KR100499013B1 - Fe-Si alloy powder cores and fabrication process thereof - Google Patents

Fe-Si alloy powder cores and fabrication process thereof Download PDF

Info

Publication number
KR100499013B1
KR100499013B1 KR10-2002-0038008A KR20020038008A KR100499013B1 KR 100499013 B1 KR100499013 B1 KR 100499013B1 KR 20020038008 A KR20020038008 A KR 20020038008A KR 100499013 B1 KR100499013 B1 KR 100499013B1
Authority
KR
South Korea
Prior art keywords
alloy powder
based alloy
binder
core
powder core
Prior art date
Application number
KR10-2002-0038008A
Other languages
Korean (ko)
Other versions
KR20020064713A (en
Inventor
김규진
박진영
정준호
정경우
Original Assignee
휴먼일렉스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 휴먼일렉스(주) filed Critical 휴먼일렉스(주)
Priority to KR10-2002-0038008A priority Critical patent/KR100499013B1/en
Publication of KR20020064713A publication Critical patent/KR20020064713A/en
Application granted granted Critical
Publication of KR100499013B1 publication Critical patent/KR100499013B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명은 고주파 영역에서 연자기 특성이 우수한 Fe-Si계 합금 분말 코아 및 그 제조방법을 제공한다. 상기 Fe-Si계 합금 분말 코아의 제조방법은 결합제를 유기용매 및 물에 용해시켜 결합제 용액을 얻는 단계; Fe-Si계 합금 분말에 상기 결합제 용액을 부가 및 혼합하여 Fe-Si계 합금 분말 표면에 결합제가 코팅된 복합 입자 분말을 제조하는 단계; 상기 복합 입자 분말을 성형하는 단계; 및 상기 결과물을 400∼900℃에서 열처리하는 단계;를 포함하는 것을 특징으로 한다. 본 발명에 의하면, Fe-Si계 합금 분말과, 결합제로서 폴리이미드계, 페놀계 수지 및 무기질계 물유리를 사용하여 상온에서 압축 성형하여 Fe-Si계 합금 분말 코아를 제조한다. 본 발명의 Fe-Si계 합금 분말 코아는 종래기술에 따라 고온 열처리과정을 거쳐 제조된 Fe-Si계 합금 분말 코아에 비해 주파수 특성이 우수하며, 현재 상용화되고 있는 센더스트(Sendust) 및 MPP 코아에 비하여 연자기특성(포화자속밀도 등)이 우수하며, 특히 주파수 특성은 월등 우수하다. 따라서 본 발명에 의하면, 성형밀도가 높고 입자간 절연이 양호하여 고주파 대역에서도 투자율의 변화가 거의 없으며 수kHz에서 수십MHz 주파수 대역의 전기 및 전자 디바이스용 자기소자로서 이용 가능한 경제성이 뛰어난 금속 자성 분말 코아를 제조할 수 있게 된다.The present invention provides an Fe-Si-based alloy powder core having excellent soft magnetic properties in a high frequency region and a method of manufacturing the same. The Fe-Si-based alloy powder core manufacturing method comprises the steps of dissolving a binder in an organic solvent and water to obtain a binder solution; Preparing a composite particle powder coated with a binder on the Fe-Si-based alloy powder surface by adding and mixing the binder solution to the Fe-Si-based alloy powder; Molding the composite particle powder; And heat-treating the resultant at 400 to 900 ° C. According to the present invention, Fe-Si-based alloy powder cores are prepared by compression molding at room temperature using Fe-Si-based alloy powder and polyimide-based, phenol-based resin and inorganic water-glass as binders. The Fe-Si-based alloy powder core of the present invention has superior frequency characteristics compared to the Fe-Si-based alloy powder core prepared through a high temperature heat treatment process according to the prior art, and is currently commercially available in Sendust and MPP cores. Compared with the soft magnetic characteristics (saturated magnetic flux density, etc.), the frequency characteristics are particularly excellent. Therefore, according to the present invention, the metal powder powder core has excellent molding density, good intergranular insulation, almost no change in permeability even in the high frequency band, and can be used as a magnetic element for electric and electronic devices in the frequency band of several tens of MHz at several kHz. It can be prepared.

Description

Fe-Si계 합금 분말 코아 및 그 제조방법{Fe-Si alloy powder cores and fabrication process thereof}          Fe-Si alloy powder core and its manufacturing method {Fe-Si alloy powder cores and fabrication process

본 발명은 Fe-Si계 합금 분말 코아 및 그 제조방법에 관한 것으로서, 보다 상세하기로는, 가격이 저렴하면서도 연자기 특성이 우수한 Fe-Si계 자성 분말을 이용하여 고주파영역에서 안정적으로 사용할 수 있는 Fe-Si계 합금 분말 코아 및 이를 경제적으로 제조하는 방법에 관한 것이다.       The present invention relates to a Fe-Si-based alloy powder core and a method for manufacturing the same, and more specifically, Fe can be used stably in the high frequency region by using a Fe-Si-based magnetic powder having a low cost and excellent soft magnetic properties Si-based alloy powder core and a method for economically manufacturing the same.

Fe-Si계 합금 분말 코아는 일반적으로 Fe-Si계 합금을 분쇄하여 분말로 만든 다음, 이를 소정 온도 및 압력하에서 성형하고 열처리하여 코아로 만드는 것이 일반적이다. Fe-Si-based alloy powder core is generally pulverized Fe-Si-based alloy into a powder, then molded and heat treated under a predetermined temperature and pressure into a core.

그런데, 상기 제조과정중 열처리온도가 1100℃ 이상으로 매우 높은 편이라서 열처리하는 과정에서 Fe-Si계 합금 분말 입자가 산화되거나 또는 이들 입자간 소결이 일어나게 된다. 이와 같이 Fe-Si계 합금 분말 입자간 소결이 일어나게 되면, 최종적으로 얻어진 Fe-Si계 합금 분말은 연자기 특성은 우수하지만 고주파 특성이 떨어져 수백 kHz 대역 이상으로의 적용이 어렵다는 문제점이 있다. 이밖에도 열처리가 고온에서 이루어져야 하므로 이로 인하여 제조비용이 높아지는 문제점도 있다.However, since the heat treatment temperature during the manufacturing process is very high, such as 1100 ° C. or more, the Fe-Si-based alloy powder particles are oxidized or sintering occurs during the heat treatment. When the sintering of the Fe-Si-based alloy powder particles occurs as described above, the finally obtained Fe-Si-based alloy powder has a soft magnetic property, but has a high frequency characteristic, which is difficult to apply to more than several hundred kHz band. In addition, since the heat treatment must be made at a high temperature, there is also a problem in that the manufacturing cost increases.

본 발명이 이루고자 하는 기술적 과제는 상기 문제점을 해결하여 분말 입자간 절연이 양호하여 고주파 영역에서 연자기 특성이 우수한 Fe-Si계 합금 분말 코아를 제공하는 것이다.The technical problem to be achieved by the present invention is to solve the above problems to provide a Fe-Si-based alloy powder core having excellent soft magnetic properties in the high frequency region because of the good insulation between powder particles.

본 발명이 이루고자 하는 다른 기술적 과제는 저온 열처리공정을 거쳐 상술한 특성을 갖는 Fe-Si계 합금 분말 코아를 경제적으로 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for economically manufacturing a Fe-Si-based alloy powder core having the above-described characteristics through a low temperature heat treatment process.

상기 기술적 과제를 이루기 위하여 본 발명에서는, (a) 결합제를 유기용매 및 물에 용해시켜 결합제 용액을 얻는 단계;In order to achieve the above technical problem, the present invention, (a) dissolving the binder in an organic solvent and water to obtain a binder solution;

(b) Fe-Si계 합금 분말에 상기 결합제 용액을 부가 및 혼합하여 Fe-Si계 합금 분말 표면에 결합제가 코팅된 복합 입자 분말을 제조하는 단계(b) preparing a composite particle powder coated with a binder on the Fe-Si-based alloy powder by adding and mixing the binder solution to the Fe-Si-based alloy powder;

(c) 상기 복합 입자 분말을 성형하는 단계; 및(c) molding the composite particle powder; And

(d) 상기 결과물을 400 내지 900℃에서 열처리하는 단계;를 포함하는 것을 특징으로 하는 Fe-Si계 합금 분말 코아의 제조방법을 제공한다.(d) heat-treating the resultant at 400 to 900 ° C. to provide a method for producing a Fe-Si-based alloy powder core comprising a.

상기 (a) 단계의 Fe-Si계 합금 분말은 Si 2 내지 10 wt%와 Fe 90 내지 98 wt%를 포함하는 것이 바람직하다.The Fe-Si-based alloy powder of step (a) preferably comprises 2 to 10 wt% of Si and 90 to 98 wt% of Fe.

상기 (c) 단계의 성형 단계는 상온에서 10 내지 30 ton/㎠의 압력하에서 이루어지는 것이 바람직하다.The forming step of step (c) is preferably made at a pressure of 10 to 30 ton / ㎠ at room temperature.

상기 (d)의 열처리 단계는 불활성 분위기 또는 환원성 분위기에서 이루어지는 것이 바람직하다.The heat treatment step (d) is preferably made in an inert atmosphere or a reducing atmosphere.

상기 (a) 단계에서 사용된 결합제는 폴리이미드계 수지, 페놀계 수지 및 소듐 실리케이트로 이루어진 군으로부터 선택된 1종 이상을 사용하며, 그 함량은 Fe-Si계 합금 분말 코아의 고형분 총중량을 기준으로 하여 0.1 내지 2.0 wt%인 것이 바람직하다.The binder used in step (a) uses at least one selected from the group consisting of polyimide resins, phenolic resins and sodium silicates, the content of which is based on the total weight of the solid content of the Fe-Si-based alloy powder cores. It is preferable that it is 0.1-2.0 wt%.

본 발명의 다른 기술적 과제는 상술한 제조과정에 따라 제조된 Fe-Si계 합금 분말에 의하여 이루어진다.Another technical problem of the present invention is made by the Fe-Si-based alloy powder prepared according to the above-described manufacturing process.

본 발명은 Fe-Si계 합금 분말 코아 제조시, 평균입경이 수십㎛인 Fe-Si계 합금분말의 표면에 고결합성 및 고강도 특성을 갖는 결합제를 균일하게 코팅한 다음, 이를 상온에서 성형 및 비산화성 분위기하에서 저온 열처리한 데 그 특징이 있다. In the present invention, when the Fe-Si alloy powder cores are manufactured, uniformly coating a binder having high binding properties and high strength properties on the surface of the Fe-Si alloy powder having an average particle diameter of several tens of micrometers, and then forming and non-oxidizing at room temperature It is characterized by low temperature heat treatment in an atmosphere.

상기 Fe-Si계 합금 분말은 결정질 분말으로서, Fe의 함량은 2 내지 10 wt%이고, 특히 4 내지 8 wt%인 것이 보다 바람직하다. 만약 Fe의 함량이 2 wt% 미만이면 연자기 및 고주파 특성이 나빠지고, 10 wt%를 초과하면 분말의 취성이 급격히 높아져 성형성이 크게 떨어져서 바람직하지 못하다.The Fe-Si-based alloy powder is a crystalline powder, the content of Fe is 2 to 10 wt%, more preferably 4 to 8 wt%. If the content of Fe is less than 2 wt%, the soft magnetic and high frequency characteristics deteriorate. If the content of Fe exceeds 10 wt%, the brittleness of the powder is sharply increased and moldability is largely deteriorated.

상기 Fe-Si계 합금 분말은 주로 기계적 합금화법, 급냉 응고법, 수분사법 등에 의해 제조될 수 있으며, 본 발명에서는 고압의 수분사법에 의해 제조된 분말을 사용한다. The Fe-Si-based alloy powder may be mainly produced by mechanical alloying, quench solidification, water spraying, etc. In the present invention, a powder prepared by a high pressure water spraying method is used.

본 발명에서 사용하는 Fe-Si계 합금분말의 평균 입경은 150㎛ 이하, 10 내지 150㎛인 것이 보다 바람직하고, 특히 약 20㎛인 것이 가장 바람직하다. 만약 Fe-Si계 합금 분말의 입경이 150㎛를 초과하면 연자기 특성은 향상되지만 고주파 특성이 크게 떨어진다. 그리고 Fe-Si계 합금 분말의 입경 분포는 5 내지 150㎛ 범위인 것이 바람직하다. As for the average particle diameter of the Fe-Si type alloy powder used by this invention, it is more preferable that it is 150 micrometers or less and 10-150 micrometers, and it is especially preferable that it is about 20 micrometers. If the particle diameter of the Fe-Si-based alloy powder exceeds 150㎛, the soft magnetic properties are improved, but the high frequency characteristics are greatly reduced. And the particle size distribution of the Fe-Si-based alloy powder is preferably in the range of 5 to 150㎛.

이하, 본 발명에 따른 Fe-Si계 합금 분말 코아의 제조방법을 살펴보기로 한다.Hereinafter, a method of manufacturing a Fe-Si-based alloy powder core according to the present invention will be described.

먼저, 결합제를 유기용매 및 물에 용해하여 결합제 용액을 제조한다. 여기에서 결합제는 연화점이 Fe-Si계 합금 분말의 열처리 온도보다 낮아야 하며, 상온에서도 어느 정도 접합 강도를 나타내 상온에서 성형 압력에 따라 코아의 형상을 유지하면서 크랙 발생을 억제할 수 있는 특성을 갖는다면 어느 것을 사용하여도 무방하다. First, the binder is dissolved in an organic solvent and water to prepare a binder solution. Here, if the binder has a softening point lower than the heat treatment temperature of the Fe-Si-based alloy powder, and exhibits a bonding strength at room temperature and maintains the core shape according to the molding pressure at room temperature, it can suppress cracking. Any may be used.

결합제의 구체적인 예로는 폴리이미드계 수지, 페놀계 수지, 실리케이트(일명, "물유리"라고 함), 그 혼합물 등을 들 수 있다. 그리고 이의 함량은 Fe-Si계 합금 분말 코아의 고형분 총중량을 기준으로 하여 0.1 내지 2.0 wt%인 것이 바람직하다. 여기에서 "Fe-Si계 합금 분말 코아의 고형분 총중량"이란 Fe-Si계 합금 분말 코아를 구성하는 고형분인 결합제와 Fe-Si계 합금 분말의 총 중량을 가르킨다.Specific examples of the binder include polyimide resins, phenolic resins, silicates (also called "water glass"), mixtures thereof, and the like. And the content thereof is preferably 0.1 to 2.0 wt% based on the total weight of the solid content of Fe-Si-based alloy powder core. Here, the "solid content gross weight of Fe-Si type alloy powder core" refers to the total weight of the binder which is solid content which comprises Fe-Si type alloy powder core, and Fe-Si type alloy powder.

만약 결합제의 함량이 0.1 wt% 미만에서는 접합강도가 약하여 합금분말의 성형시 표면크랙이 빈번하게 발생하며, 2.0 wt%를 초과하면 결합제의 양이 상대적으로 많아지게 되어 합금 분말 입자간의 접합강도는 강해지지만, 성형체중에 결합제의 양이 많게 되어 연자기 특성이 저하되기 때문이다. If the content of the binder is less than 0.1 wt%, the bonding strength is weak, so that the surface cracks frequently occur during the molding of the alloy powder. If the content of the binder exceeds 2.0 wt%, the amount of the binder becomes relatively large, and the bonding strength between the alloy powder particles becomes stronger. However, this is because the amount of the binder in the molded body increases, resulting in a decrease in soft magnetic properties.

상기 용매는 결합제를 용해시킬 수 있는 것이라면 어느 것을 사용하여도 무방하며, 바람직한 예로서 메틸렌클로라이드, 알코올, 물 등을 들 수 있다.The solvent may be used as long as it can dissolve the binder, and examples thereof include methylene chloride, alcohol and water.

상기 용매의 바람직한 함량은 결합제 1g을 기준으로 하여 50 내지 200ml이다. 50ml 이하면 용액의 양이 충분치 않아 분말에 균일하게 코팅이 되지 않으며, 200ml 이상이면 분말 코팅후 용매의 건조에 상당한 시간이 걸리게 된다. The preferred content of the solvent is 50 to 200 ml based on 1 g of binder. If it is less than 50ml, the amount of solution is not enough to uniformly coat the powder, and if it is more than 200ml, it takes a considerable time to dry the solvent after powder coating.

이어서, Fe-Si계 합금 분말에 상기 과정에 따라 얻은 결합제 용액을 부가 및 혼합하여 상기 Fe-Si계 합금 분말 표면에 결합제가 코팅된 복합 입자 분말을 제조한다. Subsequently, the binder solution obtained according to the above process is added to and mixed with the Fe-Si-based alloy powder to prepare a composite particle powder coated with a binder on the Fe-Si-based alloy powder surface.

그 후, 상기 결과물을 상온, 10 내지 30 ton/㎠의 압력하에서 성형하여 코아를 형성한다.Thereafter, the resultant is molded at room temperature under a pressure of 10 to 30 ton / cm 2 to form a core.

상기 성형압력이 10 ton/㎠ 미만이면 코아의 성형밀도가 낮아져 연자기 특성이 나빠지며, 30 ton/㎠를 초과하면 성형용 금형의 마모 증대 및 표면흠의 빈번 발생 등으로 인하여 금형의 교체 주기가 빨라져 생산 원가가 높아지기 때문이다. 그리고 상기 성형 시간은 5 내지 30초이며, 특히 10초 이내로 하는 것이 바람직하다.If the molding pressure is less than 10 ton / ㎠, the molding density of the core is lowered, the soft magnetic properties are worse, and if the molding pressure exceeds 30 ton / ㎠, the replacement cycle of the mold due to the increase in wear of the molding die and frequent occurrence of surface defects This is because the production costs are higher due to the faster production. And the said molding time is 5 to 30 second, It is preferable to set it as 10 second especially.

상기 과정에 따라 제조된 코아를 열처리한다. 이와 같이 열처리하는 과정을 거치는 것은 주로 분말의 제조 시 또는 성형시 야기된 내부 응력을 제거하고 결합제의 경화에 의한 성형된 코아의 강도를 높이거나, 열처리 동안 결정립의 성장에 의한 자기적인 특성을 향상시키는 장점이 있다.The core prepared according to the above process is heat treated. This heat treatment process mainly removes the internal stress caused during the manufacture or molding of the powder and increases the strength of the molded core by curing the binder, or improves the magnetic properties due to the growth of grains during the heat treatment. There is an advantage.

상기 열처리온도는 400 내지 900℃, 특히 500 내지 800℃인 것이 바람직하다. 만약 열처리온도가 400℃ 미만이면 성형한 코아의 내부응력이 충분히 제거되지 않고, 900℃를 초과하면 결합제의 분해 및 제조원가가 높아지므로 바람직하지 못하다.The heat treatment temperature is preferably 400 to 900 ° C, particularly 500 to 800 ° C. If the heat treatment temperature is less than 400 ℃, the internal stress of the molded core is not sufficiently removed, if it exceeds 900 ℃ it is not preferable because the decomposition and manufacturing cost of the binder is high.

상기 열처리단계는 비산화성 분위기 즉, 아르곤 가스, 질소 가스 등과 같은 불활성 가스를 이용하여 불활성 분위기 또는 수소 가스와 같은 환원성 가스를 이용하여 환원성 가스 분위기로 유지하는 것이 바람직하다. 그리고 열처리 시간은 10 내지 150분 정도로 하는 것이 적당하다. 만약 열처리 시간이 10분 미만이면 응력 제거가 충분치 않고, 150분을 초과하면 생산성이 저하되어 바람직하지 못하다.The heat treatment step is preferably maintained in a reducing gas atmosphere by using an inert atmosphere or a reducing gas such as hydrogen gas by using an inert gas such as argon gas or nitrogen gas. The heat treatment time is suitably about 10 to 150 minutes. If the heat treatment time is less than 10 minutes, stress relief is not enough, and if it exceeds 150 minutes, productivity is lowered, which is not preferable.

상기 과정에 따라 제조하면 10㎒ 및 0.1㎒의 주파수 대역에서 측정된 투자율비가 0.85 이상이면서, 기존의 MPP(Moly-Permalloy Powder) 및 센더스트(Sendust )등의 분말 코아에 비해 포화자속밀도 및 실효투자율이 우수한 Fe-Si계 합금 분말 코아를 제조할 수 있다.When manufactured according to the above process, the permeability ratio measured in the frequency bands of 10 MHz and 0.1 MHz is 0.85 or more, and the saturation magnetic flux density and the effective permeability compared to powder cores such as MPP (Moly-Permalloy Powder) and Sendust, etc. This excellent Fe-Si alloy powder core can be manufactured.

이하, 본 발명을 하기 실시예를 들어 설명하기로 하되, 본 발명이 하기 실시예로만 한정되는 것은 결코 아니다.Hereinafter, the present invention will be described with reference to the following examples, but the present invention is not limited only to the following examples.

실시예 1Example 1

폴리이미드 0.5wt%를 메틸렌 클로라이드 100ml에 녹여 제조된 폴리이미드 용액을 준비하였다.0.5 wt% of polyimide was dissolved in 100 ml of methylene chloride to prepare a prepared polyimide solution.

이어서, 수분사법으로 제조된 Fe93.5Si6.5 합금 분말(평균입경: 20㎛, 입경분포: 5 내지 150㎛) 95.5wt%에 상기 폴리이미드 용액을 부가 및 혼합한 후, 건조하여 Fe-Si계 합금 분말의 표면에 폴리이미드가 0.1㎛ 이하의 두께로 균일하게 코팅된 복합 입자 분말을 제조하였다.Subsequently, the polyimide solution was added to and mixed with 95.5 wt% of Fe 93.5 Si 6.5 alloy powder (average particle diameter: 20 μm, particle size distribution: 5 to 150 μm) prepared by water spraying, followed by drying to dry Fe-Si alloy On the surface of the powder was prepared composite particle powder uniformly coated with a polyimide to a thickness of 0.1㎛ or less.

상기 복합 입자 분말을 외경 9.65mm, 내경 4.78mm의 성형용 금형의 내부에 1g정도 장입한 후, 상온에서 약 15 ton/㎠의 압력으로 성형하고 질소(N2) 또는 아르곤(Ar) 가스 분위기하의 740℃에서 약 60분간 열처리하여 Fe-Si계 합금 분말 코아를 제조하였다.1 g of the composite particle powder was charged into the mold for molding having an outer diameter of 9.65 mm and an inner diameter of 4.78 mm, and then molded at a pressure of about 15 ton / cm 2 at room temperature and under a nitrogen (N 2 ) or argon (Ar) gas atmosphere. Heat treatment at 740 ° C. for about 60 minutes yielded a Fe—Si alloy powder core.

상기 실시예 1에 따라 제조된 Fe-Si계 합금 분말 코아의 평균 결정입경, 밀도 및 포화자속밀도(saturated magnetic flux), 여러 주파수 대역에서의 실효 투자율(effective permeability) 및 투자율비(μ10㎒0.1㎒)를 조사하여 하기 표 1에 나타내었다. 여기서, 결정립 평균크기는 XRD(X-ray Diffraction) 및 TEM(Transmission Electron Microscope)에 의해 분석한 평균입경의 값을 나타낸 것이며, 코아의 밀도는 코아의 실제 질량을 코아의 체적으로 나누어 계산된 값이며, 포화자속밀도(Bs)는 VSM(Vibrating Sample Magnetometer)을 이용하여 5,000 Oe의 외부 자장하에서 측정된 값이며, 실효 투자율은 LCR meter를 이용하여 각각의 주파수 대역에서 10 mOe의 외부 자장하에서 측정된 값이다. 그리고, 투자율비(μ10㎒0.1㎒)는 10㎒와 0.1㎒에서 측정된 투자율 값의 비를 나타낸 것이다.Average grain size, density and saturated magnetic flux of the Fe-Si-based alloy powder core prepared according to Example 1, effective permeability and permeability ratio in various frequency bands (μ 10 MHz / μ 0.1 MHz ) is shown in Table 1 below. Here, the average grain size represents the value of the average particle diameter analyzed by XRD (X-ray Diffraction) and Transmission Electron Microscope (TEM), the core density is calculated by dividing the core's actual mass by the volume of the core. The saturation magnetic flux density (B s ) is measured under an external magnetic field of 5,000 Oe using a Vibrating Sample Magnetometer (VSM), and the effective permeability is measured under an external magnetic field of 10 mOe in each frequency band using an LCR meter. Value. The permeability ratio (μ 10 MHz / μ 0.1 MHz) represents the ratio of the permeability values measured at 10 MHz and 0.1 MHz.

실시예 2Example 2

Fe93.5Si6.5 합금 분말(평균입경: 20㎛, 입경분포: 5 내지 150㎛) 대신 Fe97.0Si3.0 합금분말(평균입경: 45㎛, 입경분포: 5 내지 150㎛)을 사용한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Fe-Si계 합금 분말 코아를 제조하였다.Except for using Fe 93.5 Si 6.5 alloy powder (average particle diameter: 20㎛, particle size distribution: 5 to 150㎛) instead of Fe 97.0 Si 3.0 alloy powder (average particle diameter: 45㎛, particle size distribution: 5 to 150㎛), Fe-Si-based alloy powder core was prepared in the same manner as in Example 1.

실시예 3Example 3

폴리이미드 용액 제조시 폴리이미드의 함량이 0.1wt%이고, Fe93.5Si6.5 합금 분말 99.9wt%를 사용한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Fe-Si계 합금 분말 코아를 제조하였다.A Fe-Si-based alloy powder core was prepared in the same manner as in Example 1 except that the polyimide content was 0.1 wt% and 99.9 wt% Fe 93.5 Si 6.5 alloy powder was used to prepare the polyimide solution.

실시예 4Example 4

폴리이미드 용액 제조시 폴리이미드의 함량이 1.0wt%이고, Fe93.5Si6.5 합금 분말 99.0wt%을 사용한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Fe-Si계 합금 분말 코아를 제조하였다.A Fe-Si-based alloy powder core was prepared in the same manner as in Example 1 except that the polyimide content was 1.0 wt% and 99.0 wt% Fe 93.5 Si 6.5 alloy powder was used.

실시예 5Example 5

폴리이미드 대신 물유리(Sodium Silicate)를 사용한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Fe-Si계 합금 분말 코아를 제조하였다.A Fe-Si-based alloy powder core was prepared in the same manner as in Example 1 except that water glass (Sodium Silicate) was used instead of polyimide.

실시예 6Example 6

폴리이미드 대신 페놀계 수지를 사용한 것을 제외하고는, 실시예 1과 동일하게 실시하여 Fe-Si계 합금 분말 코아를 제조하였다.A Fe-Si-based alloy powder core was prepared in the same manner as in Example 1 except that a phenol-based resin was used instead of the polyimide.

실시예 7Example 7

성형압력이 10 ton/㎠으로 변화된 것을 제외하고는, 실시예 1과 동일하게 실시하여 Fe-Si계 합금 분말 코아를 제조하였다.A Fe-Si alloy powder core was prepared in the same manner as in Example 1 except that the molding pressure was changed to 10 ton / cm 2.

실시예 8Example 8

성형압력이 20 ton/㎠으로 변화된 것을 제외하고는, 실시예 1과 동일하게 실시하여 Fe-Si계 합금 분말 코아를 제조하였다.A Fe-Si alloy powder core was prepared in the same manner as in Example 1 except that the molding pressure was changed to 20 ton / cm 2.

실시예 9Example 9

열처리 온도가 400℃로 변화된 것을 제외하고는, 실시예 1과 동일하게 실시하여 Fe-Si계 합금 분말 코아를 제조하였다.Except that the heat treatment temperature was changed to 400 ℃, was carried out in the same manner as in Example 1 to prepare a Fe-Si alloy powder core.

실시예 10Example 10

열처리 온도가 600℃로 변화된 것을 제외하고는, 실시예 1과 동일하게 실시하여 Fe-Si계 합금 분말 코아를 제조하였다.Except that the heat treatment temperature was changed to 600 ℃, it was carried out in the same manner as in Example 1 to prepare a Fe-Si alloy powder core.

비교예 1Comparative Example 1

일반적으로 사용되고 있는 금속 합금 분말 코아로서 국내에서 상용화되고 있는 실시예 1과 동일한 크기의 센더스트(Fe84.1Si10.1Al5.8) 분말 코아의 특성을 비교예로 나타내었다.As a comparative example, the characteristics of the powder core of Sendust (Fe 84.1 Si 10.1 Al 5.8 ) having the same size as that of Example 1 commercially available in Korea as a metal alloy powder core commonly used are shown.

비교예 2Comparative Example 2

일반적으로 사용되고 있는 금속합금분말 코아로서 국내에서 상용화되고 있는 실시예 1과 동일한 크기의 MPP(Fe18Ni80Mo2) 분말 코아의 특성을 비교예로 나타내었다.The characteristics of MPP (Fe 18 Ni 80 Mo 2 ) powder cores of the same size as those of Example 1 commercially available in Korea as metal alloy powder cores generally used are shown as comparative examples.

비교예 3Comparative Example 3

폴리이미드 대신 물유리를 사용하고, 열처리 온도가 1100℃인 것을 제외하고는, 실시예 1과 동일한 방법에 따라 실시하여 Fe-Si계 합금 분말 코아를 제조하였다. Water glass was used instead of polyimide, and the Fe-Si-based alloy powder core was prepared in the same manner as in Example 1 except that the heat treatment temperature was 1100 ° C.

상기 표 1을 참조하면, 실시예 1 내지 10에 따라 제조된 Fe-Si계 합금 분말 코아는 성형밀도가 6.0을 나타내며, 이에 따라 포화자속밀도가 1.5T이상, 100kHz에서 실효투자율이 100 이상을 나타냈다. 특히, 6.5wt% Si을 함유한 Fe-Si계 합금 분말코아의 경우 15Ton/cm2이상의의 압력으로 성형하여 740℃에서 열처리한 분말코아의 경우 100kHz에서 실효투자율이 130 이상이며, 투자율비(μ10㎑0.1㎑)도 0.85 이상을 나타낸다. 이로부터 상기 비교예 1 및 2에 따라 제조된 MPP 및 센더스트 분말 코아는 수백kHz까지 적용이 불가능한데 비하여, 상기 실시예 1 내지 10에 따라 제조된 Fe-Si계 합금 분말 코아는 10 MHz 대역 이상까지 적용이 가능하다는 것을 알 수 있었다. 또한 포화자속밀도도 상기 비교예 1 및 2의 경우와 비교하여 동등하거나 또는 그 이상의 특성을 나타냈다.Referring to Table 1, the Fe-Si-based alloy powder cores prepared according to Examples 1 to 10 exhibited a molding density of 6.0. Accordingly, the saturation magnetic flux density was 1.5T or more and the effective permeability was 100 or more at 100kHz. . Particularly, in the case of Fe-Si alloy powder cores containing 6.5 wt% Si, the powder cores formed at a pressure of 15 Ton / cm 2 or more and heat-treated at 740 ° C. have an effective permeability of 130 or more at 100 kHz, and a magnetic permeability ratio (μ 10 μs / μ 0.1 μs ) also represents 0.85 or more. The MPP and sender powder cores prepared according to Comparative Examples 1 and 2 cannot be applied up to several hundred kHz, whereas the Fe-Si-based alloy powder cores prepared according to Examples 1 to 10 are 10 MHz or more. It can be seen that it is possible to apply until. Moreover, the saturation magnetic flux density also showed the same or more characteristic compared with the case of the comparative examples 1 and 2.

본 발명에 의하면, Fe-Si계 합금 분말과, 결합제로서 폴리이미드계, 페놀계의 열경화성 수지 및 무기질계 물유리를 사용하여 상온에서 압축 성형하여 Fe-Si계 합금 분말 코아를 제조한다. 본 발명의 Fe-Si계 합금 분말 코아는 종래기술에 따라 고온 열처리과정을 거쳐 제조된 Fe-Si계 합금 분말 코아에 비해 주파수 특성이 우수하며, 현재 상용화되고 있는 센더스트 및 MPP 코아에 비하여 연자기특성(포화자속밀도 등)이 우수하며, 특히 주파수 특성은 월등 우수하다. 따라서 본 발명에 의하면, 성형밀도가 높고 입자간 절연이 양호하여 고주파 대역에서도 투자율의 변화가 거의 없으며 수 kHz에서 수십 MHz 주파수 대역의 전기 및 전자 디바이스용 자기소자로서 이용 가능한 경제성이 뛰어난 금속 자성 분말 코아를 제조할 수 있게 된다. According to the present invention, Fe-Si-based alloy powder cores are prepared by compression molding at room temperature using Fe-Si-based alloy powder, polyimide-based, phenol-based thermosetting resin, and inorganic water-glass as binders. Fe-Si-based alloy powder core of the present invention has excellent frequency characteristics compared to Fe-Si-based alloy powder core prepared through a high-temperature heat treatment process according to the prior art, soft magnetic compared to the present commercially available Sendust and MPP core The characteristics (saturated magnetic flux density, etc.) are excellent, especially the frequency characteristics are excellent. Therefore, according to the present invention, the metal powder powder core with excellent economic efficiency can be used as a magnetic device for electric and electronic devices in the frequency range of several kHz to several tens of MHz, with high molding density and good intergranular insulation. It can be prepared.

Claims (6)

(a) 결합제를 유기용매 및 물에 용해시켜 결합제 용액을 얻는 단계;(a) dissolving the binder in an organic solvent and water to obtain a binder solution; (b) Fe-Si계 합금 분말에 상기 결합제 용액을 부가 및 혼합하여 Fe-Si계 합금 분말 표면에 결합제가 코팅된 복합 입자 분말을 제조하는 단계;(b) adding and mixing the binder solution to the Fe-Si-based alloy powder to prepare a composite particle powder coated with a binder on the Fe-Si-based alloy powder surface; (c) 상기 복합 입자 분말을 상온에서 10 내지 30 ton/㎠의 압력하에서 성형하는 단계; 및(c) molding the composite particle powder under a pressure of 10 to 30 ton / cm 2 at room temperature ; And (d) 상기 결과물을 400 내지 900℃에서 열처리하는 단계;를 포함하는 것을 특징으로 하는 Fe-Si계 합금 분말 코아의 제조방법.(d) heat-treating the resultant at 400 to 900 ° C .; a method for producing a Fe-Si alloy powder core, comprising: a. 제1항에 있어서, 상기 Fe-Si계 합금 분말이 Si 2 내지 10 wt%와 Fe 90 내지 98 wt%를 포함하는 것을 특징으로 하는 Fe-Si계 합금 분말 코아의 제조방법The method of claim 1, wherein the Fe-Si-based alloy powder comprises Si 2 to 10 wt% and Fe 90 to 98 wt%. 삭제delete 제1항에 있어서, 상기 (d) 단계가 불활성 분위기 또는 환원성 분위기에서 이루어지는 것을 특징으로 하는 Fe-Si계 합금 분말 코아의 제조방법The method of claim 1, wherein the step (d) is performed in an inert atmosphere or in a reducing atmosphere. 제1항에 있어서, 상기 (a) 단계의 결합제가 폴리이미드계 수지, 페놀계 수지 및 소듐 실리케이트로 이루어진 군으로부터 선택된 1종 이상이고,The method of claim 1, wherein the binder of step (a) is at least one selected from the group consisting of polyimide resins, phenolic resins, and sodium silicates, 그 함량이 Fe-Si계 합금 분말 코아의 고형분 총중량을 기준으로 하여 0.1 내지 2.0 wt%인 것을 특징으로 하는 Fe-Si계 합금 분말 코아의 제조방법Method for producing a Fe-Si-based alloy powder core, characterized in that the content of 0.1 to 2.0 wt% based on the total weight of the solid content of the Fe-Si-based alloy powder core. 제1항, 제2항, 제4항 또는 제5항 중 선택된 어느 한 항의 방법에 따라 제조된 Fe-Si계 합금 분말 코아.Fe-Si-based alloy powder core prepared according to the method of any one of claims 1, 2, 4 or 5.
KR10-2002-0038008A 2002-07-02 2002-07-02 Fe-Si alloy powder cores and fabrication process thereof KR100499013B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0038008A KR100499013B1 (en) 2002-07-02 2002-07-02 Fe-Si alloy powder cores and fabrication process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0038008A KR100499013B1 (en) 2002-07-02 2002-07-02 Fe-Si alloy powder cores and fabrication process thereof

Publications (2)

Publication Number Publication Date
KR20020064713A KR20020064713A (en) 2002-08-09
KR100499013B1 true KR100499013B1 (en) 2005-07-01

Family

ID=27727113

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0038008A KR100499013B1 (en) 2002-07-02 2002-07-02 Fe-Si alloy powder cores and fabrication process thereof

Country Status (1)

Country Link
KR (1) KR100499013B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040042214A (en) * 2002-11-13 2004-05-20 휴먼일렉스(주) FABRICATION PROCESS OF SMD CORE USING Fe-Si ALLOY POWDER
KR101883053B1 (en) 2016-07-28 2018-08-27 국민대학교산학협력단 Amorphous/nanocrystalline hybrid soft magnetic powder and method for fabricating the same
KR102258927B1 (en) 2020-04-01 2021-05-31 한국세라믹기술원 Manufacturing method of magnetic material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198708A (en) * 1985-02-28 1986-09-03 Toshiba Corp Choke coil
JPH0867941A (en) * 1994-08-26 1996-03-12 Sumitomo Special Metals Co Ltd Production of sendust type sintered alloy
KR970012814A (en) * 1995-08-31 1997-03-29 이형도 Method of manufacturing powder for Sendust core with low loss
KR970051494A (en) * 1995-12-05 1997-07-29 김종진 Manufacturing method of sintered iron-silicon (Fe-Si) soft magnetic alloy
KR970061410A (en) * 1996-02-07 1997-09-12 윤대근 Manufacturing Method of Alloy Powder for Sendust Core
KR19980033787A (en) * 1996-11-01 1998-08-05 신창식 Method for manufacturing iron-silicon sintered soft magnetic alloy
KR20010025557A (en) * 2001-01-05 2001-04-06 김규진 Amorphous metal alloy powder cores for high frequency range and method for making the same
KR20010076803A (en) * 2000-01-28 2001-08-16 배창환 Silicon steel powder processing method for soft magnetic core material and soft magnetic core processing method using this powder
KR20030013156A (en) * 2001-08-07 2003-02-14 주식회사 디씨엔 Port core made from Fe-Si soft mannetic powder, method of producing thereof and reactor comprising the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198708A (en) * 1985-02-28 1986-09-03 Toshiba Corp Choke coil
JPH0867941A (en) * 1994-08-26 1996-03-12 Sumitomo Special Metals Co Ltd Production of sendust type sintered alloy
KR970012814A (en) * 1995-08-31 1997-03-29 이형도 Method of manufacturing powder for Sendust core with low loss
KR970051494A (en) * 1995-12-05 1997-07-29 김종진 Manufacturing method of sintered iron-silicon (Fe-Si) soft magnetic alloy
KR970061410A (en) * 1996-02-07 1997-09-12 윤대근 Manufacturing Method of Alloy Powder for Sendust Core
KR19980033787A (en) * 1996-11-01 1998-08-05 신창식 Method for manufacturing iron-silicon sintered soft magnetic alloy
KR20010076803A (en) * 2000-01-28 2001-08-16 배창환 Silicon steel powder processing method for soft magnetic core material and soft magnetic core processing method using this powder
KR20010025557A (en) * 2001-01-05 2001-04-06 김규진 Amorphous metal alloy powder cores for high frequency range and method for making the same
KR20030013156A (en) * 2001-08-07 2003-02-14 주식회사 디씨엔 Port core made from Fe-Si soft mannetic powder, method of producing thereof and reactor comprising the same

Also Published As

Publication number Publication date
KR20020064713A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
JP5412425B2 (en) Composite magnetic material and method for producing the same
KR101499297B1 (en) High permeability amorphous powder core and making process using by warm temperarture pressing
JP6651082B2 (en) Method for manufacturing soft magnetic powder core
JP5263653B2 (en) Powder magnetic core and manufacturing method thereof
JP5372481B2 (en) Powder magnetic core and manufacturing method thereof
JP3624681B2 (en) Composite magnetic material and method for producing the same
JP6262504B2 (en) Powder core using soft magnetic powder and method for producing the powder core
JP2009158652A (en) Compound magnetic material and manufacturing method thereof
JP2003142310A (en) Dust core having high electrical resistance and manufacturing method therefor
JP5053195B2 (en) Powder magnetic core and manufacturing method thereof
JP2007251125A (en) Soft magnetic alloy consolidation object and method for fabrication thereof
KR100499013B1 (en) Fe-Si alloy powder cores and fabrication process thereof
JP2005116820A (en) Dust core
JP2007509497A (en) Unit block for core production using soft magnetic metal powder, and method for producing core having high current DC superposition characteristics using the unit block
JP2004214418A (en) Dust core and its alloy powder and method for manufacturing the same
KR100344009B1 (en) Nano-crystal alloy powder cores for high frequency range and method for making the same
WO2004043633A1 (en) Fe-Si ALLOY POWDER CORES AND FABRICATION PROCESS THEREOF
KR100344010B1 (en) Amorphous metal alloy powder cores for high frequency range and method for making the same
CN109192430B (en) Preparation method for improving high-frequency effective magnetic conductivity of metal soft magnetic powder core and product
KR102118955B1 (en) Magnetic powder, compressed powder core and method of preparation thereof
CN111696745A (en) Composite Fe-Si-Al soft magnetic powder core and preparation method thereof
KR20240003268A (en) Amorphous composite powder core production method for high frequency
JP2006310873A (en) Powder magnetic core and method for manufacturing it
JPH11329821A (en) Dust core and manufacture thereof
KR102438455B1 (en) Method for manufacturing magnetic metal powder absorbing electromagnetic wave

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140623

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150723

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160620

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170623

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180625

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190624

Year of fee payment: 15