KR100505174B1 - 서브마이크론 크기의 금속입자를 함유한 액체 분산물제조방법 - Google Patents

서브마이크론 크기의 금속입자를 함유한 액체 분산물제조방법 Download PDF

Info

Publication number
KR100505174B1
KR100505174B1 KR10-2002-7010758A KR20027010758A KR100505174B1 KR 100505174 B1 KR100505174 B1 KR 100505174B1 KR 20027010758 A KR20027010758 A KR 20027010758A KR 100505174 B1 KR100505174 B1 KR 100505174B1
Authority
KR
South Korea
Prior art keywords
liquid
carbonyl
gas
metal
metal particles
Prior art date
Application number
KR10-2002-7010758A
Other languages
English (en)
Other versions
KR20020081689A (ko
Inventor
에릭베인 와스문드
그리프스오스왈드리차드 윌리암스
커트케네쓰 쿠쉬니
랜달마크 샤우벨
Original Assignee
인코 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인코 리미티드 filed Critical 인코 리미티드
Publication of KR20020081689A publication Critical patent/KR20020081689A/ko
Application granted granted Critical
Publication of KR100505174B1 publication Critical patent/KR100505174B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/006Metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Colloid Chemistry (AREA)

Abstract

점도가 알려진 액체 분산물에서 서브마이크론 크기의 금속입자를 발생하는 연속 방법이 발표된다. 금속 카르보닐 가스 및 불활성 캐리어 가스가 희석 가스와 함께 가열된 액체에 도입되어, 금속 카르보닐은 서브마이크론 크기의 금속입자로 분해한다. 이 입자는 액체에 현탁된다. 액체가 처리되어 슬러리 및 페이스트를 형성한다.

Description

서브마이크론 크기의 금속입자를 함유한 액체 분산물 제조방법{METHOD FOR PRODUCING A LIQUID DISPERSION SUBSTANTIALLY CONTAINING SUBMICRON SIZED METAL PARTICLES}
본 발명은 금속 분말, 특히 서브마이크론 크기의 금속입자 연속 제조방법에 관계한다. 이들 입자는 배터리와 같은 전기화학적 전지와 커패시터용 슬러리 및 페이스트에 포함시키는데 유용하다.
1889년 Mond와 Lannger에 의해서 발견된 바와 같이 테트라카르보닐 니켈-Ni(Co)4-은 150-315℃의 온도 범위에서 순수한 금속 니켈과 일산화탄소로 쉽게 분해된다. Mond 공정의 주요 결함은 테트라카르보닐 니켈이 대단히 위험한 독소라는 것이다. 유사하게 일산화탄소 역시 매우 조심스럽게 취급되어야 한다. 따라서 전 세계를 통해 소수의 기관이 이 방법을 사용한다.
다층 커패시터 페이스트 시장은 크기가 1마이크론 이상인 응집된 입자가 없는 서브마이크론(1마이크론 미만) 니켈 분말을 필요로 한다.
대개의 시판 니켈 미세분말은 화학적 증착(CVD), 클로라이드 환원 또는 수성 침전에 의해 제조된다. 이들 최근 기술은 규모 확장에 비용이 많이 든다.
다층 커패시터 페이스트 제조자에 의해 사용되는 니켈분말은 초기에 건조 분말로서 판매된다. 이후 미세 분말이 액체에 분산되어 페이스트 제조과정의 일부인 슬러리를 형성한다. 페이스트 제조자는 최종 제품에 상당한 비용을 첨가한다.
수십년간 본 출원인은 니켈 (테트라) 카르보닐 증기를 기체상에서 분해시켜 순수한 니켈 미세분말을 제조하였다. 일차 입자크기가 0.5마이크론 미만인 초-미세 분말이 400℃이상의 온도에서 카르보닐 니켈을 기상 분해하여 제조될 수 있다. 불행히도 이러한 조건 하에서 입자 충돌은 소결 기회를 발생시켜 1마이크론 이상의 바람직하지 않은 입자를 함유한 분말을 생성한다.
서브마이크론 크기의 금속입자를 함유한 분산물을 제조하는 모든 최신 기술은 필요한 슬러리 및 페이스트를 제조하기 위해서 값비싼 다-단계 배치 공정을 사용한다.
지난 세기 전환 부근에 니켈 카르보닐 기술의 초기 개발 동안에 수소와 니켈 카르보닐의 유체 통과는 촉매화 및 유기화합물 형성을 가져옴이 밝혀졌다(독일 특허 241 823, 1911, Shukoff 참조).
유사하게 미국특허 1138201(Ellis)는 처리된 오일의 수소첨가반응을 보여준다. 니켈 카르보닐은 오일 내에서 미세 촉매 니켈원으로 활용된다.
두 경우에 니켈 입자가 액체로부터 분리되어 수소 첨가된 화합물이 남는다. 그러나 니켈 입자를 함유한 페이스트나 슬러리와 같은 후속 처리된 액체 분산물이 활용도가 있다는 인식이 없다.
액체 분산물에서 서브마이크론 금속 분말을 연속적이고 경제적으로 제조하여 중간 처리단계를 제거한 공정이 필요하다.
발명의 요약
서브마이크론 크기의 순수 금속입자의 액체 분산물을 제조하는 저렴한 연속공정이 제공된다.
불활성 캐리어가스로 가열된 액체에 금속 카르보닐 증기 기포가 도입된다. 기포가 상승할 때 금속 카르보닐이 서브마이크론 입자로 응집없이 분해하고 동시에 액체에 분산된다. 결과의 니켈 일차 입자는 평균 0.1마이크론의 직경을 가지며 , 이 크기는 최신 시판 니켈 입자보다 작은 크기이다.
도1은 본 발명의 공정도이다.
*부호설명*
10...시스템
12...기체 니켈 카르보닐 공급원 14...믹서
16...불활성 캐리어 가스 공급원 18...반응 용기
20...불활성 희석 가스 공급원 22...도관
24...액체 26...기포
28...서리 제거 장치 30...압력 게이지
32...온도 프로브 34...분해기
38...화염 분해기
도1에서 서브마이크론 니켈 입자를 함유한 액체 제조 시스템(10)을 보여준다.
본 발명은 니켈 이외에 철, 코발트, 크롬 및 몰리브덴과 같은 카르보닐 화합물을 형성하는 다른 금속에도 적용될 수 있다.
서브마이크론은 1 마이크론 미만을 의미한다.
불활성 캐리어 가스는 니켈 카르보닐 증기나 고온 액체와 직접 반응하지 않은 가스를 의미한다. 그러나 표준 반응속도 및 열역학적 원리에 따라서 반응 속도 및 정도에 영향을 미칠 수 있다.
기체 니켈 카르보닐 공급원(12)이 불활성 캐리어 가스를 통해 믹서(14)에 공급된다. 불활성 캐리어 가스, 특히 일산화탄소 공급원(16)은 믹서(14) 및 가열된 반응용기(18), 특히 오토클레이브에 공급된 Ni(CO)4의 양과 유속을 조절한다. 질소나 다른 불활성 희석 가스 공급원(20)은 필요에 따라 용기(18)로의 Ni(CO)4의 공급을 증가시킨다. 일산화탄소는 카르보닐이 액체(24)와 접촉하기 전에 분해하는 것을 막아 입자 크기에 영향을 미친다.
니켈 카르보닐의 위험한 성질 때문에 작업자 및 환경을 카르보닐 및 일산화탄소 누출로부터 보호할 엄격한 안전책이 필요하다. 따라서 모든 펌프, 도관, 밸브, 센서는 카르보닐 등급이어야 한다.
기체 Ni(CO)4와 캐리어 가스는 도관(22)에 의해 용기(18)에 도입된다. 용기(18) 내에 배치된 액체(24)를 통해 기포(26)를 발생하도록 용기(18) 하부를 향해 카르보닐 증기를 도입하는 것이 좋다. 서리 제거장치나 유사 장치(28)가 용기(18)로부터 흘러나오는 일산화탄소 가스에 의해 옮겨진 액체를 제거한다.
압력 게이지(30), 온도 프로브(32) 및 기타 처리 및 안전 설비와 같은 기기가 반응용기(18)의 공정을 제어하는데 역할을 한다.
일산화탄소 가스는 독성 일산화탄소 가스를 파괴하는 분해기(34)를 통과한다. 최종 화염 분해기(38)는 남아있는 일산화탄소를 중화하고 배기가스 흐름이 안전 한계 내에 있다는 시각적 확인을 제공한다.
용기(18)에 배치된 뜨거운 액체에서 직접 니켈 카르보닐 증기를 분해함으로써 서브마이크론 니켈 입자가 발생된다. 입자가 형성될 때 액체-고체 경계층에 의해 충돌과 표면 반응이 방지된다. 동시에 고정된 균일한 온도에 액체를 유지함으로써 결과의 입자는 더욱 균일한 미소구조를 갖는다.
캐리어 가스와 혼합된 기체 니켈 카르보닐이 용기(18)에 들어가고 당해분야에서 공지된 적당한 분배기를 통해 가열된 액체(24)에 도입된다. 예컨대 노즐, 기포 발생기, 다공성 디스크 또는 천공판과 같은 냉각된 분배기가 액체(24)를 통해 증기를 위로 발생시킨다. 니켈이 장치에 축적되는 것을 방지하기 위해서 분배기를 냉각하는 것이 바람직하다. 기포의 크기 분포, 유속, 가스 농도 및 액체(24)의 온도를 조절함으로써 니켈 입자의 물리적 크기가 조절될 수 있다.
불활성 캐리어 가스는 흐름 촉진제로 작용한다.
가스 방울이 액체(24)를 통해 상승할 때 니켈 카르보닐은 기포 내에서 분해하거나 분해에 앞서 액체로 용해된다. 니켈 카르보닐 화합물의 분해는 1마이크론 이상의 응집된 입자가 거의 없는 서브마이크론 니켈 입자의 액체 분산물을 생성한다. 분해반응은 온도, 선택된 액체의 종류, 금속 카르보닐 가스 농도, 기체 유속의 유체역학에 달려있다.
결과의 고체/액체 분산물은 증발, 원심분리, 자기적 분리 및 한외-여과에 의해 필요한 고체 함량 및 점도로 조절된다.
니켈 입자 함유 액체 분산물을 직접 제조함으로써 니켈 입자 함유 페이스트 제조를 위한 수많은 공지 처리단계가 제거된다.
실시예1
질소(90%), 니켈 카르보닐(5%) 및 일산화탄소(5%)가 분당 2리터 유속으로 소결된 디스크 분배기를 통해 대기압에서 160℃로 가열된 액체 350ml를 함유한 용기(18)의 하부에 공급된다(도1 참조). (1)데실 알코올(CAS 112-30-1); (2)Flutec PP10 저증기압 플루오로카본(CAS 307-08-04); (3)실리콘 오일(CAS 63148-58-3); (4)도데칸(CAS 112-40-3); (5)알파-터핀올(CAS 10482-56-1)에서 테스트가 수행된다. 분해기(34)에서 소각 도중에 화염(38)의 색깔에 의해 완전 분해가 확인되었다. 평가를 위해 충분한 생성물이 형성된지 약 8분후 실험이 중단된다. 액체가 냉각되고 실온에서 제거된다. SEM에 의한 미소구조 예비 분석, 동적 광산란 및 XRD분석은 니켈 입자가 약 0.1마이크론임을 보여준다. 특히 니켈 입자 도핑된 알파-터핀올이 커패시터 전극 페이스트로 사용된다.
실시예2
질소(90%), 니켈 카르보닐(5%) 및 일산화탄소(5%)가 분당 2리터 유속으로 소결된 디스크 분배기를 통해 대기압에서 8분간 가열된 알파-터핀올(CAS 10482-56-1) 350ml를 함유한 용기(18)의 하부에 공급된다. 실험은 120℃, 130℃, 140℃ 및 160℃에서 반복되었다. 120℃에서는 니켈 분말이 형성되지 않았는데, 이것은 분해기(34) 내부에서 반응이 없거나 니켈 축적이 없음을 나타낸다. 더 높은 온도는 니켈 입자를 생성시킨다.
생성물 평가를 위해 약 8분후 위 실험이 중단될지라도 반응은 거의 순간적이다. 따라서 비교적 일정한 속도로 생성물이 방출되고 속도는 압력, 온도 및 액체의 부피에 달려있다.

Claims (14)

  1. a)용기에 액체를 채우고;
    b)금속-카르보닐 가스를 불활성 캐리어 가스와 혼합하여 금속-카르보닐 가스 혼합물을 형성하고;
    c)금속-카르보닐 가스 혼합물을 액체에 도입하고;
    d)액체를 통해 금속-카르보닐 가스 혼합물을 버블링(bubbling)시키고;
    e)액체 내에서 금속-카르보닐 가스를 분해시켜 이로부터 생성되는 예정된 크기의 금속 입자를 형성시켜 유지하고;
    f)액체에서 예정된 점도로 금속 입자의 액체 분산물을 형성하는 단계를 포함하는 서브마이크론 금속입자를 함유한 액체 분산물 제조방법
  2. 제 1항에 있어서, 액체가 가열됨을 특징으로 하는 제조방법
  3. 제 2항에 있어서, 액체가 120℃이상으로 가열됨을 특징으로 하는 제조방법
  4. 제 1항에 있어서, 금속 카르보닐 가스가 니켈 카르보닐, 철 카르보닐, 코발트 카르보닐, 크롬 카르보닐, 및 몰리브덴 카르보닐에서 선택됨을 특징으로 하는 제조방법
  5. 제 1항에 있어서, 금속입자의 크기가 1마이크론 미만임을 특징으로 하는 제조방법
  6. 제 1항에 있어서, 액체가 데실 알코올, 저증기압 플루오로카본, 실리콘 오일, 도데칸, 및 알파-터핀올에서 선택됨을 특징으로 하는 제조방법
  7. 제 1항에 있어서, 금속입자의 액체분산물이 점도 조절됨을 특징으로 하는 제조방법
  8. 제 7항에 있어서, 금속입자의 액체분산물이 증발, 원심분리, 자기적 분리 또는 한외여과에 의해 점도 조절됨을 특징으로 하는 제조방법
  9. 제 1항에 있어서, 액체분산물이 슬러리 또는 페이스트임을 특징으로 하는 제조방법
  10. 제 1항에 있어서, 불활성 캐리어 가스가 일산화탄소임을 특징으로 하는 제조방법
  11. 제 1항에 있어서, 희석 가스가 금속-카르보닐 가스 혼합물에 첨가됨을 특징으로 하는 제조방법
  12. 제 11항에 있어서, 90%희석 가스, 5%금속-카르보닐 가스 및 5% 일산화탄소가 액체에 도입됨을 특징으로 하는 제조방법
  13. 제 11항에 있어서, 희석 가스가 질소임을 특징으로 하는 제조방법
  14. 제 11항에 있어서, 90%질소, 5%니켈-카르보닐 가스 및 5% 일산화탄소가 액체에 도입됨을 특징으로 하는 제조방법
KR10-2002-7010758A 2001-01-08 2001-10-05 서브마이크론 크기의 금속입자를 함유한 액체 분산물제조방법 KR100505174B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/756,253 US6506229B2 (en) 2001-01-08 2001-01-08 Two experimental trials using the system 10 demonstrate the efficacy of the present process:
US09/756,253 2001-01-08

Publications (2)

Publication Number Publication Date
KR20020081689A KR20020081689A (ko) 2002-10-30
KR100505174B1 true KR100505174B1 (ko) 2005-08-03

Family

ID=25042664

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-7010758A KR100505174B1 (ko) 2001-01-08 2001-10-05 서브마이크론 크기의 금속입자를 함유한 액체 분산물제조방법

Country Status (12)

Country Link
US (1) US6506229B2 (ko)
JP (1) JP3986964B2 (ko)
KR (1) KR100505174B1 (ko)
CN (1) CN1200761C (ko)
AU (1) AU2001295323B8 (ko)
CA (1) CA2401026C (ko)
GB (1) GB2380188B (ko)
NO (1) NO20024199D0 (ko)
NZ (1) NZ520717A (ko)
RU (1) RU2237547C2 (ko)
TW (1) TW501940B (ko)
WO (1) WO2002053315A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746511B2 (en) * 2002-07-03 2004-06-08 Inco Limited Decomposition method for producing submicron particles in a liquid bath
US20070283782A1 (en) * 2005-08-10 2007-12-13 Mercuri Robert A Continuous process for the production of nano-scale metal particles
US20070283783A1 (en) * 2005-08-10 2007-12-13 Mercuri Robert A Process for the production of nano-scale metal particles
DE102007045878B4 (de) * 2007-09-25 2009-06-18 Albert-Ludwigs-Universität Freiburg Verfahren zur Herstellung von metallhaltigen Nanopartikeln
DE102009005923A1 (de) * 2009-01-23 2010-07-29 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Ableitung von Leckagegas aus einem Verdampfer
RU2741024C1 (ru) * 2020-07-23 2021-01-22 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Способ получения спиртовой дисперсии наночастиц оксида тантала

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3A (en) * 1836-08-11 Thomas blanchard
US4A (en) * 1836-08-10 Stock
DE241823C (ko) 1910-01-18 1911-12-14
GB191100974A (en) * 1910-04-20 1911-08-10 Farbenfabriken Vormals Friedri Manufacture and Production of New Trisazodyestuffs.
US1138201A (en) 1912-04-24 1915-05-04 Carleton Ellis Hydrogenating unsaturated organic material.
US1759658A (en) 1924-12-15 1930-05-20 Ig Farbenindustrie Ag Manufacture of pure iron
US1759661A (en) 1926-07-06 1930-05-20 Ig Farbenindustrie Ag Finely-divided metals from metal carbonyls
GB974627A (en) 1960-09-13 1964-11-11 California Research Corp Dispersions of ferromagnetic metals
US3228882A (en) 1963-01-04 1966-01-11 Chevron Res Dispersions of ferromagnetic cobalt particles
US3504895A (en) 1964-05-25 1970-04-07 Int Nickel Co Apparatus for the production of metal powders and metal-coated powders
US4252671A (en) 1979-12-04 1981-02-24 Xerox Corporation Preparation of colloidal iron dispersions by the polymer-catalyzed decomposition of iron carbonyl and iron organocarbonyl compounds
US4808216A (en) * 1987-04-25 1989-02-28 Mitsubishi Petrochemical Company Limited Process for producing ultrafine metal powder
US5064464A (en) * 1988-11-10 1991-11-12 Mitsubishi Petrochemical Company Limited Process for producing ultrafine metal particles
US5137652A (en) 1989-12-18 1992-08-11 National Research Institute For Metals Method of manufacturing particle colloid or a magnetic fluid containing metal nitrides
US6033624A (en) 1995-02-15 2000-03-07 The University Of Conneticut Methods for the manufacturing of nanostructured metals, metal carbides, and metal alloys
CA2296964A1 (en) * 2000-01-25 2001-07-25 Chemical Vapour Metal Refining Inc. Cobalt recovery process

Also Published As

Publication number Publication date
GB2380188A (en) 2003-04-02
TW501940B (en) 2002-09-11
GB2380188B (en) 2004-11-10
RU2237547C2 (ru) 2004-10-10
CA2401026C (en) 2005-03-29
NO20024199L (no) 2002-09-03
KR20020081689A (ko) 2002-10-30
AU2001295323B1 (en) 2004-07-22
CA2401026A1 (en) 2002-07-11
US20020088306A1 (en) 2002-07-11
NZ520717A (en) 2004-03-26
WO2002053315A3 (en) 2002-09-06
CN1200761C (zh) 2005-05-11
GB0218017D0 (en) 2002-09-11
JP3986964B2 (ja) 2007-10-03
JP2004516389A (ja) 2004-06-03
AU2001295323B8 (en) 2010-03-25
NO20024199D0 (no) 2002-09-03
WO2002053315A2 (en) 2002-07-11
CN1416362A (zh) 2003-05-07
US6506229B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
US6746511B2 (en) Decomposition method for producing submicron particles in a liquid bath
Heinrichs et al. Palladium–silver sol-gel catalysts for selective hydrodechlorination of 1, 2-dichloroethane into ethylene
CN109453773B (zh) 一种负载型双金属核壳结构催化剂及其制备方法
EP0591881B1 (en) Method for making palladium and palladium oxide powders by aerosol decomposition
EP0591882A1 (en) Method for making silver powder by aerosol decomposition
KR100505174B1 (ko) 서브마이크론 크기의 금속입자를 함유한 액체 분산물제조방법
Besenhard et al. Continuous production of iron oxide nanoparticles via fast and economical high temperature synthesis
TWI588092B (zh) 碳化鈦微粒子之製造方法
Nongwe et al. Pt supported nitrogen doped hollow carbon spheres for the catalysed reduction of cinnamaldehyde
Dzimitrowicz et al. Size-controlled synthesis of gold nanoparticles by a novel atmospheric pressure glow discharge system with a metallic pin electrode and a flowing liquid electrode
US9308585B2 (en) Aerosol reduction/expansion synthesis (A-RES) for zero valent metal particles
Chaudret et al. Organometallic nanoparticles of metals or metal oxides
Ramírez-Crescencio et al. Facile obtaining of Iridium (0), Platinum (0) and Platinum (0)-Iridium (0) alloy nanoparticles and the catalytic reduction of 4-nitrophenol
US5093101A (en) Method for the preparation of active magnesium hydride-magnesium-hydrogen storage systems and apparatus for carrying out the method
Konda et al. Flame‐based synthesis and in situ functionalization of palladium alloy nanoparticles
Klein et al. Synthesis of submicron aluminum particles via thermal decomposition of alkyl aluminum precursors in the presence of metal seeds and their application in the formation of ruthenium aluminides
JPH10296093A (ja) 触媒製造装置及びその装置を用いて製造された微粒子触媒
Yi et al. Gases
EP3883713A1 (en) A method of producing spherical iron powder and products thereof
D’Souza et al. Synthesis of metal colloids
JP3276390B2 (ja) 窒化鉄粒子とその製造方法
Bahmanyar et al. Online monitoring and mass transfer modelling of the growth of Ni‐B nanoparticles in a reverse micelle system
SOBOLEVA et al. ULTRAFINECOPPER AND NICKEL POWDERS INTHE ELECTRO-CATALYTICHYDROGENATIONOF ORGANIC COMPOUNDS
JPH0644990B2 (ja) 複合微粉体材料の製造方法
Sarraf-Mamoory Preparation and processing of fine copper powders from organic media.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120710

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130705

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee