fuel is calculated according to the (TPS change amount), and an electric driving signal corresponding to the output fuel injector is sent.

이를 보다 구체적으로 살펴보면, 도 5에서와 같이, 모니터링 조건이 되었다고 판단되면(S110), 제어 진입조건으로 스로틀 포지션 센서의 변화량(ΔTPS/ΔT(시간)이 기준값 이상인가를 판단하여(S111), 조건을 만족하면, 가속 연료량 제어량을 수행하게 된다(S112)More specifically, as shown in FIG. 5, when it is determined that the monitoring condition has been reached (S110), it is determined whether the change amount ΔTPS / ΔT (time) of the throttle position sensor is greater than or equal to the reference value as the control entry condition (S111). If satisfied, the accelerated fuel amount control amount is performed (S112).

상기 제어과정에서 S110 단계의 모니터링 조건은 엔진 시동후 일정기간 경과후 이고, 엔진 RPM이 기준값이 이상인가이며, 상기 S112 단계에서의 가속 연료량은 Kθ*Kn *Kw 로 결정된다.In the control process, the monitoring condition of step S110 is after a certain period of time after starting the engine, the engine RPM is a reference value or more, and the amount of accelerated fuel in step S112 is determined as Kθ * Kn * Kw.

상기에서 Kθ는 ΔTPS 에 대한 가속 연료량 보정치이고, Kn는 엔진 RPM에 대한 가속 연료량 보정치이며, Kw는 엔진 냉각수온에 대한 가속 연료량 보정치이다.In the above description, Kθ is an acceleration fuel amount correction value for ΔTPS, Kn is an acceleration fuel amount correction value for engine RPM, and Kw is an acceleration fuel amount correction value for engine cooling water temperature.

그러나 상기와 같은 종래 연료 제어에 있어서는, 냉간 엔진 초기 시동 후 급출발시 적정 엔진 출력을 얻기 위해서는 공연비를 12~13 정도로 제어해야 하며, 이러한 공연비 제어를 위해서는 실린더내에 들어가는 연료량을 최적으로 제어를 해야한다. However, in the conventional fuel control as described above, the air-fuel ratio should be controlled to about 12 to 13 in order to obtain an appropriate engine output at the rapid start after cold engine initial start-up, and the amount of fuel entering the cylinder should be optimally controlled for such air-fuel ratio control.

그러나 냉간 상태 엔진 초기 시동후 일정 기간동안에는 연료 무화가 제대로 이루어지지 않아 엔진 흡기포트에 인젝터로부터 분사된 액상 연료가 다량 부착되면서 실제 실린더내에 들어가는 연료량은 작은 값이 들어가게 된다. However, the fuel atomization is not properly performed for a certain period of time after the initial start of the cold engine, and a large amount of liquid fuel injected from the injector is attached to the engine intake port.

이에 따라 공연비는 희박화가 되어 엔진 출력이 저하되며, 이는 곧 차량 출발시 가속 불량을 야기시키며, 특히, 연료 품질이 불량하거나 내구로 인하여 흡기포트에 카본 축적이 심할 경우 이러한 현상은 더욱 심해질 수 있다.As a result, the air-fuel ratio is diminished, resulting in a decrease in engine power, which causes an acceleration failure at the start of the vehicle. In particular, this phenomenon may be further exacerbated when carbon accumulation in the intake port is severe due to poor fuel quality or durability.

실제 시험을 해 본 결과, 도 6에서와 같이, 공연비의 희박화가 최고조에 달하며, 엔진 RPM의 드롭이 크게 발생함을 알 수 있었다.As a result of the actual test, as shown in Figure 6, the air-fuel ratio was reached the highest, it can be seen that a large drop in the engine RPM occurs.

따라서 본 발명은 상기와 같은 문제점을 해결하기 위하여 발명된 것으로서, 본 발명의 목적은 냉간 시동후 급출발시에 최적의 연료를 공급하여 공연비의 희박화를 방지하여 이에따른 엔진의 최적 출력으로 가속 성능을 향상시킬 수 있도록 한 차량의 냉간 시동 후 급출발시의 연료 제어방법을 제공함에 있다. Therefore, the present invention has been invented to solve the above problems, the object of the present invention is to supply the optimum fuel during cold start after cold start to prevent the thinning of the air-fuel ratio according to the acceleration performance to the optimum output of the engine accordingly The present invention provides a method for controlling fuel during rapid start after a cold start of a vehicle.

이를 실현하기 위하여 본 발명은, 냉간 엔진 초기 시동후 급출발시 모니터링 조건인가를 판단하는 제1 단계와;In order to realize this, the present invention includes a first step of determining whether or not a monitoring condition at the time of sudden start after cold engine initial start-up;

상기 제1 단계를 만족하면, 엔진 냉각수온과 흡기온과의 편차를 계산하여 이의 값이 기준값 이내인가를 판단하는 제2 단계와;A second step of determining whether the value is within a reference value by calculating a deviation between the engine cooling water temperature and the intake air temperature if the first step is satisfied;

상기 제2 단계의 조건을 만족하면, 엔진 초기시동으로 인식하여 단위시간당 TPS 변화량(ΔTPS/ΔT(시간))이 기준값 이상인가를 판단하는 제3 단계와;A third step of recognizing the engine start-up when the condition of the second step is satisfied and determining whether the amount of change in TPS per unit time (ΔTPS / ΔT (time)) is equal to or greater than a reference value;

상기 제 3단계를 만족하면, 입력측으로부터 엔진 냉각수온, 엔진회전수, ΔTPS(TPS 변화량), Δ흡기압(흡기압 변화량)에 따라서 가속 연료량을 계산하여 연료 제어를 실시하는 제4 단계로 이루어지는 차량의 냉간 시동후 급출발시 연료 제어방법을 제공한다. If the third step is satisfied, the vehicle comprises a fourth step of controlling fuel by calculating the amount of accelerated fuel according to the engine cooling water temperature, the engine speed, the ΔTPS (TPS change amount), and the Δ intake pressure (intake pressure change amount) from the input side. Provides a fuel control method for rapid start after cold start.

이하, 상기의 목적을 구체적으로 실현할 수 있는 본 발명의 바람직한 실시예를 첨부한 도면에 의거하여 상세히 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention that can specifically realize the above object will be described in detail.

도 1은 본 발명을 운용하기 위한 시스템의 블록도로서, 차량 정지상태 냉간 엔진 초기 시동후 급출발시 엔진 제어유닛(ECU)에서는 수온센서(2), 엔진 RPM 센서(4), 스로틀 포지션 센서(6), 흡기압 센서(8), 흡기온 센서(10)로부터 입력측 신호로서 엔진 냉각수온, 엔진 RPM, 스로틀 개도량, 흡기압, 흡기온등의 신호를 받아서 시동후 일정기간 동안 엔진이 필요로 하는 연료량을 계산하고, 출력측인 연료계통(12)의 연료 인젝터(Injector)에 전기적인 구동신호를 보내어 적정 연료를 엔진 실린더에 분사시켜 엔진 출력을 극대화시킴으로써 차량을 원활하게 출발시킬 수 있도록 제어하게 된다.1 is a block diagram of a system for operating the present invention, the engine temperature control unit (ECU), the water temperature sensor (2), the engine RPM sensor (4), the throttle position sensor (6) at the start and start after the initial start of the cold engine cold engine The engine coolant temperature, engine RPM, throttle opening amount, intake pressure, intake temperature, etc., as input signals from the intake pressure sensor 8 and the intake air temperature sensor 10, The fuel amount is calculated and an electric drive signal is sent to the fuel injector of the fuel system 12 on the output side to inject the appropriate fuel into the engine cylinder to maximize the engine output so that the vehicle can be started smoothly.

이때, 최적 출력을 얻기 위해 연료량과 공기량이 적절하게 조화를 이루어야 되며, 이는 ECU 내에 맵핑 데이터로 설정되어 제어가 가능하게 된다.At this time, in order to obtain the optimum output, the fuel amount and the air amount must be appropriately harmonized, and this is set as mapping data in the ECU to enable control.

이의 제어과정을 보다 상세히 살펴보면, 도 2에서와 같이, 냉간 엔진 초기 시동후 급출발시 ECU에서는 모니터링 조건인가를 우선 판단하게 된다(S50).Looking at the control process in more detail, as shown in Figure 2, when the cold start after the initial start of the engine, the ECU first determines whether the monitoring condition (S50).

상기 S50 단계에서 조건을 만족하면, 엔진 냉각수온과 흡기온과의 편차를 계산하여 이의 값이 기준값 이내인가를 판단하게 되며(S51), 상기 S51 단계에서 조건을 만족하면 엔진 초기시동으로 인식하여 단위시간당 TPS 변화량(ΔTPS/ΔT(시간))이 기준값 이상인가를 판단하게 된다(S52).If the condition is satisfied in the step S50, the deviation between the engine cooling water temperature and the intake air temperature is calculated to determine whether the value is within the reference value (S51). It is determined whether the amount of change in TPS per hour (ΔTPS / ΔT (time)) is greater than or equal to the reference value (S52).

그리고 상기 S51 단계에서 조건을 만족하지 않는 경우에는 엔진 초기 시동이 아니라고 판단하여 증량 보정 펙터(Enrichment Facter)를 1로 설정한 후(S53)에 S52 단계로 진입토록 하여 기존과 동일한 로직으로 제어가 이루어질 수 있도록 한다.If the condition is not satisfied at the step S51, the engine is not determined to be initially started, and after setting the increase correction factor to 1 (S53), the controller enters the step S52 to control the same logic as before. To help.

상기 S52 단계에서 조건을 만족하면, 입력측으로부터 엔진 냉각수온, 엔진회전수, ΔTPS(TPS 변화량), Δ흡기압(흡기압 변화량)에 따라서 가속 연료량을 계산하고 일정기간 동안 감쇄 기울기로 연료량을 산출한다. 이 때, 산출된 가속연료량은 출력측 연료 인젝터에 해당되는 전기적인 구동신호를 보내어 연료 제어를 수행하게 되는 것이다(S54).If the condition is satisfied in step S52, the amount of accelerated fuel is calculated from the input side according to the engine cooling water temperature, engine speed, ΔTPS (TPS change amount), Δ intake pressure (intake pressure change amount), and the fuel amount is calculated by the attenuation slope for a predetermined period. . At this time, the calculated amount of accelerated fuel is to transmit the electric drive signal corresponding to the output fuel injector to perform fuel control (S54).

상기에서 가속 연료량은 Kt*Ki*Kθ*Kn *Kw로 산출되는데, 상기에서 Kt는 엔진 시동후 일정기간 동안 감쇄 펙터, Ki는 흡기압 변화에 따른 가속연료량 보정치, Kθ는 ΔTPS 에 대한 가속연료량 보정치, Kn는 엔진회전수에 대한 가속 연료량 보정치, Kw: 엔진냉각수온에 대한 가속연료량 보정치이다.The acceleration fuel amount is calculated as Kt * Ki * Kθ * Kn * Kw, where Kt is attenuation factor for a predetermined period after starting the engine, Ki is an acceleration fuel amount correction value according to the intake pressure change, and Kθ is an acceleration fuel amount correction value for ΔTPS. , Kn is the acceleration fuel amount correction value for the engine speed, Kw: the acceleration fuel amount correction value for the engine coolant temperature.

그리고 상기에서 엔진의 시동후 일정기간 동안의 감쇄 펙터 Kt는 엔진 시동과 동시에 타이머가 작동되면서 엔진 시동 후 초기 일정기간 동안 연료량 증량 보정 펙터로서 시간에 따라 감쇄된다. The attenuation factor Kt for a predetermined period after the engine is started is attenuated according to time as a fuel quantity increase correction factor for an initial predetermined period after the engine is started while the timer is operated at the same time as the engine is started.

또한, 이의 감쇄펙터 Kt는 1 + C *(Ts-T)/Ts로 산출되며, 상기에서 C는 상수 (엔진에 따라서 결정됨.), Ts는 엔진 냉각수온에 따른 엔진 시동후 경과시간 설정치, T: 엔진 시동후 시간이다.In addition, its attenuation factor Kt is calculated as 1 + C * (Ts-T) / Ts, where C is a constant (determined according to the engine), Ts is the set value of the elapsed time after starting the engine according to the engine coolant temperature, T : Time after engine start.

그리고 상기에서 엔진 냉각수온에 따른 엔진 시동후 경과시간 설정치 Ts는 엔진 냉각수온에 따라 엔진 시동 후 타이머 작동시간을 설정하는 것으로서 하기의 예와 같이 설정된다.In the above, the elapsed time set value Ts after starting the engine according to the engine coolant temperature is set as the following example by setting the timer operating time after starting the engine according to the engine cooling water temperature.

엔진냉각수온(℃)Engine cooling water temperature (℃) -10-10 00 77 2020 3434 5050 7777 8282 Ts(초)Ts (seconds) 100100 9090 7070 6060 5050 4040 2525 1515

또한, 흡기압 변화에 따른 가속 변화량 보정치 Ki는 흡기압이 엔진 부하(Load)를 결정하는 인자로서 TPS 신호와 더불어 엔진 운전시 중요한 인자이므로, 급격한 부하 변동에 따른 흡기압 변화량에 대한 연료량 보정을 추가함으로써, 부족한 가속 연료량을 보정할 수 있도록 하기 위함이며, 이의 데이터 값은 TPS 변화량에 대한 연료량 맵핑 후 추가 맵핑되어 설정된다. In addition, since the acceleration change amount correction value Ki according to the intake pressure change is an important factor in the engine operation together with the TPS signal as the intake pressure is a factor for determining the engine load, the fuel amount correction is added to the intake pressure change amount due to the sudden load change. In order to correct the insufficient acceleration fuel amount, the data value thereof is further mapped and set after mapping the fuel amount to the TPS change amount.

상기와 같은 연료 제어에 의하여, 도 3에서와 같이, 공연비가 정상적으로 이루어지고, 엔진 RPM의 드롭이 발생되지 않음으로써, 가속 성능을 향상시킬 수 있게 된다.By the fuel control as described above, as shown in FIG. 3, the air-fuel ratio is normally made, and the drop of the engine RPM is not generated, thereby improving the acceleration performance.

이상에서와 같이 본 발명에 의하면, 냉간 초기 시동 후 급가속시 공연비 희박화로 인한 엔진 출력 부족을 개선하기 위하여 엔진 시동후 초기 가속시 흡기압 변화에 대한 연료량 보정 및 일정기간 동안 연료량 추가 증량을 적용하여 공연비를 농후하게 하여 공연비를 최적 출력점으로 제어함으로써, 가속성능을 향상시킬 수 있는 발명인 것이다.As described above, according to the present invention, in order to improve the engine output shortage due to the air-fuel ratio diminishing during rapid acceleration after cold initial start, by applying the fuel amount correction for the intake pressure change during the initial acceleration after starting the engine and adding additional fuel amount for a certain period By increasing the air-fuel ratio and controlling the air-fuel ratio to an optimum output point, the invention can improve the acceleration performance.

도 1은 본 발명이 적용되는 시스템의 블록도.1 is a block diagram of a system to which the present invention is applied.

도 2는 본 발명에 의한 연료 제어방법의 작동 흐름도.2 is an operation flowchart of a fuel control method according to the present invention;

도 3은 본 발명의 적용으로 개선된 내용을 설명하기 위한 시험 그래프 선도.3 is a test graph diagram illustrating the contents improved by the application of the present invention.

도 4는 종래 연료 제어를 위한 시스템의 블록도.4 is a block diagram of a system for conventional fuel control.

도 5는 종래 연료 제어방법의 작동 흐름도.5 is an operation flowchart of a conventional fuel control method.

도 6은 종래 문제점을 설명하기 위한 시험 그래프 선도이다.6 is a test graph diagram for explaining a conventional problem.

Claims (3)

냉간 엔진 초기 시동후 급출발시 모니터링 조건인가를 판단하는 제1 단계와;A first step of determining whether the monitoring condition is at the time of rapid start after the cold engine initial start; 상기 제1 단계를 만족하면, 엔진 냉각수온과 흡기온과의 편차를 계산하여 이의 값이 기준값 이내인가를 판단하는 제2 단계와;A second step of determining whether the value is within a reference value by calculating a deviation between the engine cooling water temperature and the intake air temperature if the first step is satisfied; 상기 제2 단계의 조건을 만족하면, 엔진 초기시동으로 인식하여 단위시간당 TPS 변화량(ΔTPS/ΔT(시간))이 기준값 이상인가를 판단하는 제3 단계와;A third step of recognizing the engine start-up when the condition of the second step is satisfied and determining whether the amount of change in TPS per unit time (ΔTPS / ΔT (time)) is equal to or greater than a reference value; 상기 제 3단계를 만족하면, 입력측으로부터 엔진 냉각수온, 엔진회전수, ΔTPS(TPS 변화량), Δ흡기압(흡기압 변화량)에 따라서 가속 연료량을 계산하여 연료 제어를 실시하는 제4 단계로 이루어짐을 특징으로 하는 차량의 냉간 시동후 급출발시 연료 제어방법If the third step is satisfied, the fourth step is performed to calculate fuel by calculating the amount of accelerated fuel according to the engine cooling water temperature, the engine speed, the ΔTPS (TPS change amount), and the Δ intake pressure (intake pressure change amount) from the input side. Fuel control method for rapid start after cold start of the vehicle 제1항에 있어서, 가속 연료량은 Kt * Ki * Kθ * Kn * Kw로 산출하며, 상기에서 Kt는 엔진 시동후 일정기간 동안 연료량 감쇄 펙터, Ki는 흡기압 변화에 따른 가속연료량 보정치, Kθ는 ΔTPS 에 대한 가속연료량 보정치, Kn는 엔진회전수에 대한 가속 연료량 보정치, Kw: 엔진냉각수온에 대한 가속연료량 보정치임을 특징으로 하는 차량의 냉간 시동후 급출발시 연료 제어방법The method of claim 1, wherein the acceleration fuel amount is calculated as Kt * Ki * Kθ * Kn * Kw, where Kt is a fuel attenuation factor for a predetermined period after starting the engine, Ki is an acceleration fuel amount correction value according to the intake pressure change, Kθ is ΔTPS Accelerated fuel amount correction value for, Kn is the acceleration fuel amount correction value for the engine speed, Kw: Accelerated fuel amount correction value for the engine coolant temperature after the cold start of the vehicle characterized in that the fuel control method 제2항에 있어서, 엔진 시동 후 초기 일정기간 동안 연료량 감쇄 펙터 Kt는 1 + C *(Ts-T)/Ts로 산출하며, 상기에서 C는 상수 (엔진에 따라서 결정됨.), Ts는 엔진 냉각수온에 따른 엔진 시동후 경과시간 설정치, T: 엔진 시동후 시간임을 특징으로 하는 차량의 냉간 시동후 급출발시 연료 제어방법The fuel attenuation factor Kt is calculated as 1 + C * (Ts-T) / Ts during the initial period after the engine is started, wherein C is a constant (depending on the engine), and Ts is the engine coolant. Elapsed time setting value after engine start according to the on, T: Fuel control method when the rapid start after cold start of the vehicle, characterized in that the time after engine start
KR10-2002-0079589A 2002-12-13 2002-12-13 Method of controlling fuel under rapid starting after cold starting for vehicle KR100507113B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0079589A KR100507113B1 (en) 2002-12-13 2002-12-13 Method of controlling fuel under rapid starting after cold starting for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0079589A KR100507113B1 (en) 2002-12-13 2002-12-13 Method of controlling fuel under rapid starting after cold starting for vehicle

Publications (2)

Publication Number Publication Date
KR20040051900A KR20040051900A (en) 2004-06-19
KR100507113B1 true KR100507113B1 (en) 2005-08-09

Family

ID=37345695

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0079589A KR100507113B1 (en) 2002-12-13 2002-12-13 Method of controlling fuel under rapid starting after cold starting for vehicle

Country Status (1)

Country Link
KR (1) KR100507113B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930006307A (en) * 1991-09-24 1993-04-21 이시마루 쓰네오 Air-fuel ratio control device of internal combustion engine
JPH08100692A (en) * 1994-09-30 1996-04-16 Suzuki Motor Corp Control device for starting time injection quantity for internal combustion engine
KR970044814A (en) * 1995-12-23 1997-07-26 전성원 Engine stall prevention device and its method during cold start
KR970070480A (en) * 1996-04-10 1997-11-07 김영석 An apparatus for improving the freezing and throttle of an electronically controlled fuel injection engine
JPH1037753A (en) * 1996-07-19 1998-02-10 Fuji Heavy Ind Ltd Supercharging pressure control device of engine
KR19990013533A (en) * 1997-07-04 1999-02-25 가나이쯔도무 A fuel injection control method for a multi-cylinder internal combustion engine, a fuel injection control device, and a recording medium recording a fuel injection control program
KR20020031639A (en) * 2000-10-20 2002-05-03 이계안 Fuel injection control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930006307A (en) * 1991-09-24 1993-04-21 이시마루 쓰네오 Air-fuel ratio control device of internal combustion engine
JPH08100692A (en) * 1994-09-30 1996-04-16 Suzuki Motor Corp Control device for starting time injection quantity for internal combustion engine
KR970044814A (en) * 1995-12-23 1997-07-26 전성원 Engine stall prevention device and its method during cold start
KR970070480A (en) * 1996-04-10 1997-11-07 김영석 An apparatus for improving the freezing and throttle of an electronically controlled fuel injection engine
JPH1037753A (en) * 1996-07-19 1998-02-10 Fuji Heavy Ind Ltd Supercharging pressure control device of engine
KR19990013533A (en) * 1997-07-04 1999-02-25 가나이쯔도무 A fuel injection control method for a multi-cylinder internal combustion engine, a fuel injection control device, and a recording medium recording a fuel injection control program
KR20020031639A (en) * 2000-10-20 2002-05-03 이계안 Fuel injection control method

Also Published As

Publication number Publication date
KR20040051900A (en) 2004-06-19

Similar Documents

Publication Publication Date Title
US5469827A (en) Method and apparatus for control of the start-up air-fuel ratio of an internal combustion engine
WO2007026887A1 (en) Fuel injection control device for diesel engine
JP2007211778A (en) Method and device for operating drive unit
US20100057326A1 (en) Fuel Injection Amount Learning Control Method
US5505165A (en) Cooling control system for avoiding vapor lock after turn off
US4475501A (en) Electronic control type fuel injection system
KR100507113B1 (en) Method of controlling fuel under rapid starting after cold starting for vehicle
JPH08100692A (en) Control device for starting time injection quantity for internal combustion engine
KR100579261B1 (en) Line pressure control system of automatic transmission and method thereof
US6474299B1 (en) Process for operating an internal combustion engine, in particular of a motor vehicle
KR100588543B1 (en) A fuel injection capacity control method when acceleration of engine
JP2002195075A (en) Starting control method of engine
KR100444057B1 (en) Fuel amount compensation method on engine restarting
KR100398219B1 (en) Method for emission controlling of diesel engine in vehicle
KR100264439B1 (en) Determining method of fuel injection in driving
KR100444452B1 (en) fuel injection control method for a diesel engine
KR100427327B1 (en) Method of checking start of air and fuel ratio feedback control
KR20040008980A (en) a method for fuel controlling in vehicle
KR100218892B1 (en) Air fuel ratio feedback control method
KR100398229B1 (en) Engine control method for vehicle
KR20010044979A (en) Method for correcting a knocking according to a temperature of an intake air
KR100405696B1 (en) Method of air flow controlling in vehicles
KR19980058534A (en) How to adjust the engine speed by adjusting the ignition timing when the engine speed changes in the idle state
KR100520555B1 (en) A creep control device of automatic transmission vehicle
KR20010035592A (en) Method for correcting engine air flow learning value of vehicle

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120731

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130731

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150731

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160729

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180730

Year of fee payment: 14