KR100487025B1 - Photo-curable resin composition for optical waveguide and optical waveguide prepared therefrom - Google Patents

Photo-curable resin composition for optical waveguide and optical waveguide prepared therefrom Download PDF

Info

Publication number
KR100487025B1
KR100487025B1 KR10-2002-0011002A KR20020011002A KR100487025B1 KR 100487025 B1 KR100487025 B1 KR 100487025B1 KR 20020011002 A KR20020011002 A KR 20020011002A KR 100487025 B1 KR100487025 B1 KR 100487025B1
Authority
KR
South Korea
Prior art keywords
meth
acrylate
diisocyanate
group
optical waveguide
Prior art date
Application number
KR10-2002-0011002A
Other languages
Korean (ko)
Other versions
KR20030071343A (en
Inventor
김말순
오우정
변현호
김정욱
한관수
오정현
Original Assignee
주식회사 루밴틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27764631&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR100487025(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 루밴틱스 filed Critical 주식회사 루밴틱스
Priority to KR10-2002-0011002A priority Critical patent/KR100487025B1/en
Priority to JP2003571327A priority patent/JP2005519146A/en
Priority to AU2002358336A priority patent/AU2002358336A1/en
Priority to PCT/KR2002/002381 priority patent/WO2003072625A1/en
Publication of KR20030071343A publication Critical patent/KR20030071343A/en
Application granted granted Critical
Publication of KR100487025B1 publication Critical patent/KR100487025B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5003Polyethers having heteroatoms other than oxygen having halogens
    • C08G18/5015Polyethers having heteroatoms other than oxygen having halogens having fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16

Abstract

본 발명은 (A) 하기 화학식 1로 표시되는 불소 치환된 광중합형 우레탄 올리고머, (B) 1개 이상의 (메타)아크릴로일기를 갖는 (메타)아크릴레이트(B1) 또는 1개 이상의 에폭시기를 갖는 광반응성 모노머(B2), 및 (C) 광중합 개시제를 포함하는 광도파로용 광경화성 수지 조성물에 관한 것으로, 상기 조성물은 낮은 복굴절률 및 적은 광손실을 나타내고, 광투과도, 열적 안정성 및 장기 저장성이 우수하며, 또한 상기 수지 조성물을 이용하여 마이크로 트랜스퍼 몰딩 기법에 의해 간편하고 대량생산이 용이하게 광도파로를 제조할 수 있다:The present invention provides (A) a fluorine-substituted photopolymerizable urethane oligomer represented by the following formula (1), (B) having (meth) acrylate (B 1 ) having at least one (meth) acryloyl group or at least one epoxy group A photocurable resin composition for an optical waveguide comprising a photoreactive monomer (B 2 ), and (C) a photopolymerization initiator, wherein the composition exhibits low birefringence and low light loss, and has a light transmittance, thermal stability, and long-term storage properties. The optical waveguide can be produced easily and easily in mass production by the micro transfer molding technique using the resin composition:

상기 식에서, Where

R1은 -CH2O- 또는 -CH2(OCH2CH2)mO-이고, R2는 탄소수가 6 ∼ 100개로 구성된 방향족 또는 지방족 탄화수소기이고, R3은 탄소수가 2 ∼ 10개로 구성된 방향족 또는 지방족 탄화수소기이고, R4는 메타(아크릴레이트)기 또는 에폭시기이다.R 1 is —CH 2 O— or —CH 2 (OCH 2 CH 2 ) m O—, R 2 is an aromatic or aliphatic hydrocarbon group of 6 to 100 carbon atoms, and R 3 is of 2 to 10 carbon atoms It is an aromatic or aliphatic hydrocarbon group, R <4> is a meta (acrylate) group or an epoxy group.

Description

광도파로용 광경화성 수지 조성물 및 이로부터 제조된 광도파로{PHOTO-CURABLE RESIN COMPOSITION FOR OPTICAL WAVEGUIDE AND OPTICAL WAVEGUIDE PREPARED THEREFROM} Photo-curable resin composition for optical waveguide and optical waveguide manufactured therefrom {PHOTO-CURABLE RESIN COMPOSITION FOR OPTICAL WAVEGUIDE AND OPTICAL WAVEGUIDE PREPARED THEREFROM}

본 발명은 광도파로 소자용 고분자에 관한 것으로서, 보다 구체적으로 저 광진행 손실의 광경화형 (메타)아크릴기 또는 에폭시기를 갖는 불소치환 광경화형 우레탄 올리고머의 제조와 이를 이용한 광도파로용 광경화형 수지 조성물의 제조에 관한 것이며 아울러 상기 조성물을 이용하여 마이크로 몰딩 기법에 의한 고분자 광도파로의 제조방법에 관한 것이다.The present invention relates to a polymer for an optical waveguide device, and more particularly, to the preparation of a fluorine-substituted photocurable urethane oligomer having a photocurable (meth) acryl group or an epoxy group having a low light propagation loss, and a photocurable resin composition for an optical waveguide using the same. The present invention relates to a method for manufacturing a polymer optical waveguide by a micro molding technique using the composition.

향후 우리 사회에서 접하게 될 정보화시대에 필요한 고선명·고화질의 동영상, 전자상거래 및 화상통신 등의 무수한 정보량의 이동에 있어서 광(光)통신 산업은 필수 불가결한 전달매체로 자리잡게 되었다. 광은 전자에 비해 속도가 훨씬 빨라 일정시간 내에 더 많은 정보를 전달할 수 있으므로 각광을 받고 있다. 광통신 시스템에는 다중, 역다중화 소자, 광스위치, 광증폭기, 광검출기, 광원 등의 여러 부품이 필요한데, 현재 그 성능을 개선시키기 위한 다양한 설계 및 재료의 개선이 이루어지고 있다. The optical communication industry has become an indispensable medium for the transfer of countless amounts of information such as high definition and high definition video, electronic commerce, and video communication, which are needed in the information age that we will encounter in the future. Light is in the limelight because it is much faster than electrons and can deliver more information in a certain amount of time. Optical communication systems require multiple components such as multiplexing, demultiplexing devices, optical switches, optical amplifiers, photodetectors, and light sources, and various designs and materials have been improved to improve their performance.

우선 재료적인 측면에서 보면, 상기 광통신 부품 중 광스위치를 비롯한 광도파로의 경우 실리카를 이용하여 제조되고 있는데, 실리카는 광섬유와 동일한 물질이므로 광섬유와의 접속시 접속단면에서의 반사가 적고 물질 자체의 광손실 또한 0.01 dB/cm 정도로 그 값이 매우 작은 특성을 가진다. 그러나 실리카를 이용하여 광도파로를 제조할 경우, 매우 높은 고온의 에너지가 가해짐에 따라 제작 후 냉각시에 실리카의 열팽창계수 차이로 인해 열응력을 받고 이러한 응력에 의해 물질 자체의 편광의존도가 심화되며 굴절률 또한 달라지게 된다. First of all, from the material point of view, the optical waveguide including the optical switch is manufactured using silica. Since silica is the same material as the optical fiber, there is little reflection at the connection end when the optical fiber is connected and the light of the material itself is The loss is also very small, about 0.01 dB / cm. However, when the optical waveguide is manufactured using silica, a very high temperature energy is applied, and thus the thermal stress due to the difference in the thermal expansion coefficient of the silica during fabrication and cooling causes the polarization dependence of the material itself. The refractive index will also vary.

이를 개선하기 위해 유기 고분자소재의 연구가 활발히 진행되었다. 유기 고분자 소재는 무기 재료나 반도체에 비해 분자 화학에 의해서 물질의 성능을 쉽게 제어/합성할 수 있고, 저렴한 가격으로 인해 경제성이 좋으며, 응답속도가 빠르고, 광대역폭이 수십 내지 수백 Tbps 정도로 매우 높으며, 이를 이용한 소자 제조시 저온에서 수행될 수 있으며, 공정이 단순하고, 가공성이 좋으며, 집적화가 유리하다는 우수성을 가진다. 이러한 우수한 특성에도 불구하고, 유기 고분자 물질은 열적 불안정성 및 광통신 파장영역에서의 큰 광전송 손실로 인해 상용화되지 못했었다.In order to improve this, research into organic polymer materials has been actively conducted. Compared to inorganic materials and semiconductors, organic polymer materials can be easily controlled / synthesized by molecular chemistry, economical due to low price, fast response speed, and very high bandwidths of tens to hundreds of Tbps. When manufacturing the device using the same can be carried out at a low temperature, the process is simple, the processability is good, and the integration is excellent. Despite these superior properties, organic polymeric materials have not been commercialized due to thermal instability and large optical transmission losses in the optical communication wavelength range.

일반적으로 평면 도파로형 광소자 및 광 상호연결(Optical Interconnection)에 사용되는 고분자 재료는 열안정성, 광통신 파장영역에서의 낮은 광 손실, 미세한 굴절률의 제어능력, 낮은 복굴절률, 다양한 기판에 대한 접착성, 다양한 적층성, 치수안정성 및 유연성, 미세 광부품과의 용이한 정렬, 저가 등의 조건이 요구된다. 이중 광손실 문제를 해결하기 위해 불소치환 고분자에 대한 연구가 활발히 진행되고 있으며, 이는 분자내 C-H 결합에서 중수소나 불소로 치환함으로써 광통신 영역인 1.0∼1.8㎛ 파장대에서의 큰 적외흡수 파장을 장파장으로 이동시켜 광통신 영역에서의 광흡수를 최소화할 수 있다. In general, polymer materials used in planar waveguide optical devices and optical interconnections have thermal stability, low light loss in the optical communication wavelength region, fine refractive index control ability, low birefringence, adhesion to various substrates, Various lamination, dimensional stability and flexibility, easy alignment with fine optical parts, low cost, etc. conditions are required. In order to solve the problem of optical loss, researches on fluorine-substituted polymers are being actively conducted, and the substitution of deuterium or fluorine in the intramolecular CH bonds shifts the large infrared absorption wavelength in the wavelength range of 1.0 ~ 1.8㎛ to the long wavelength. It is possible to minimize the light absorption in the optical communication area.

일본의 NTT사에서는 수동 광소자용 고분자 물질로서 종래의 PMMA를 사용하거나 중수소화된 MMA(deutrated methacrylate)와 중수소화된 퍼플루오로 MMA(deutrated perfluoro methacrylate) 단량체를 여러 조성비로 공중합하여 굴절률이 잘 조절된 물질을 클래딩 및 코아로 이용함으로써 1.3㎛에서 광손실이 0.08 dB/cm로 아주 우수한 저손실 광소자를 구현한 바 있다. 그러나 PMMA계는 Tg가 100℃ 정도로서 열안정성이 낮은 단점을 가진다[이마무라(S. Imamura) 등, Electronics Letters, 27, 1342, 1991]. 이러한 PMMA의 낮은 열안정성을 극복하기 위해 NTT사에 의해 개발된 퍼플루오르화된 폴리이미드(perfluorinated polyimide)는 큰 복굴절로 인해 편광독립이 어렵고, 비교적 큰 흡습성으로 인한 광손실이 발생하는 문제점이 있다[마쓰우라(T. Matsuura) 등, Electronics Letters, 29(3), 269, 1993].NTT Co., Ltd. used a conventional polymer material for passive optical devices, or copolymerized deuterated methacrylate (MMA) and deuterated perfluoro methacrylate (MMA) monomers in various composition ratios to control the refractive index. By using the material as cladding and core, we realized a very low loss optical device with an excellent optical loss of 0.08 dB / cm at 1.3㎛. However, PMMA has a disadvantage in that its thermal stability is low as Tg is about 100 ° C. (S. Imamura et al., Electronics Letters , 27 , 1342, 1991). Perfluorinated polyimide, developed by NTT to overcome the low thermal stability of PMMA, has a problem in that polarization independence is difficult due to large birefringence and light loss due to relatively large hygroscopicity is generated. T. Matsuura et al., Electronics Letters , 29 (3), 269, 1993].

미국의 얼라이드 시그널(Allied Signal)사에 의해 발표된 UV-경화형 플루오르화된 아크릴레이트(UV-curable fluorinated acrylate)는 아크릴레이트의 광가교(photo-crosslinking) 특성을 이용하여 350℃ 이상의 열안정을 확보하였으며, 1.3㎛ 및 1.55㎛에서의 광손실이 각각 0.03dB/cm 및 0.05dB/cm이고, 1.3에서 1.6까지의 연속적인 굴절률 조절이 가능하며, 복굴절이 0.0008 정도로 편광 독립되었다[엘다다(L. Eldada) 등, J. Lightwave Technology, 14(7), 1704, 1996].UV-curable fluorinated acrylate, announced by Allied Signal of the United States, uses thermal acrylate photo-crosslinking properties to secure thermal stability above 350 ° C. The optical losses at 1.3 μm and 1.55 μm were 0.03 dB / cm and 0.05 dB / cm, respectively, and continuous refractive index adjustment was possible from 1.3 to 1.6, and birefringence was polarized independent about 0.0008 [Elda (L. Eldada), et al., J. Lightwave Technology , 14 (7), 1704, 1996].

한편, 삼성전자에 의해 발표된, 주사슬의 디안하이드라이드(dianhydride)에 불소(C-F)가 치환되고 디아민에 염소(C-Cl)가 치환된 폴리이미드 및 불소와 염소가 치환된 폴리머는 복굴절이 큰 단점을 가지며[한(K. Han) 등, Polym. Bull. 41, 455, 1998], 한국전자통신연구원에서 발표한, 열경화에 의해 가교된 불소 치환 폴리아릴렌에테르는 열안정성면에서는 우수하지만 열경화 방식이라 생산성이 낮다[이(H. J. Lee) 등, J. Polym, Sci., Polym. Chem., 37, 2355, 1999]. 대한민국 특허출원 제1999-32681호에는 폴리이미드의 주사슬에 불소 치환된 방향족 그룹을 겉사슬에 도입함으로써 등방성 특성을 가지는 불소 치환된 폴리이미드가 개시되어 있으며, 최근에는 광주과학기술원(KJIST)에서 열경화에 의해 가교된 불소 치환 폴리아릴렌에테르설파이드(Cross-linkable Fluorinated Poly(arylene ether sulfide))를 개발하여 발표한 바 있다[강(J. W. Kang)등, J. Lightwave Tech., 19(6), 872, 2001].On the other hand, polyimide substituted by fluorine (CF) and diamine by chlorine (C-Cl) and fluorine and chlorine-substituted polymers, published by Samsung Electronics, have birefringence. Has great disadvantages [K. Han et al . , Polym. Bull. 41 , 455, 1998], a thermally crosslinked fluorine-substituted polyarylene ether, published by the Korea Electronics and Telecommunications Research Institute, is excellent in terms of thermal stability but low in productivity due to the thermosetting method [HJ Lee et al., J. Polym, Sci., Polym. Chem., 37 , 2355, 1999]. Korean Patent Application No. 1999-32681 discloses a fluorine-substituted polyimide having isotropic properties by introducing a fluorine-substituted aromatic group in the main chain of the polyimide into the outer chain, and recently, KJIST Cross-linkable Fluorinated Poly (arylene ether sulfide) crosslinked by curing has been developed and published (JW Kang et al., J. Lightwave Tech ., 19 (6), 872, 2001].

한편, 종래에 광도파로를 제작하는 기술로서 포토리소그래피 (Photolithography) 방법이 많이 이용되고 있는데, 이는 포토리지스트 재료를 코어 위에 스핀코팅 한 뒤 원하는 도파로 형태를 가진 마스크를 이용하여 패턴을 형성하고 유도결합플라즈마를 이용하여 코어 재료를 건식 식각하는 단계로 구성된다. 그러나, 이 방법은 제작 시간이 많이 소요되며, 또한 코어의 크기가 4∼8 ㎛ 정도인 단일모드 광도파로를 제작할 경우에는 식각이 비교적 용이하나, 다중모드 광도파로 제조시에는 40 ㎛ 이상의 깊이로 식각하여야 하는 문제점을 갖는다. On the other hand, photolithography is widely used as a technique for manufacturing an optical waveguide, which is formed by spin coating a photoresist material on a core to form a pattern using a mask having a desired waveguide shape and inductive coupling. Dry etching the core material using a plasma. However, this method requires a lot of manufacturing time, and the etching is relatively easy when fabricating a single mode optical waveguide having a core size of about 4 to 8 μm, but when manufacturing a multimode optical waveguide, etching is performed at a depth of 40 μm or more. There is a problem to be done.

이에 따라, 본 발명의 목적은 광진행 손실이 적고, 광경화에 의한 내화학성 및 열안정성이 향상되며, 낮은 복굴절률을 가지는 저가의 광도파로용 수지 조성물 및 상기 수지 조성물을 코아층 및 클래딩층으로 포함하며 마이크로 트랜스퍼 몰딩(micro-transfer molding) 방법을 이용함으로써 간편하고 대량생산이 용이한 소자의 제조방법을 제공하기 위한 것이다. Accordingly, an object of the present invention is to provide a low-cost optical waveguide resin composition and a low birefringence, and a resin composition for the core layer and cladding layer having a low light progression loss, improved chemical resistance and thermal stability by photocuring It is to provide a method of manufacturing a device that is simple and easy to mass production by using a micro-transfer molding method.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 불소 치환된 광중합형 우레탄 올리고머(A)를 제공하며, 또한 상기 (A) 불소 치환된 광중합형 우레탄 올리고머, (B) 광반응성 모노머, (C) 광중합개시제, (D) 중합방지제 및 (E) 산화방지제를 포함하는, 광도파로용 광경화성 수지 조성물을 제공한다:In order to achieve the above object, the present invention provides a fluorine-substituted photopolymerized urethane oligomer (A) represented by the following formula (1), and also (A) fluorine-substituted photopolymerized urethane oligomer, (B) photoreactive monomer, Provided is a photocurable resin composition for an optical waveguide, comprising (C) a photopolymerization initiator, (D) an antioxidant, and (E) an antioxidant:

화학식 1Formula 1

상기 식에서, Where

R1은 -CH2O- 또는 -CH2(OCH2CH2)mO-이고, R2는 탄소수가 6 ∼ 100개로 구성된 방향족 또는 지방족 탄화수소기이고, R3은 탄소수가 2 ∼ 10개로 구성된 방향족 또는 지방족 탄화수소기이고, R4는 메타(아크릴레이트)기 또는 에폭시기이다.R 1 is —CH 2 O— or —CH 2 (OCH 2 CH 2 ) m O—, R 2 is an aromatic or aliphatic hydrocarbon group of 6 to 100 carbon atoms, and R 3 is of 2 to 10 carbon atoms It is an aromatic or aliphatic hydrocarbon group, R <4> is a meta (acrylate) group or an epoxy group.

본 발명은 또한 상기 광도파로용 광경화성 수지 조성물을 이용한 고분자 광도파로 및 이의 제조방법을 제공한다. The present invention also provides a polymer optical waveguide using the photocurable resin composition for the optical waveguide and a method of manufacturing the same.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

(A) 불소 치환된 광중합형 우레탄 올리고머(A) Fluorine-substituted photopolymerized urethane oligomer

본 발명에서 사용되는 광중합형 우레탄 올리고머(A)는 (a) 폴리올, (b) 디이소시아네이트(Diisocyanate), (c) 히드록시 (메타)아크릴레이트(Hydroxy (Meth)acrylate) 또는 히드록시 에폭시(Hydroxy Epoxy), (d) 우레탄 반응 촉매 및 (e) 중합개시제를 반응시켜 제조된다.The photopolymerized urethane oligomer (A) used in the present invention is (a) polyol, (b) diisocyanate, (c) hydroxy (meth) acrylate or hydroxy epoxy (Hydroxy). Prepared by reacting Epoxy), (d) urethane reaction catalyst and (e) polymerization initiator.

(a) 폴리올(a) polyol

상기 불소 치환된 광중합형 우레탄 올리고머(A)의 제조에 사용되는 폴리올(a)은 분자량이 500 내지 10,000이 바람직하며, 불소 치환된 퍼플루오로 폴리에테르폴리올(Perfluoropolyether polyol) 또는 퍼플루오로 폴리에테르 말단에 비불소폴리에테르기를 갖는 폴리올이 바람직하다. 상기 폴리올(a)은 광중합형 우레탄 올리고머(A) 제조용 조성물의 20 내지 80 중량%의 함량으로 사용되는 것이 바람직하다.The polyol (a) used in the preparation of the fluorine-substituted photopolymerized urethane oligomer (A) has a molecular weight of preferably 500 to 10,000, and a fluorine-substituted perfluoropolyether polyol or a perfluoropolyether end Polyols having a non-fluorine polyether group are preferable. The polyol (a) is preferably used in an amount of 20 to 80% by weight of the composition for preparing a photopolymerizable urethane oligomer (A).

(b) 디이소시아네이트(b) diisocyanate

본 발명의 불소 치환된 광중합형 우레탄 올리고머(A)의 제조에 사용되는 디이소시아네이트(b)는 이소포론 디이소시아네이트(Isophoron diisocyanate, IPDI), 헥산 디이소시아네이트(1,6-Hexane Diisocyanate, HDI), 옥타메틸렌 디이소시아네이트(1,8-Octamethylene Diisocyanate), 테트라메틸크실렌 디이소시아네이트(Tetramethyl xylene diisocyanate, TMXDI), 4,4'-디시클로헥실메탄 디이소시아네이트(4,4'-Dicyclohexylmethane diisocyanate, HMDI), 4,4'-디페닐메탄 디이소시아네이트(4,4'-Diphenylmethane diisocyanate), 3,3'-디메틸 4,4'-비페닐렌 디이소시아네이트(3,3'-Dimethyl-4,4'-biphenylene diisocyanate), 3,3'-디메틸디페닐메탄-4,4'-디이소시아네이트(3,3'-Dimethyldiphenylmethane-4,4'-diisocyanate), 4-브로모-6-메틸-1,3-페닐렌 디이소시아네이트(4-Bromo-6-methyl-1,3-phenylene diisocyanate), 4-클로로-6-메틸-1,3-페닐렌 디이소시아네이트(4-Chloro-6-methyl-1,3-phenylene diisocyanate), 폴리(1,4-부탄디올) 톨릴렌 2,4-디이소시아네이트 터미네이티드(Poly(1,4-butanediol) tolylene 2,4-diisocyanate terminated), 폴리(1,4-부탄디올) 이소포론 디이소시아네이트 터미네이티드(Poly(1,4-butanediol) isophorone diisocyanate terminated), 폴리(에틸렌 아디페이트) 톨릴렌 2,4-디이소시아네이트 터미네이티드(Poly(ethylene adipate)tolylene 2,4-diisocyanate terminated), 폴리[1,4-페닐렌 디이소시아네이트-코-폴리(1,4-부탄올)]디이소시아네이트(Poly[1,4-phenylene diisocyanate-co-poly(1,4-butanol)] diisocyanate), 폴리헥사메틸렌 디이소시아네이트(Poly(hexamethylene diisocyanate), 폴리프로필렌글리콜 톨릴렌 2,4-디이소시아네이트 터미네이티드(Poly(propylene glycol)tolylene 2,4-diisocyanate terminated), 폴리(테트라플루오로에틸렌옥시드-코-디플루오로메틸렌옥시드)α,ω-디이소시아네이트(Poly(tetrafluoroethylene oxide-co-difluoromethylene oxide)α,ω-diisocyanate), 2,4-톨루엔 디이소시아네이트(2,4-Toluene Diisocyanate), 2,5-톨루엔 디이소시아네이트(2,5-Toluene Diisocyanate), 2,6-톨루엔 디이소시아네이트(2,6-Toluene Diisocyanate), 1,5-나프탈렌 디이소시아네이트(1,5-Naphthalene Diisocyanate) 및 이들의 혼합물로 이루어진 군으로부터 선택된다. 상기 디이소시아네이트(b)는 광중합형 우레탄 올리고머(A) 제조용 조성물의 10 내지 50 중량%의 함량으로 사용되는 것이 바람직하다.The diisocyanate (b) used in the preparation of the fluorine-substituted photopolymerized urethane oligomer (A) of the present invention is isophorone diisocyanate (IPDI), hexane diisocyanate (1,6-Hexane Diisocyanate, HDI), octa 1,8-Octamethylene Diisocyanate, Tetramethyl xylene diisocyanate (TMXDI), 4,4'-Dicyclohexylmethane diisocyanate (HMDI), 4, 4'-Diphenylmethane diisocyanate, 3,3'-dimethyl 4,4'-biphenylene diisocyanate (3,3'-Dimethyl-4,4'-biphenylene diisocyanate) , 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate (3,3'-Dimethyldiphenylmethane-4,4'-diisocyanate), 4-bromo-6-methyl-1,3-phenylene di Isocyanate (4-Bromo-6-methyl-1,3-phenylene diisocyanate), 4-chloro-6-methyl-1,3-phenylene diisocyanate (4-Chloro-6-met hyl-1,3-phenylene diisocyanate), poly (1,4-butanediol) tolylene 2,4-diisocyanate terminated (Poly (1,4-butanediol) tolylene 2,4-diisocyanate terminated), poly (1 , 4-butanediol) isophorone diisocyanate terminated (Poly (1,4-butanediol) isophorone diisocyanate terminated), poly (ethylene adipate) tolylene 2,4-diisocyanate terminated (Poly (ethylene adipate) tolylene 2,4-diisocyanate terminated), poly [1,4-phenylene diisocyanate-co-poly (1,4-butanol)] diisocyanate (Poly [1,4-phenylene diisocyanate- co -poly (1,4- butanol)] diisocyanate), polyhexamethylene diisocyanate (Poly (hexamethylene diisocyanate), polypropylene glycol tolylene 2,4-diisocyanate terminated (Poly (propylene glycol) tolylene 2,4-diisocyanate terminated), poly (tetra Fluoroethylene oxide-co-difluoromethylene oxide) α, ω-diisocyanate (Poly (tetrafluoroeth ylene oxide-co-difluoromethylene oxide) α, ω-diisocyanate), 2,4-toluene diisocyanate, 2,5-toluene diisocyanate, 2,6 -2,6-Toluene Diisocyanate, 1,5-Naphthalene Diisocyanate, and mixtures thereof. The diisocyanate (b) is preferably used in an amount of 10 to 50% by weight of the composition for preparing the photopolymerized urethane oligomer (A).

(c) 히드록시 (메타)아크릴레이트 또는 히드록시 에폭시(c) hydroxy (meth) acrylate or hydroxy epoxy

본 발명의 광중합형 올리고머(A)의 제조에 사용되는 성분 (c)는 하나 이상의 (메타)아크릴로일기 및 히드록시 작용기를 포함하는 화합물(c1), 또는 하나 이상의 에폭시기 및 히드록시 작용기를 포함하는 화합물(c2)이다.Component (c) used in the preparation of the photopolymerizable oligomer (A) of the present invention comprises a compound (c 1 ) comprising at least one (meth) acryloyl group and a hydroxy functional group, or at least one epoxy group and a hydroxy functional group. Compound (c 2 ).

성분 (c1)의 예로는, 2-히드록시에틸(메타)아크릴레이트(2-Hydroxyethyl(meth)acrylate), 2-히드록시프로필(메타)아크릴레이트(2-Hydroxypropyl(meth)acrylate), 2-히드록시부틸(메타)아크릴레이트(2-Hydroxybutyl(meth)acrylate), 1-히드록시부틸(메타)아크릴레이트(1-Hydroxybutyl(meth)acrylate), 2-히드록시-3-페닐옥시프로필(메타)아크릴레이트(2-Hydroxy-3-phenyloxypropyl(meth)acrylate), 네오펜틸글리코모노(메타)아크릴레이트(Neopentylglycolmono(meth)acrylate), 4-히드록시시클로헥실(메타)아크릴레이트(4-Hydroxycyclohexyl(meth)acrylate), 1,6-헥산디올모노(메타)아크릴레이트(1,6-hexanediolmono(meth)acrylate), 펜타에리트리톨펜타(메타)아크릴레이트(Pentaerythritolpenta(meth)acrylate), 디펜타에리트리톨펜타(메타)아크릴레이트(Dipentaerythritolpenta(meth)acrylate), 2-메타크릴록시에틸 2-히드록시 프로필 프탈레이트(2-Methacryloxyethyl 2-Hydroxy Propyl Phthalate), 글리세린 디(메타)아크릴레이트(Glycerin Dimethacrylate), 2-히드록시-3-아크릴로일록시 프로필 (메타)아크릴레이트(2-Hydroxy-3-acryloyloxy Propyl Methacrylate), 폴리카프로락톤 폴리올 모노(메타)아크릴레이트 및 이들의 혼합물로 이루어지는 군으로부터 선택된다.Examples of the component (c 1 ) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-Hydroxypropyl (meth) acrylate, 2 2-Hydroxybutyl (meth) acrylate, 1-Hydroxybutyl (meth) acrylate (2-Hydroxybutyl (meth) acrylate), 2-hydroxy-3-phenyloxypropyl ( Meta) acrylate (2-Hydroxy-3-phenyloxypropyl (meth) acrylate), neopentylglycomono (meth) acrylate (Neopentylglycolmono (meth) acrylate), 4-hydroxycyclohexyl (meth) acrylate (4-Hydroxycyclohexyl (meth) acrylate, 1,6-hexanediol mono (meth) acrylate (1,6-hexanediolmono (meth) acrylate), pentaerythritolpenta (meth) acrylate (Pentaerythritolpenta (meth) acrylate), dipentaerytate Ditolentathritolpenta (meth) acrylate, 2-methacryloxyethyl 2-hydroxy propyl phthalate (2-Methacryloxyethyl 2-Hydr oxy Propyl Phthalate), Glycerin Dimethacrylate, 2-Hydroxy-3-acryloyloxy Propyl Methacrylate, Polycaprolactone Polyol Mono (meth) acrylates and mixtures thereof.

성분 (c2)의 예로는, 글리시돌(Glycidol), 에폭시화 테트라히드로벤질 알코올(Epoxidized tetrahydrobenzyl alcohol) 등이 있다.Examples of component (c 2 ) include glycidol, epoxidized tetrahydrobenzyl alcohol, and the like.

상기 성분 (c)는 광중합형 우레탄 올리고머(A) 제조용 조성물의 5 내지 50 중량%의 함량으로 사용되는 것이 바람직하다.The component (c) is preferably used in an amount of 5 to 50% by weight of the composition for preparing the photopolymerizable urethane oligomer (A).

(d) 우레탄 반응 촉매(d) urethane reaction catalyst

본 발명의 광중합형 올리고머(A)의 제조에 사용되는 우레탄 반응 촉매(d)는 우레탄 반응 중에 소량 첨가되는 촉매로서, 구리 나프티네이트(copper naphthenate), 코발트 나프티네이트(cobalt naphthenate), 아연 나프테이트(zinc naphthate), n-부틸틴라우레이트(butyltinlaurate), 트리스틸아민(tristhylamine), 2-메틸트리에틸렌디아마이드(methyltriethlenediamide) 및 이들의 혼합물로 이루어지는 군으로부터 선택되며, 상기 광중합형 우레탄 올리고머(A) 제조용 조성물의 0.01 내지 1 중량%의 함량으로 사용되는 것이 바람직하다.The urethane reaction catalyst (d) used in the preparation of the photopolymerizable oligomer (A) of the present invention is a catalyst added in a small amount during the urethane reaction, and includes copper naphthenate, cobalt naphthenate, and zinc naphate ( zinc naphthate, n-butyltinlaurate, tristhylamine, 2-methyltriethlenediamide and mixtures thereof, and the photopolymerizable urethane oligomer (A) It is preferably used in an amount of 0.01 to 1% by weight of the composition for preparation.

(e) 중합개시제(e) polymerization initiator

본 발명의 광중합형 올리고머(A)의 제조에 사용되는 중합개시제(e)로는 히드로퀴논(Hydroquinone), 히드로퀴논모노메틸에테르(Hydroquinonmonomethylether), 파라-벤조퀴논(Para-benzoquinone), 페노티아진(Phenotiazine) 및 이들의 혼합물로 이루어진 군으로부터 선택되며, 상기 광중합형 우레탄 올리고머(A) 제조용 조성물의 0.01 내지 1 중량%의 함량으로 사용되는 것이 바람직하다. As a polymerization initiator (e) used in the preparation of the photopolymerizable oligomer (A) of the present invention, hydroquinone (Hydroquinone), hydroquinone monomethyl ether, Para-benzoquinone (Para-benzoquinone), phenothiazine and It is selected from the group consisting of a mixture thereof, and is preferably used in an amount of 0.01 to 1% by weight of the composition for preparing the photopolymerizable urethane oligomer (A).

상기 불소 치환 광중합형 올리고머(A)의 제조는 통상의 방법에 의해 수행될 수 있으며, 구체예로서, 반응 플라스크에 불소 치환된 퍼플루오로 폴리에테르폴리올 또는 퍼플루오로 폴리에테르 말단에 비불소폴리에테르기를 갖는 폴리올을 넣고, 감압하여 수분을 제거한 후 이소시아네이트 및 사용되는 총 촉매의 1/2를 가하여 200 내지 300 rpm으로 교반하면서 온도를 65 내지 85℃로 유지하고 IR 상에 -OH 피크가 소멸될 때까지 약 2 내지 3시간 동안 반응시킨다. 이때, 촉매 사용량은 상기 반응에서 전량 사용할 수도 있다. 반응 종료 후, 중합개시제 및 히드록시(메타)아크릴레이트 또는 히드록시 에폭시를 가하고, 70 내지 90℃로 승온하여 나머지 분량의 촉매를 가하고 IR 상에 -NCO 피크가 소멸할 때까지 반응시킴으로써, 불소 치환 광중합형 올리고머(A)를 제조할 수 있다. Preparation of the fluorine-substituted photopolymerizable oligomer (A) may be carried out by a conventional method, and in particular, a fluorine-substituted perfluoro polyetherpolyol or a non-fluorine polyether at the perfluoropolyether terminal When the polyol having the group was added, the water was removed under reduced pressure, and half of the isocyanate and the total catalyst used were added thereto, and the temperature was maintained at 65 to 85 ° C. while stirring at 200 to 300 rpm, and the -OH peak disappeared on the IR. The reaction is carried out for about 2 to 3 hours. In this case, the amount of catalyst used may be used in the entire reaction. After completion of the reaction, a polymerization initiator and hydroxy (meth) acrylate or hydroxy epoxy were added, the temperature was raised to 70-90 ° C., the remaining amount of catalyst was added, and the reaction was carried out until the -NCO peak disappeared on IR, thereby fluorine substitution. A photopolymerization oligomer (A) can be manufactured.

상기 불소 치환된 광중합형 우레탄 올리고머(A)는 평균 분자량이 2,000 내지 50,000이고, 종래의 우레탄 올리고머가 갖는 우수한 물성 외에도 굴절율이 1.3 정도로 낮으며, 광도파로 소재가 갖추어야 할 특성인 1.1∼1.8㎛ 파장 영역 대에서 우수한 광투과성을 가지며, 접착성이 우수하다.The fluorine-substituted photopolymerized urethane oligomer (A) has an average molecular weight of 2,000 to 50,000, in addition to the excellent physical properties of the conventional urethane oligomer, the refractive index is low as about 1.3, 1.1 ~ 1.8㎛ wavelength region which is a characteristic that the optical waveguide material should have It has excellent light transmittance at the stage and is excellent in adhesiveness.

상기 불소 치환된 광중합형 우레탄 올리고머(A)는 광도파로용 광경화성 수지 조성물의 20 내지 80 중량%의 함량으로 사용되는 것이 바람직하다.The fluorine-substituted photopolymerizable urethane oligomer (A) is preferably used in an amount of 20 to 80% by weight of the photocurable resin composition for an optical waveguide.

(B) 반응성 모노머(B) reactive monomer

본 발명에서 사용되는 반응성 모노머(B)로는, 1개 이상의 (메타)아크릴로일기를 갖는 (메타)아크릴레이트(B1) 또는 1개 이상의 에폭시기를 갖는 광반응성 모노머(B2)가 있으며, 상기 (메타)아크릴레이트(B1)는 불소 치환된 모노머와 비불소형 모노머를 포함한다.Examples of the reactive monomer (B) used in the present invention include a (meth) acrylate (B 1 ) having at least one (meth) acryloyl group or a photoreactive monomer (B 2 ) having at least one epoxy group. (meth) acrylate (B 1) comprises a fluorine-substituted monomer and bibul small monomer.

상기 반응성 모노머(B)는 (메타)아크릴로일기 또는 에폭시기를 함유하는 수에 따라, 단관능기 모노머, 2관능기 모노머 또는 3관능기 이상을 갖는 모노머로 구분될 수 있다.The reactive monomer (B) may be classified into a monomer having a (meth) acryloyl group or an epoxy group, a monofunctional monomer, a bifunctional monomer or a monomer having at least trifunctional groups.

상기 불소 치환된 (메타)아크릴로일기 함유 반응성 모노머로는, 2-퍼플루오로옥틸에틸아크릴레이트(2-Perfluorooctylethyl acrylate), 2-퍼플루오로옥틸에틸메타크릴레이트(2-Perfluorooctylethyl methacrylate), 2,2,3,4,4,4-헥사플루오로부틸메타크릴레이트(2,2,3,4,4,4-Hexafluorobutyl methacrylate), 2,2,3,3-테트라플루오로프로필 메타크릴레이트(2,2,3,3-Terrafluoropropyl methacrylate), 트리플루오로에틸메타크릴레이트(Trifluoroethyl methacrylate), 2-퍼플루오로알킬에틸아크릴레이트(2-Perfluoroalkylethyl acrylate), 2-퍼플루오로알킬에틸메타크릴레이트(2-Perfluoroalkylethyl methacrylate) 등이 있다. Examples of the fluorine-substituted (meth) acryloyl group-containing reactive monomer include 2-perfluorooctylethyl acrylate, 2-perfluorooctylethyl methacrylate, and 2-perfluorooctylethyl methacrylate. , 2,3,4,4,4-hexafluorobutyl methacrylate (2,2,3,4,4,4-Hexafluorobutyl methacrylate), 2,2,3,3-tetrafluoropropyl methacrylate (2,2,3,3-Terrafluoropropyl methacrylate), Trifluoroethyl methacrylate, 2-Perfluoroalkylethyl acrylate, 2-perfluoroalkylethyl methacrylate Rate (2-Perfluoroalkylethyl methacrylate).

1개의 (메타)아크릴로일기를 함유하는 단관능기 비불소형 반응성 모노머로는, 2-히드록시에틸(메타)아크릴레이트, 2-히드록시프로필(메타)아크릴레이트, 2-히드록시부틸(메타)아크릴레이트, 1-히드록시부틸(메타)아크릴레이트, 2-히드록시-3-페닐옥시프로필(메타)아크릴레이트, 테트라히드로퍼퓨릴 (메타)아크릴레이트(Tetrahydrofurfuryl (Meth)acrylate), 이소데실 (메타)아크릴레이트(Isodecyl (Meth)acrylate), 2-(2-에톡시에톡시)에틸 (메타)아크릴레이트(2-(2-Ethoxyethoxy) Ethyl(meth)acrylate), 스테아릴 (메타)아크릴레이트(Stearyl (Meth)acrylate), 라우릴 (메타)아크릴레이트(Lauryl (Meth)acrylate), 2-페녹시에틸 (메타)아크릴레이트(2-Phenoxyethyl (Meth)acrylate), 이소보닐 (메타)아크릴레이트(Isobornyl (Meth)acrylate), 트리데실 (메타)아크릴레이트(Tridecyl (Meth)acrylate), 폴리카프로락톤 (메타)아크릴레이트(Polycarprolactone (Meth)acrylate), 페녹시테트라에틸렌글리콜아크릴레이트(Phenoxy Tetraethylene Glycol (Meth)acrylate), 이미드아크릴레이트(Imide acrylate) 등이 포함된다. As monofunctional group non-fluorine-type reactive monomer containing one (meth) acryloyl group, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) Acrylate, 1-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isodecyl ( Isodecyl (Meth) acrylate, 2- (2-ethoxyethoxy) ethyl (meth) acrylate (2- (2-Ethoxyethoxy) Ethyl (meth) acrylate), stearyl (meth) acrylate (Stearyl (Meth) acrylate), Lauryl (Meth) acrylate, 2-Phenoxyethyl (Meth) acrylate, Isobonyl (Meta) acrylate (Isobornyl (Meth) acrylate), Tridecyl (Meth) acrylate, Polycaprolactone (meth) acrylate Bit (Polycarprolactone (Meth) acrylate), and the like are phenoxy tetraethylene glycol acrylate (Phenoxy Tetraethylene Glycol (Meth) acrylate), imide acrylate (Imide acrylate).

2관능기 비불소형 모노머로는 에톡시부과형 노닐페놀 (메타)아크릴레이트(Ethoxylated Nonyl Phenol Acrylate), 에틸렌 글리콜 디(메타)아크릴레이트(Ethylene Glycol Di(meth)acrylate), 디에틸렌 글리콜 디(메타)아크릴레이트(Diethylene Glycol Di(meth)acrylate), 트리에틸렌 글리콜 디(메타)아크릴레이트(Triethylene Glycol Di(meth)acrylate), 테트라에틸렌 글리콜 디(메타)아크릴레이트(Tetraethylene Glycol Di(meth)acrylate), 폴리에틸렌 글리콜 디(메타)아크릴레이트(Polyethylene Glycol Di(meth)acrylate), 1,6-헥산디올 디(메타)아크릴레이트(1,6-Hexanediol Di(meth)acrylate), 1,3-부틸렌 글리콜 디(메타)아크릴레이트(1,3-Butylene Glycol Di(meth)acrylate), 트리프로필렌 글리콜 디(메타)아크릴레이트(Tripropylene Glycol Di(meth)acrylate), 에톡시 부과형 비스페놀 A 디(메타)아크릴레이트(Ethoxylated Bisphenol A Di(meth)acrylate), 시클로헥산 디메탄올 디(메타)아크릴레이트(Cyclohexane Dimethanol Di(meth)acrylate), 트리시클로데칸디메탄올 디아크릴레이트(Tricyclo[5.2.1.02,6]decanedimethanol diacrylate) 등으로 이루어진다.Bifunctional non-fluorine monomers include ethoxylated nonyl phenol (meth) acrylate, ethylene glycol di (meth) acrylate, and diethylene glycol di (meth). Acrylate (Diethylene Glycol Di (meth) acrylate), triethylene glycol Di (meth) acrylate (Triethylene Glycol Di (meth) acrylate), tetraethylene glycol Di (meth) acrylate (Tetraethylene Glycol Di (meth) acrylate), Polyethylene Glycol Di (meth) acrylate, 1,6-hexanediol Di (meth) acrylate, 1,3-butylene glycol Di (meth) acrylate (1,3-Butylene Glycol Di (meth) acrylate), Tripropylene Glycol Di (meth) acrylate, Triethoxy Glycol Di (meth) acrylate, Ethoxy Immobilized Bisphenol A Di (meth) acrylic Ethoxylated Bisphenol A Di (meth) acrylate, Cyclohexane Dimeth It consists of a ethanol di (meth) acrylate (Cyclohexane Dimethanol Di (meth) acrylate), tricyclodecane dimethanol diacrylate (Tricyclo [5.2.1.0 2,6 ] decanedimethanol diacrylate).

3관능기 이상을 가진 비불소형 모노머는 트리스 아크릴로일록시에틸 이소시아누레이트(Tris[2-(acryloyloxy)ethyl]isocyanurate), 트리메틸올 프로판 트리아크릴레이트, 에틸렌 옥시드 3몰 부가형 트리메틸올 프로판 트리아크릴레이트, 에틸렌 옥시드 6몰 부가형 트리메틸올 프로판 트리아크릴레이트, 펜타에리트리톨 트리아크릴레이트, 트리스(아크릴로옥시에틸)이소시아누레이트, 디펜타에리트리톨 헥사아크릴레이트 및 카프로락톤 변성 디펜타에리트리톨 헥사아크릴레이트로 이루어진 군으로부터 선택된다.Non-fluorine monomers having at least trifunctional groups include trisacryloyloxyethyl isocyanurate, trimethylol propane triacrylate, ethylene oxide 3 mole addition trimethylol propane triacryl Ethylene Oxide 6 Mole Addition Trimethylol Propane Triacrylate, Pentaerythritol Triacrylate, Tris (acryloxyethyl) isocyanurate, Dipentaerythritol Hexaacrylate and Caprolactone Modified Dipentaerythritol Hexa It is selected from the group consisting of acrylates.

1개 이상의 에폭시기를 갖는 반응성 모노머(B2)로는 3,4-에폭시시클로헥실메틸-3,4-에폭시시클로헥산 카복실레이트(3,4-Epoxycyclohexylmethyl-3,4-epoxy cyclohexane carboxylate), 비스-(3,4-에폭시클로헥실)아디페이트(Bis-(3,4-epoxycyclohexyl)adipate), 3-에틸-3-히드록시메틸-옥세탄(3-Ethyl-3-hydroxymethyl-oxetane), 1,2-에폭시헥사데칸(1,2-Epoxyhexadecane), 알킬글리시딜에테르(Alkyl glycidyl ether), 2-에틸헥실디글리콜 글리시딜에테르(2-Ethyl hexyl diglycol glycidyl ether), 에틸렌글리콜 디글리시딜 에테르(Ethyleneglycol diglycidyl ether), 디에틸렌글리콜 디글리시딜 에테르(Diethyleneglycol diglycidyl ether), PEG#200 디글리시딜 에테르(PEG#200 diglycidyl ether), PEG#400 디글리시딜 에테르(PEG#400 diglycidyl ether), 프로필렌글리콜 디글리시딜 에테르(Propyleneglycol diglycidyl ether), 트리프로필렌글리콜 디글리시딜 에테르(Tripropyleneglycol diglycidyl ether), PPG#400 디글리시딜 에테르(PPG#400 diglycidyl ether), 네오펜틸글리콜 디글리시딜 에테르(Neopentylglycol diglycidyl ether), 1,6-헥산디올 디글리시딜 에테르(1,6-Hexanediol diglycidyl ether), 수소화 비스페놀 A 디글리시딜 에테르(Hydrogenated bisphenol A diglycidyl ether), 프로필렌옥시드 변형 비스페놀 A형 디글리시딜 에테르(Diglycidyl ether of propyleneoxide modified bisphenol A), 디브로모 네오펜틸글리콜 디글리시딜 에테르(Dibromo neopentylglycol diglycidyl ether) 및 트리메틸올프로판 트리글리시딜 에테르(Trimethylolpropane triglycidyl ether)로 이루어진 군으로부터 선택된다.Examples of the reactive monomer (B 2 ) having one or more epoxy groups include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate (3,4-Epoxycyclohexylmethyl-3,4-epoxy cyclohexane carboxylate), bis- ( Bis- (3,4-epoxycyclohexyl) adipate, 3-Ethyl-3-hydroxymethyl-oxetane, 1,2 Epoxyhexadecane (1,2-Epoxyhexadecane), alkyl glycidyl ether (Alkyl glycidyl ether), 2-ethylhexyl diglycol glycidyl ether (ethylene glycol diglycidyl ether) (Ethyleneglycol diglycidyl ether), Diethyleneglycol diglycidyl ether, PEG # 200 diglycidyl ether (PEG # 200 diglycidyl ether), PEG # 400 diglycidyl ether (PEG # 400 diglycidyl ether ), Propyleneglycol diglycidyl ether, Tripropyleneglycol diglycidyl ether ol diglycidyl ether, PPG # 400 diglycidyl ether, neopentylglycol diglycidyl ether, 1,6-hexanediol diglycidyl ether (1,6 -Hexanediol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, propylene oxide modified bisphenol A diglycidyl ether of propyleneoxide modified bisphenol A, dibromo neopentyl glycol Diglycidyl ether (Dibromo neopentylglycol diglycidyl ether) and trimethylolpropane triglycidyl ether (Trimethylolpropane triglycidyl ether).

상기 광반응성 모노머(B)는 광도파로용 고분자 수지 조성물의 20 내지 80 중량%의 함량으로 사용되는 것이 바람직하다.The photoreactive monomer (B) is preferably used in an amount of 20 to 80% by weight of the polymer resin composition for an optical waveguide.

(C) 광중합개시제(C) photopolymerization initiator

본 발명에서 사용되는 광중합개시제(C)로는 Irgacure#184, Irgacure#907, Irgacure#500, Irgacure#651, Darocure#1173, Darocure#116, CGI#1800, CGI#1700, UVI-6990, UVI-6974, SarcatR CD1010, SarcatR CD1011, SarcatR CD1012, SarcatR K185 및 이들의 혼합물로 이루어진 군으로부터 선택되며, 광도파로용 고분자 수지 조성물의 1 내지 10 중량%의 함량으로 사용되는 것이 바람직하다.As the photopolymerization initiator (C) used in the present invention, Irgacure # 184, Irgacure # 907, Irgacure # 500, Irgacure # 651, Darocure # 1173, Darocure # 116, CGI # 1800, CGI # 1700, UVI-6990, UVI-6974 , Sarcat R CD1010, Sarcat R CD1011, Sarcat R CD1012, Sarcat R K185 and mixtures thereof, and is preferably used in an amount of 1 to 10% by weight of the polymer resin composition for an optical waveguide.

(D) 중합방지제(D) polymerization inhibitor

본 발명의 조성물에는 중합방지제(D)가 보관 안정성을 향상시키기 위해 사용될 수 있으며, 장기간의 저장 또는 고온 다습한 환경에서 생성될 수 있는 자유 라디칼에 의한 수지의 경화 현상을 방지할 수 있고, 수지 경화 후 고온에서도 황변 현상을 방지할 수 있다. 상기 중합방지제로는 히드로퀴논(Hydroquinone), 히드로퀴논모노메틸에테르(Hydroquinonemonomethylether), 파라-벤조퀴논(Para-benzoquinone), 페노티아진(Phenotiazine) 및 이들의 혼합물로 이루어지는 군으로부터 선택되며, 고분자 수지 조성물의 0.01 내지 5 중량%의 함량으로 사용될 수 있다.In the composition of the present invention, the polymerization inhibitor (D) can be used to improve the storage stability, can prevent the curing phenomenon of the resin by free radicals that can be produced in a long-term storage or high temperature and high humidity environment, and the resin curing After the high temperature can prevent the yellowing phenomenon. The polymerization inhibitor is selected from the group consisting of hydroquinone, hydroquinone monomethylether, para-benzoquinone, phenothiazine, and mixtures thereof, and 0.01 of the polymer resin composition. To 5% by weight.

(E) 산화방지제(E) antioxidant

본 발명에서 사용될 수 있는 산화방지제(E)는 Irganox 1010, Irganox 1035, Irganox 1076 (이상 시바가이기(Cibageigy)사 제조) 및 이들의 혼합물로 이루어진 군으로부터 선택되며, 고분자 수지 조성물의 0.01 내지 5 중량%의 함량으로 사용될 수 있다.Antioxidant (E) that can be used in the present invention is selected from the group consisting of Irganox 1010, Irganox 1035, Irganox 1076 (Cibageigy Co., Ltd.) and mixtures thereof, 0.01 to 5 weight of the polymer resin composition Can be used in amounts of%.

본 발명의 광도파로용 광경화성 수지 조성물은 통상의 방법에 의해 제조될 수 있으며, 구체적으로는, 상기 (A) 내지 (E) 성분들을 반응기에서 혼합하여 15 내지 50 ℃ 및 60 % 이하의 습도 조건에서 500∼1000 rpm의 속도로 교반하여 제조되는 것이 바람직하다. 반응 온도가 15℃ 미만일 경우에는 올리고머(A)의 점도가 상승하여 공정상의 문제점이 발생하고 50℃를 초과할 경우에는 광중합개시제(C)가 라디칼을 형성하여 경화반응을 일으키므로 좋지 않다. 또한 반응시 습도가 60%를 초과할 경우에는, 수지 생성 이후 코팅 공정 중에 수지에서 기포가 발생하며 미반응 물질들이 공기 중의 수분과 반응하여 부반응이 일어나는 문제점을 가진다. The photocurable resin composition for an optical waveguide of the present invention may be prepared by a conventional method, and specifically, the components (A) to (E) may be mixed in a reactor to have a humidity of 15 to 50 ° C. and 60% or less. It is preferably prepared by stirring at a speed of 500 to 1000 rpm. If the reaction temperature is less than 15 ℃, the viscosity of the oligomer (A) rises to cause a problem in the process, if it exceeds 50 ℃, the photopolymerization initiator (C) is not good because it forms a radical to cause a curing reaction. In addition, when the humidity exceeds 60% during the reaction, bubbles are generated in the resin during the coating process after the resin is generated, and unreacted substances react with moisture in the air, thereby causing side reactions.

본 발명에 의한, 불소 치환 올리고머 함유 광도파로용 고분자 수지 조성물은 굴절률을 1.38∼1.54 범위로 자유롭게 조절할 수 있으며, 작업성과 밀접한 관계가 있는 점도도 50∼2000 cPs 범위로 용이하게 조절할 수 있고, 장기 저장성도 우수하다. 또한 열분해온도가 300℃ 이상으로 열적 안정성이 높고, 복굴절율이 1×10-4 이하로서 낮으며, 간단한 합성 방법을 이용함으로써 제조 비용 또한 절감되어 저가로 제조될 수 있다. 또한, 광통신 영역인 0.85㎛, 1.3㎛, 1.55㎛ 파장에서 각각 90% 이상의 우수한 광투과도를 가지며, 특히 0.85㎛ 파장에서 0.3 dB/㎝ 정도의 광손실을 갖는다. 종래의 열경화 방식, 즉 오랜 시간과 고온을 필요로 하는 방법이 아닌, 상온에서 간단한 자외선 조사만을 이용하는 광경화 방식에 의해 광도파로를 제조할 수 있으므로 광도파로의 제조 공정, 비용, 시간 등을 감소시킬 수 있다.The polymer resin composition for fluorine-substituted oligomer-containing optical waveguides according to the present invention can freely adjust the refractive index in the range of 1.38 to 1.54, and the viscosity closely related to workability can be easily controlled in the range of 50 to 2000 cPs, and long-term storage property Is also excellent. In addition, the thermal decomposition temperature is higher than 300 ℃ thermal stability, the birefringence is low as 1 × 10 -4 or less, by using a simple synthesis method can be manufactured at a low cost by reducing the manufacturing cost. In addition, it has excellent optical transmittance of 90% or more at wavelengths of 0.85 μm, 1.3 μm, and 1.55 μm, which are optical communication areas, and has an optical loss of about 0.3 dB / cm, particularly at 0.85 μm. The optical waveguide can be manufactured by a conventional thermosetting method, that is, a method of using a simple ultraviolet irradiation at room temperature instead of a method requiring a long time and a high temperature, thereby reducing the manufacturing process, cost, and time of the optical waveguide. You can.

본 발명은 또한 마이크로 트랜스퍼 몰딩(Micro-transfer molding) 방법을 이용한, 고분자 광도파로의 제조방법을 제공한다. 이는 고가 장비, 까다로운 조작 조건 등을 요하는 종래 방식에 의한 도파로 제조를 단순화시킨 방법으로서, 실록산계 고무를 사용하여 코어의 패턴을 찍어내는 방법이다. The present invention also provides a method for producing a polymer optical waveguide, using a micro-transfer molding method. This method simplifies the manufacture of waveguides according to the conventional method which requires expensive equipment, difficult operating conditions, and the like, and uses a siloxane-based rubber to print out the pattern of the core.

도 1에 도시한 바와 같이, 본 발명에 의한 마이크로 트랜스퍼 몰딩 기법을 이용한 광경화성 고분자 광도파로의 제조공정은 다음과 같다:As shown in Figure 1, the manufacturing process of the photocurable polymer optical waveguide using the micro transfer molding technique according to the present invention is as follows:

포토레지스트(photoresist)에 의해 도파로 패턴(core pattern)이 형성된 기판 위에 실록산계 레진, 예를 들면 폴리디메틸실록산(polydimethyl siloxane) 고무를 가하고 상온에서 방치하여 기포를 제거한 후 30 내지 100℃에서 2 내지 10시간 동안 상기 레진을 경화시킨 후 마스터로부터 떼어내어 경화된 실록산계 몰드를 제조한다. 상기 실록산계 몰드 위에 본 발명의 광경화형 불소치환 광도파로용 고분자 수지 조성물을 예를 들면, 스핀코팅에 의해 도포하고, 이때 과량의 수지는 제거한다. A siloxane-based resin, for example, polydimethyl siloxane rubber, is added to a substrate on which a waveguide pattern is formed by a photoresist and left at room temperature to remove air bubbles, followed by 2 to 10 at 30 to 100 ° C. After curing the resin for a period of time to remove from the master to prepare a cured siloxane-based mold. The polymer resin composition for photocurable fluorine-substituted optical waveguides of the present invention is coated on the siloxane mold by, for example, spin coating, and excess resin is removed at this time.

한편, 실리콘웨이퍼(silicon wafer) 위에 도포하고 경화시킨 하위 클래딩층(under cladding layer) 위에, 상기와 같이 제조된, 본 발명의 고분자 수지가 도포된 실록산계 몰드를, 상기 고분자 수지가 마주보도록 덮고, 자외선으로 경화시킨 후 이로부터 실록산계 몰드를 떼어낸다. 상기 경화된 고분자 수지 위에 상위 클래딩층(upper cladding layer)을 코팅하고 자외선으로 경화시킴으로써 수행된다. 이러한 마이크로 트랜스퍼 몰딩 방법은, 일단 실록산계 몰드가 제조되면 빠른 시간 내에 아주 간단한 공정으로 도파로를 연속적으로 제작할 수 있는 장점이 있고 포토레지스트 재료의 종류에 따라 1mm×1mm 크기의 광도파로 까지도 형성할 수 있다. Meanwhile, on the under cladding layer coated and cured on a silicon wafer, the siloxane-based mold coated with the polymer resin of the present invention, prepared as described above, is covered with the polymer resin facing each other. After curing with ultraviolet light, the siloxane mold is removed therefrom. It is carried out by coating an upper cladding layer on the cured polymer resin and curing with ultraviolet rays. This micro transfer molding method has the advantage of being able to continuously manufacture a waveguide in a very simple process once a siloxane mold is manufactured, and can even form an optical waveguide having a size of 1 mm x 1 mm depending on the type of photoresist material. .

상기 제조공정에서 도파로 패턴의 디자인 형태에 따라 싱글모드(single-mode) 또는 멀티모드(multi-mode) 광도파로가 제조될 수 있다.In the manufacturing process, a single-mode or multi-mode optical waveguide may be manufactured according to the design shape of the waveguide pattern.

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다. The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.

실시예Example

합성예 1: 올리고머의 제조Synthesis Example 1 Preparation of Oligomer

1L 플라스크에 불소치환된 폴리에테르(Fluorolink E10, 제조원: Ausimount사, 이탈리아) 375.27g 및 이소포론디이소시아네이트(IPDI) 89.38g을 혼합하고 40 내지 60℃로 가온한 후 n-부틸틴라우레이트(DBTL) 0.10g을 첨가하였다. 200∼300 rpm으로 교반하면서 발열이 끝난 후 온도를 65 내지 85℃로 유지하면서 -OH 피크가 소멸할 때까지 반응시켰다. IR 상에 -OH 피크가 완전히 소멸되면 히드로퀴논모노메틸에테르(HQMME) 0.13g, 2-히드록시에틸메타크릴레이트(2-HEMA) 34.85g을 첨가하고, 발열이 종료되면 온도를 70 내지 90℃로 유지하여 IR 상의 -NCO 피크가 완전히 소멸될 때까지 반응시킴으로써, 불소치환된 우레탄 올리고머를 제조하였다.In a 1 L flask, 375.27 g of fluorosubstituted polyether (Fluorolink E10, manufactured by Ausimount, Italy) and 89.38 g of isophorone diisocyanate (IPDI) were mixed and warmed to 40 to 60 ° C, followed by n-butyltinlaurate (DBTL). ) 0.10 g was added. After the exotherm ended while stirring at 200 to 300 rpm, the reaction was continued until the -OH peak disappeared while maintaining the temperature at 65 to 85 ° C. When the -OH peak disappears completely on IR, 0.13 g of hydroquinone monomethyl ether (HQMME) and 34.85 g of 2-hydroxyethyl methacrylate (2-HEMA) are added, and when the exotherm ends, the temperature is increased to 70 to 90 ° C. The fluorine-substituted urethane oligomer was prepared by maintaining and reacting until the -NCO peak on the IR disappeared completely.

합성예 2 내지 13: 올리고머의 제조Synthesis Examples 2 to 13: Preparation of Oligomer

하기 표 1에 기재된 성분 및 함량을 이용하여 합성예 1에서와 동일한 방법에 의해 불소치환된 우레탄 올리고머를 제조하였다.Using the components and contents shown in Table 1 below to prepare a fluorine-substituted urethane oligomer by the same method as in Synthesis Example 1.

실시예 1 내지 10 및 비교실시예 1: 광도파로 제조용 고분자 수지의 제조Examples 1 to 10 and Comparative Example 1 Preparation of Polymer Resin for Optical Waveguide Production

하기 표 2에 기재된 성분들을 반응기에 넣고 온도 20 내지 30℃, 습도 30 내지 60% 및 300 ∼ 1,000rpm 조건으로 혼합하여 본 발명에 따른 불소치환 고분자 수지 조성물을 제조하였다.The components shown in Table 2 were added to a reactor, and mixed at a temperature of 20 to 30 ° C., a humidity of 30 to 60%, and 300 to 1,000 rpm to prepare a fluorine-substituted polymer resin composition according to the present invention.

실 시 예Example 비교예1Comparative Example 1 1One 22 33 44 55 66 77 88 99 1010 (A)올리고머(A) oligomer 합성예 1Synthesis Example 1 4040 4040 합성예 3Synthesis Example 3 4040 4040 합성예 4Synthesis Example 4 4040 4040 합성예 6Synthesis Example 6 4040 4040 합성예 11Synthesis Example 11 4040 4040 UVE-150(주1) UVE-150 (Note 1) 4040 (B)반응성 모노머(B) reactive monomer SR-339(주2) SR-339 (Note 2) 2525 3535 2020 3030 2020 3030 2525 3535 2020 3030 2020 2-퍼플루오로옥틸에틸아크릴레이트2-perfluorooctylethyl acrylate 2525 1515 2020 2020 2020 2020 2525 1515 2020 2020 1010 2-히드록시프로필아크릴레이트2-hydroxypropylacrylate 1010 1010 1010 2020 (C)광 개시제(C) photoinitiator Darocure#1173(주3) Darocure # 1173 (Note 3) 4.54.5 4.54.5 4.54.5 4.54.5 4.54.5 4.54.5 4.54.5 4.54.5 4.54.5 4.54.5 4.54.5 (D)중합방지제(D) polymerization inhibitor Z-6030(주4) Z-6030 (Note 4) 55 55 55 55 55 55 55 55 55 55 55 (E)산화방지제(E) antioxidant BHT(주5) BHT (Note 5) 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 0.50.5 합 계Sum 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100 100100

주1: Croda 제품, 주2: Sartomer사 제품, 주3: 시바 가이기사 제품 Note 1 : Croda product, Note 2 : Sartomer company, Note 3 : Ciba Geigy company

주4: 다우코닝사 제품, 주5: 2,6-디-tert-부틸-4-메틸페놀(알드리치-케미컬사 제품) Note 4 : Dow Corning, Note 5 : 2,6-di-tert-butyl-4-methylphenol (Aldrich-Chemical)

물성 평가Property evaluation

상기 실시예 1-10 및 비교실시예 1에서 각각 제조된 고분자 조성물들의 각각의 물성을 하기 방법에 의해 평가하였으며, 그 결과를 표 3에 나타내었다. The physical properties of the polymer compositions prepared in Examples 1-10 and Comparative Example 1, respectively, were evaluated by the following method, and the results are shown in Table 3 below.

1) 점도(cPs) : 25℃에서 브룩필드 회전 점도계로 스핀들러 넘버 42번, 2㎖의 용량을 사용하였으며, 점도에 따라 10 ∼ 100rpm으로 측정한다.1) Viscosity (cPs): Spinner No. 42 and a capacity of 2 ml were used as a Brookfield rotational viscometer at 25 ° C., and measured at 10 to 100 rpm according to the viscosity.

2) 굴절률(액상) : 아베 굴절계(Abbe's Refractometer)를 사용하여 23℃에서 589.3μm의 나트륨 D 라인(Sodium D line)에 의해 측정한다. 2) Refractive Index (Liquid): Measured by Sodium D line of 589.3 μm at 23 ° C. using an Abbe's Refractometer.

3) 굴절률(경화된 필름) : 스핀 코터의 진공 척 위에 실리콘웨이퍼를 놓고 그 위에 실시예에서 제조된 수지 조성물을 골고루 흩뿌린 다음, 수지 조성물의 점도에 따라 1500∼3000rpm의 속도로 20∼30초 동안 코팅한다. 코팅 완료 후 300W의 고압 수은등으로 된 자외선 경화장치인 퓨전 램프(Fusion Lamp)로 100 mJ/㎠ 이상에서 경화시키고, 60∼100℃에서 10분 이상 동안 후(後)경화시킨 후 프리즘-커플러(Prism-Coupler, Sairon Co. Ltd.)로 850nm 파장에서의 굴절률을 측정한다. 프리즘-커플러를 이용하여 굴절률을 측정하는 경우에 필름의 두께는 2∼15㎛가 적당하다.3) Refractive index (cured film): Place the silicon wafer on the vacuum chuck of the spin coater and evenly scatter the resin composition prepared in Example on it, and then 20 to 30 seconds at a speed of 1500 to 3000 rpm depending on the viscosity of the resin composition While coating. After coating is completed, it is cured at 100 mJ / ㎠ or more with a Fusion Lamp, an ultraviolet curing device made of 300W high-pressure mercury lamp, and after curing at 60 to 100 ° C for at least 10 minutes, a prism coupler (Prism) Coupler, Sairon Co. Ltd.) is used to measure the refractive index at 850 nm wavelength. When measuring the refractive index using a prism-coupler, the thickness of the film is suitably 2 to 15 µm.

고체 상태의 굴절률은 전기장 모드의 굴절률인 nTE와 자기장 모드의 굴절률인 nTM으로 구분되며, 이들의 차인 Δ(nTE-nTM)은 코팅된 물질의 복굴절률을 나타내는 지수이다.The refractive index of the solid state is divided into nTE, which is the refractive index of the electric field mode, and nTM, which is the refractive index of the magnetic field mode, and the difference Δ (nTE-nTM) is an index indicating the birefringence of the coated material.

4) 광투과도(%T) : 실시예에서 수득된 고분자 수지 조성물을 150㎛의 두께로 유리판 위에 코팅한다. 300W의 고압 수은등으로 된 자외선 경화장치인 퓨전 램프로 100 mJ/㎠ 이상에서 경화시킨 후 60∼100℃에서 10분 이상 동안 후 경화를 진행한다. 경화가 완전히 종료된 후 3cm×3cm의 크기로 시편을 분리하여 분광광도계(UV-VIS-NIS Spectrophotometer, Varian, 호주)로 200 내지 1800 nm의 파장에 따른 광투과도(%T)를 측정한다. 하기 표 2에 기재된 광투과도는 600 내지 1600 nm 파장 영역에서의 광투과도이다.4) Light transmittance (% T): The polymer resin composition obtained in Example is coated on a glass plate with a thickness of 150 μm. After curing at 100 mJ / ㎠ or more with a fusion lamp of 300W high-pressure mercury lamp UV curing apparatus, the curing is carried out for 10 minutes or more at 60 ~ 100 ℃. After curing is complete, the specimens are separated to a size of 3 cm x 3 cm and the optical transmittance (% T) according to the wavelength of 200 to 1800 nm is measured with a spectrophotometer (UV-VIS-NIS Spectrophotometer, Varian, Australia). The light transmittance described in Table 2 below is the light transmittance in the 600 to 1600 nm wavelength region.

5) 경도(A 또는 D) : 50mm×20mm×5mm 이상의 크기를 갖는 형태에 실시예에서 수득된 조성물을 조심스럽게 부은 뒤 경화시키고, 이때 경화조건은 상기 광투과도 측정시의 샘플 경화조건과 동일하다. 경화가 완료된 후 쇼아경도계(Shore Durometer Hardness)를 이용하여 경도를 측정한다.5) Hardness (A or D): The composition obtained in Example is carefully poured into a form having a size of 50 mm × 20 mm × 5 mm or more, and the curing conditions are the same as that of the sample curing at the time of measuring light transmittance. . After curing is completed, hardness is measured using a Shore Durometer Hardness.

6) 경화수축률(%) : ASTM D-792 조건에 의거 측정한다. 6) Hardening Shrinkage (%): Measured according to ASTM D-792.

7) 유리전이 온도(Tg) : 상술된 광투과도 측정시의 시편 제조방법과 동일하게 150㎛ 두께의 경화된 필름을 제조한 뒤 동역학열분석기(Dynamic Mechanical Thermal Analyzer, DMTA)를 이용하여 유리전이 온도를 측정한다. 측정조건은 10 ℃/min의 승온 속도로 상온에서 250℃ 온도까지 질소분위기 하에서 진행한다.7) Glass Transition Temperature (Tg): The glass transition temperature was prepared using a Dynamic Mechanical Thermal Analyzer (DMTA) after preparing a cured film having a thickness of 150 μm in the same manner as the specimen manufacturing method for measuring the optical transmittance described above. Measure The measurement conditions were carried out in a nitrogen atmosphere from room temperature to 250 ° C. at a rate of temperature rise of 10 ° C./min.

8) 열분해 온도(Td) : 열 무게 측정 분석기(Thermogravimeteric Analyzer, TGA)를 이용하여 10 ℃/min의 승온 속도로 상온에서 700℃까지 질소 분위기 하에서 온도 증가에 따른 시료의 무게 변화를 측정한다.8) Pyrolysis temperature (Td): Measure the change in the weight of the sample with increasing temperature under nitrogen atmosphere from room temperature to 700 ℃ at a temperature rising rate of 10 ℃ / min using a thermogravimeteric analyzer (TGA).

9) 저장 안정성 : 조성물을 상온에서 6개월 동안 방치한 후 방치 전과 후의 외관 및 코팅 상태의 변화를 관찰한다. 9) Storage Stability: After leaving the composition for 6 months at room temperature, observe the change in appearance and coating state before and after standing.

10) 광손실(dB/cm) : 광손실 측정을 위한 시편의 제조는 굴절률(고체) 측정시의 시편 제조방법과 동일하다. 다만, 프리즘-커플러로 굴절률 정합액 방법을 이용하여 박막의 광손실을 측정하려면 이중층 막으로 코팅하여야 한다. 즉, 측정하고자 하는 물질보다 굴절률이 낮은 물질을 실리콘웨이퍼 위에 먼저 코팅하고 그 위에 측정하고자 하는 조성물을 코팅하며, 이때 코팅 후엔 반드시 광경화 및 후 경화를 각각 진행한다. 본 실험 방법에서는 총 3cm의 길이에 해당하는 광손실을 취하였으며, 프리즘-커플러는 새론사(Sairon Co., Ltd.)에서 공급하는 프리즘-커플러(Prism-Coupler)를 사용하였다.10) Light loss (dB / cm): The test piece for the optical loss measurement is the same as the test method for the test piece for the refractive index (solid) measurement. However, in order to measure the optical loss of a thin film using a refractive index matching method with a prism-coupler, a double layer film must be coated. That is, a material having a lower refractive index than the material to be measured is first coated on the silicon wafer, and then the composition to be measured is coated on the silicon wafer. In this test method, a total loss of 3 cm in length was taken, and a prism coupler was used as a prismatic coupler (Prism-Coupler) supplied by Sairon Co., Ltd.

실시예 11: 광도파로의 제조Example 11 Fabrication of Optical Waveguides

실시예 1에서 수득된 수지 조성물을 클래딩 층으로 하여 실리콘웨이퍼 위에 골고루 흩뿌린 뒤 3000rpm으로 30초간 스핀 코팅하였다. 이어서 300W의 고압 수은등으로 된 자외선 경화장치인 퓨전 램프로 100 mJ/㎠ 이상에서 경화시킨 후 60∼100℃에서 10분 이상 동안 후 경화를 진행시켰다. 한편, 포토레지스트에 의해 도파로 패턴(core pattern)이 형성된 기판 위에 폴리디메틸실록산 고무를 가하고 상온에서 방치하여 기포를 제거한 후 40℃에서 2시간 동안 경화시킨 후 마스터로부터 떼어내어, 경화된 실록산계 몰드(코어 크기: 45 마이크론)를 제조하였다.The resin composition obtained in Example 1 was used as a cladding layer and evenly scattered on a silicon wafer, followed by spin coating at 3000 rpm for 30 seconds. Subsequently, curing was performed at 100 mJ / cm 2 or more with a fusion lamp, an ultraviolet curing device of 300W high-pressure mercury lamp, followed by post-curing at 60-100 ° C. for at least 10 minutes. On the other hand, polydimethylsiloxane rubber is added to a substrate on which a waveguide pattern is formed by a photoresist and left at room temperature to remove air bubbles, and then cured at 40 ° C. for 2 hours, and then removed from the master to form a cured siloxane-based mold ( Core size: 45 microns).

상기 실록산계 몰드 위에 실시예 2에서 수득된 수지 조성물을 기포가 생기지 않도록 주의하면서 패턴 모양을 따라 골고루 가하였다. 상기 수지 조성물이 있는 부분이 아래를 향하도록 하여 상기 클래딩 층이 코팅된 실리콘웨이퍼 위에 얹은 후 퓨전 램프로 100 mJ/㎠ 이상에서 광경화시키고 실록산계 몰드를 떼어낸 후 60∼100℃에서 10분 이상 동안 후 경화시켰다. 이렇게 수득된 코아층이 코팅된 웨이퍼의 단면을 전자현미경과 주사전자현미경으로 관찰하여 그 결과를 각각 도 2a 및 2b에 나타내었다. On the siloxane mold, the resin composition obtained in Example 2 was evenly added along the pattern shape while being careful not to bubble. The resin composition is placed on the cladding layer-coated silicon wafer with the resin composition facing downward, and then photocured at 100 mJ / cm 2 or more with a fusion lamp, and after removing the siloxane mold, at least 10 minutes at 60 to 100 ° C. And then cured. The cross section of the core layer coated wafer thus obtained was observed with an electron microscope and a scanning electron microscope, and the results are shown in FIGS. 2A and 2B, respectively.

코아 패턴이 올려진 상태에서 다시 상위 클래딩 층을 실시예 1에 수득한 수지 조성물로 1000rpm으로 20초간 스핀코팅 한 후 100 mJ/㎠ 이상에서 광경화시키고, 이어서 60 내지 100℃에서 10분 이상동안 경화시켜 고분자 광도파로를 수득하였다. The upper cladding layer was spin-coated at 1000 rpm for 20 seconds with the resin composition obtained in Example 1 while the core pattern was raised, and then photocured at 100 mJ / cm 2 or more, and then cured at 60 to 100 ° C. for 10 minutes or more. To obtain a polymer optical waveguide.

실시예 12: 광도파로의 제조Example 12 Fabrication of Optical Waveguides

실시예 3 및 실시예 4에서 수득된 수지 조성물을 각각 클래딩 층 및 코어 층으로 사용한 것을 제외하고는, 실시예 11에서와 동일한 방법에 의해 광도파로를 제조하였다.An optical waveguide was prepared in the same manner as in Example 11 except that the resin compositions obtained in Examples 3 and 4 were used as the cladding layer and the core layer, respectively.

실시예 13: 광도파로의 물성 측정Example 13: Measurement of physical properties of optical waveguide

실시예 11 및 12에서 수득된 고분자 광도파로의 물성을 측정하여 하기 표 4에 나타내었으며, 이중에서 광진행 손실(propagation loss)은 850nm에서 컷-백 방법(cut-back method)을 이용하여 3cm의 도파로에 대해 측정하였다.The physical properties of the polymer optical waveguides obtained in Examples 11 and 12 are shown in Table 4 below, in which the propagation loss is 3 cm using a cut-back method at 850 nm. Measurement was made on the waveguide.

구 분division 실시예 11Example 11 실시예 12Example 12 광도파로 형태Optical waveguide form Buried typeBuried type Buried typeBuried type 굴절률 차(%)Refractive index difference (%) 1.39%1.39% 1.40%1.40% 코어크기Core size 45㎛×45㎛45 μm × 45 μm 45㎛×45㎛45 μm × 45 μm 광진행손실 (dB/cm)Optical running loss (dB / cm) 0.2450.245 0.2140.214

본 발명에 따른 광경화성 불소 치환된 광도파로용 수지 조성물은 1개 이상의 (메타)아크릴로일기를 갖는 합성된 광경화성 불소치환 올리고머와 함께 1개 이상의 (메타)아크릴로일기 및 에폭시기를 갖는 반응성 모노머, 광중합개시제, 중합방지제 및 산화방지제를 혼합하여 제조함으로써, 낮은 복굴절률 및 적은 광손실을 나타내고, 광투과도, 열적 안정성 및 장기 저장성이 우수하며, 또한 상기 수지 조성물을 이용하여 마이크로 몰딩 기법에 의해 통상적인 에칭이나 식각 없이 광 조사만으로 손쉽게 광도파로를 제작할 수 있다.The resin composition for photocurable fluorine-substituted optical waveguides according to the present invention is a reactive monomer having at least one (meth) acryloyl group and an epoxy group together with a synthesized photocurable fluorine substituted oligomer having at least one (meth) acryloyl group. By mixing photopolymerization initiator, polymerization inhibitor and antioxidant, it shows low birefringence and low light loss, and is excellent in light transmittance, thermal stability and long-term storage, and also by micro-molding technique using the resin composition The optical waveguide can be easily manufactured by simply irradiating light without etching or etching.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

도 1은 본 발명의 실시예에 따른 마이크로 트랜스퍼 몰딩 기법을 이용한 광경화성 고분자 광도파로의 제조공정도이고;1 is a manufacturing process diagram of a photocurable polymer optical waveguide using a micro transfer molding technique according to an embodiment of the present invention;

도 2a 및 도 2b는 각각 본 발명의 실시예에서 수득한 코아층이 코팅된 웨이퍼의 단면에 대한 전자현미경 및 주사전자현미경(Scanning Electron Microscope) 사진이다. 2A and 2B are electron microscope and scanning electron microscope (Scanning Electron Microscope) photographs of the cross-sections of the core layer-coated wafers obtained in Examples of the present invention, respectively.

Claims (12)

하기 화학식 1로 표시되는, 불소 치환된 광중합형 우레탄 올리고머:A fluorine-substituted photopolymerized urethane oligomer represented by Formula 1 below: 화학식 1Formula 1 상기 식에서, Where R2는 탄소수가 6 ~ 100개로 구성된 방향족 또는 지방족 탄화수소기이고, R3는 탄소수가 2 ~ 10개로 구성된 방향족 또는 지방족 탄화수소기이고, R4는 메타(아크릴레이트)기 또는 에폭시기이고, l 및 m은 각각 독립적으로 양의 정수이며, p는 0 또는 양의 정수이다.R 2 is an aromatic or aliphatic hydrocarbon group having 6 to 100 carbon atoms, R 3 is an aromatic or aliphatic hydrocarbon group having 2 to 10 carbon atoms, R 4 is a meta (acrylate) group or an epoxy group, l and m Are each independently a positive integer and p is 0 or a positive integer. (A) 청구항 1에 따른 화학식 1의 불소 치환된 광중합형 우레탄 올리고머 20 내지 79 중량%, (B) 반응성 모노머 20 내지 79 중량% 및 (C) 광중합개시제 1 내지 10 중량%를 포함하는, 광도파로용 광경화성 수지 조성물.An optical waveguide comprising (A) 20 to 79% by weight of a fluorine-substituted photopolymerized urethane oligomer of Formula 1 according to claim 1, (B) 20 to 79% by weight of a reactive monomer and (C) 1 to 10% by weight of a photoinitiator. Photocurable resin composition. 제2항에 있어서,The method of claim 2, 불소 치환된 광중합형 우레탄 올리고머(A)가 불소 치환체를 가진 폴리올(a)과 디이소시아네이트(b)를 우레탄 반응 촉매(d)의 존재하에 반응시킨 후, 수득된 반응 생성물과 하나 이상의 (메타)아크릴로일기 또는 에폭시기, 및 히드록시기를 가진 화합물(c)을 우레탄 반응 촉매(d) 및 중합개시제(e)의 존재하에 반응시켜 제조된 것임을 특징으로 하는, 광도파로용 광경화성 수지 조성물.After the fluorine-substituted photopolymerized urethane oligomer (A) reacts the polyol (a) having a fluorine substituent and the diisocyanate (b) in the presence of a urethane reaction catalyst (d), the reaction product obtained and at least one (meth) acryl A compound (c) having a royl group or an epoxy group and a hydroxy group is prepared by reacting in the presence of a urethane reaction catalyst (d) and a polymerization initiator (e), wherein the photocurable resin composition for an optical waveguide. 제3항에 있어서,The method of claim 3, 폴리올(a)이 분자량 500 내지 10,000이고, 불소 치환된 퍼플루오로 폴리에테르폴리올(Perfluoropolyether polyol) 또는 퍼플루오로 폴리에테르 말단에 비불소폴리에테르기를 갖는 폴리올임을 특징으로 하는, 광도파로용 광경화성 수지 조성물.Photocurable resin for optical waveguides, characterized in that the polyol (a) has a molecular weight of 500 to 10,000, and a fluorine-substituted perfluoropolyether polyol or a polyol having a non-fluorine polyether group at the perfluoropolyether end. Composition. 제3항에 있어서,The method of claim 3, 디이소시아네이트(b)가 이소포론 디이소시아네이트(IPDI), 헥산 디이소시아네이트(HDI), 옥타메틸렌 디이소시아네이트, 테트라메틸크실렌 디이소시아네이트(TMXDI), 4,4'-디시클로헥실메탄 디이소시아네이트(HMDI), 4,4'-디페닐메탄 디이소시아네이트, 3,3'-디메틸 4,4'-비페닐렌 디이소시아네이트, 3,3'-디메틸디페닐메탄-4,4'-디이소시아네이트, 4-브로모-6-메틸-1,3-페닐렌 디이소시아네이트, 4-클로로-6-메틸-1,3-페닐렌 디이소시아네이트, 폴리(1,4-부탄디올)톨릴렌 2,4-디이소시아네이트 터미네이티드, 폴리(1,4-부탄디올) 이소포론 디이소시아네이트 터미네이티드, 폴리(에틸렌 아디페이트)톨릴렌 2,4-디이소시아네이트 터미네이티드, 폴리[1,4-페닐렌 디이소시아네이트-코-폴리(1,4-부탄올)]디이소시아네이트, 폴리헥사메틸렌 디이소시아네이트, 폴리프로필렌글리콜 톨릴렌 2,4-디이소시아네이트 터미네이티드, 폴리(테트라플루오로에틸렌옥시드-코-디플루오로메틸렌옥시드)α,ω디이소시아네이트, 2,4-톨루엔 디이소시아네이트, 2,5-톨루엔 디이소시아네이트, 2,6-톨루엔 디이소시아네이트, 1,5-나프탈렌 디이소시아네이트 및 이들의 혼합물로 이루어진 군으로부터 선택됨을 특징으로 하는, 광도파로용 광경화성 수지 조성물.Diisocyanate (b) isophorone diisocyanate (IPDI), hexane diisocyanate (HDI), octamethylene diisocyanate, tetramethylxylene diisocyanate (TMXDI), 4,4'-dicyclohexylmethane diisocyanate (HMDI), 4,4'-diphenylmethane diisocyanate, 3,3'-dimethyl 4,4'-biphenylene diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4-bromo -6-methyl-1,3-phenylene diisocyanate, 4-chloro-6-methyl-1,3-phenylene diisocyanate, poly (1,4-butanediol) tolylene 2,4-diisocyanate terminated , Poly (1,4-butanediol) isophorone diisocyanate terminated, poly (ethylene adipate) tolylene 2,4-diisocyanate terminated, poly [1,4-phenylene diisocyanate-co-poly ( 1,4-butanol)] diisocyanate, polyhexamethylene diisocyanate, polypropylene glycol toll Reylene 2,4-Diisocyanate Terminated, Poly (tetrafluoroethyleneoxide-co-difluoromethylene oxide) α, ω diisocyanate, 2,4-toluene diisocyanate, 2,5-toluene diisocyanate , 2,6-toluene diisocyanate, 1,5-naphthalene diisocyanate, and mixtures thereof. The photocurable resin composition for an optical waveguide. 제3항에 있어서,The method of claim 3, 하나 이상의 (메타)아크릴로일기와 히드록시기를 가진 화합물(c1)이 2-히드록시에틸(메타)아크릴레이트, 2-히드록시프로필(메타)아크릴레이트, 2-히드록시부틸(메타)아크릴레이트, 1-히드록시부틸(메타)아크릴레이트, 2-히드록시-3-페닐옥시프로필(메타)아크릴레이트, 네오펜틸글리코모노(메타)아크릴레이트, 4-히드록시시클로헥실(메타)아크릴레이트, 1,6-헥산디올모노(메타)아크릴레이트, 펜타에리트리톨펜타(메타)아크릴레이트, 디펜타에리트리톨펜타(메타)아크릴레이트, 2-메타크릴록시에틸 2-히드록시 프로필 프탈레이트, 글리세린 디(메타)아크릴레이트, 2-히드록시-3-아크릴로일록시 프로필 (메타)아크릴레이트, 폴리카프로락톤 폴리올 모노(메타)아크릴레이트 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 광도파로용 광경화성 수지 조성물.Compound (c 1 ) having at least one (meth) acryloyl group and a hydroxy group is 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate , 1-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, neopentylglycomono (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, pentaerythritol penta (meth) acrylate, dipentaerythritol penta (meth) acrylate, 2-methacryloxyethyl 2-hydroxy propyl phthalate, glycerin di ( Optical waveguide, characterized in that it is selected from the group consisting of meth) acrylates, 2-hydroxy-3-acryloyloxy propyl (meth) acrylates, polycaprolactone polyol mono (meth) acrylates and mixtures thereof. Light Resin composition. 제3항에 있어서, The method of claim 3, 하나 이상의 에폭시기와 히드록시기를 가진 화합물(c2)이 글리시돌, 에폭시화 테트라히드로벤질 알코올 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 광도파로용 광경화성 수지 조성물.Compound (c 2 ) having at least one epoxy group and a hydroxy group is selected from the group consisting of glycidol, epoxidized tetrahydrobenzyl alcohol and mixtures thereof, the photocurable resin composition for an optical waveguide. 제2항에 있어서, The method of claim 2, 1개 이상의 (메타)아크릴로일기를 갖는 (메타)아크릴레이트(B1)가 불소 치환되거나 또는 불소 치환되지 않은 모노머이며, 상기 불소 치환된 (메타)아크릴로일기 함유 반응성 모노머가 2-퍼플루오로옥틸에틸아크릴레이트, 2-퍼플루오로옥틸에틸메타크릴레이트, 2,2,3,4,4,4-헥사플루오로부틸메타크릴레이트, 2,2,3,3-테트라플루오로프로필 메타크릴레이트, 트리플루오로에틸메타크릴레이트, 2-퍼플루오로알킬에틸아크릴레이트 및 2-퍼플루오로알킬에틸메타크릴레이트로 이루어진 군으로부터 선택되며; 상기 불소 치환되지 않은 (메타)아크릴로일기 함유 반응성 모노머가 2-히드록시에틸(메타)아크릴레이트, 2-히드록시프로필(메타)아크릴레이트, 2-히드록시부틸(메타)아크릴레이트, 1-히드록시부틸(메타)아크릴레이트, 2-히드록시-3-페닐옥시프로필(메타)아크릴레이트, 테트라히드로퍼퓨릴 (메타)아크릴레이트, 이소데실 (메타)아크릴레이트, 2-(2-에톡시에톡시)에틸 (메타)아크릴레이트, 스테아릴 (메타)아크릴레이트, 라우릴 (메타)아크릴레이트, 2-페녹시에틸 (메타)아크릴레이트, 이소보닐 (메타)아크릴레이트, 트리데실 (메타)아크릴레이트, 폴리카프로락톤 (메타)아크릴레이트, 페녹시테트라에틸렌글리콜아크릴레이트, 이미드아크릴레이트, 에톡시부과형 노닐페놀 (메타)아크릴레이트, 에틸렌 글리콜 디(메타)아크릴레이트, 디에틸렌 글리콜 디(메타)아크릴레이트, 트리에틸렌 글리콜 디(메타)아크릴레이트, 테트라에틸렌 글리콜 디(메타)아크릴레이트, 폴리에틸렌 글리콜 디(메타)아크릴레이트, 1,6-헥산디올 디(메타)아크릴레이트, 1,3-부틸렌 글리콜 디(메타)아크릴레이트, 트리프로필렌 글리콜 디(메타)아크릴레이트, 에톡시 부과형 비스페놀 A 디(메타)아크릴레이트, 시클로헥산 디메탄올 디(메타)아크릴레이트, 트리시클로데칸디메탄올 디아크릴레이트(Tricyclo[5.2.1.02,6]decanedimethanol diacrylate), 트리스 아크릴로일옥시에틸 이소시아누레이트, 트리메틸올 프로판 트리 아크릴레이트, 에틸렌 옥시드 3몰 부가형 트리메틸올 프로판 트리 아크릴레이트, 에틸렌 옥시드 6몰 부가형 트리메틸올 프로판 트리아크릴레이트, 펜타에리트리톨 트리아크릴레이트, 트리스(아크릴로옥시에틸)이소시아누레이트, 디펜타에리트리톨 헥사 아크릴레이트, 카프로락톤 변성 디펜타에리트리톨 헥사 아크릴레이트로 이루어진 군으로부터 선택됨을 특징으로 하는, 광도파로용 광경화성 수지 조성물.The (meth) acrylate (B 1 ) having at least one (meth) acryloyl group is a fluorine-substituted or unfluorinated monomer, and the fluorine-substituted (meth) acryloyl group-containing reactive monomer is 2-perfluoro Rooctylethyl acrylate, 2-perfluorooctylethyl methacrylate, 2,2,3,4,4,4-hexafluorobutyl methacrylate, 2,2,3,3-tetrafluoropropyl meta Acrylate, trifluoroethyl methacrylate, 2-perfluoroalkylethyl acrylate and 2-perfluoroalkylethyl methacrylate; The (meth) acryloyl group-containing reactive monomer which is not fluorine-substituted is 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 1- Hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isodecyl (meth) acrylate, 2- (2-ethoxy Ethoxy) ethyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, tridecyl (meth) Acrylate, polycaprolactone (meth) acrylate, phenoxytetraethylene glycol acrylate, imide acrylate, ethoxy-rich nonylphenol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (Meta) Oh Relate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,3-butyl Ethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, ethoxy immobilized bisphenol A di (meth) acrylate, cyclohexane dimethanol di (meth) acrylate, tricyclodecane dimethanol diacryl Tricyclo [5.2.1.0 2,6 ] decanedimethanol diacrylate, tris acryloyloxyethyl isocyanurate, trimethylol propane triacrylate, ethylene oxide 3 molar addition trimethylol propane triacrylate, ethylene oxide 6 Molar addition type trimethylol propane triacrylate, pentaerythritol triacrylate, tris (acryloxyethyl) isocyanurate, dipenta Tall Tree hexaacrylate, caprolactone-modified dipentaerythritol hexa is selected from the group consisting of acrylate, which is characterized, photo-curing resin composition for the optical waveguide. 제2항에 있어서, The method of claim 2, 1개 이상의 에폭시기를 갖는 광반응성 모노머(B2)가 3,4-에폭시시클로헥실메틸-3,4-에폭시시클로헥산 카복실레이트, 비스-(3,4-에폭시클로헥실)아디페이트, 3-에틸-3-히드록시메틸-옥세탄, 1,2-에폭시헥사데칸, 알킬글리시딜에테르, 2-에틸헥실디글리콜 글리시딜에테르, 에틸렌글리콜 디글리시딜 에테르, 디에틸렌글리콜 디글리시딜 에테르, PEG#200 디글리시딜 에테르, PEG#400 디글리시딜 에테르, 프로필렌글리콜 디글리시딜 에테르, 트리프로필렌글리콜 디글리시딜 에테르, PPG#400 디글리시딜 에테르, 네오펜틸글리콜 디글리시딜 에테르, 1,6-헥산디올 디글리시딜 에테르, 수소화 비스페놀 A 디글리시딜 에테르, 프로필렌옥시드 변형 비스페놀 A형 디글리시딜 에테르, 디브로모 네오펜틸글리콜 디글리시딜 에테르 및 트리메틸올프로판 트리글리시딜 에테르로 이루어진 군으로부터 선택됨을 특징으로 하는, 광도파로용 광경화성 수지 조성물.Photoreactive monomer (B 2 ) having at least one epoxy group is 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate, bis- (3,4-epcyclohexyl) adipate, 3-ethyl 3-hydroxymethyl-oxetane, 1,2-epoxyhexadecane, alkylglycidyl ether, 2-ethylhexyl diglycol glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl Ether, PEG # 200 diglycidyl ether, PEG # 400 diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, PPG # 400 diglycidyl ether, neopentylglycol di Glycidyl ether, 1,6-hexanediol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, propylene oxide modified bisphenol A diglycidyl ether, dibromo neopentylglycol diglycidyl ether And trimethylolpropane triglycidyl ether Photocurable resin composition for an optical waveguide, characterized in that selected from the group consisting of. 제2항 내지 제9항중 어느 한 항에 있어서,The method according to any one of claims 2 to 9, 복굴절률이 1×10-4 이하이고, 굴절률을 1.38 내지 1.54의 범위로 조절할 수 있고, 점도를 50 내지 2000 cps 범위로 조절할 수 있으며, 열분해온도가 300℃ 이상임을 특징으로 하는, 광도파로용 광경화성 수지 조성물.The birefringence is 1 × 10 -4 or less, the refractive index can be adjusted in the range of 1.38 to 1.54, the viscosity can be adjusted in the range of 50 to 2000 cps, the thermal decomposition temperature is characterized in that 300 ℃ or more, optical waveguide sight Chemical composition. 제2항 내지 제9항중 어느 한 항의 광경화형 수지 조성물을 실록산계 몰드에 적용하고 과량의 광경화형 수지를 제거한 후, 하부 클래딩층이 코팅된 실리콘웨이퍼를 광경화시키고, 상기 광경화형 수지로 도포된 실록산계 몰드를 상기 하부 클래딩 코팅면에 부착시키고 광경화시킨 후 실록산계 몰드를 제거하고, 상기 광경화형 수지에 상부 클래딩층을 코팅 및 광경화시키는 단계를 포함하는, 광도파로의 제조방법.10. After applying the photocurable resin composition of any one of claims 2 to 9 to the siloxane-based mold and removing excess photocurable resin, the photocurable silicon wafer coated with the lower cladding layer is coated with the photocurable resin. Attaching a siloxane mold to the lower cladding coating surface and photocuring to remove the siloxane mold, and coating and photocuring the upper cladding layer on the photocurable resin. 제11항의 방법에 따라 제조된 광도파로.An optical waveguide manufactured according to the method of claim 11.
KR10-2002-0011002A 2002-02-28 2002-02-28 Photo-curable resin composition for optical waveguide and optical waveguide prepared therefrom KR100487025B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2002-0011002A KR100487025B1 (en) 2002-02-28 2002-02-28 Photo-curable resin composition for optical waveguide and optical waveguide prepared therefrom
JP2003571327A JP2005519146A (en) 2002-02-28 2002-12-18 Photocurable resin composition for optical waveguide and optical waveguide produced therefrom
AU2002358336A AU2002358336A1 (en) 2002-02-28 2002-12-18 Photocurable resin composition for optical waveguide and optical waveguide made of the same
PCT/KR2002/002381 WO2003072625A1 (en) 2002-02-28 2002-12-18 Photocurable resin composition for optical waveguide and optical waveguide made of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0011002A KR100487025B1 (en) 2002-02-28 2002-02-28 Photo-curable resin composition for optical waveguide and optical waveguide prepared therefrom

Publications (2)

Publication Number Publication Date
KR20030071343A KR20030071343A (en) 2003-09-03
KR100487025B1 true KR100487025B1 (en) 2005-05-11

Family

ID=27764631

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0011002A KR100487025B1 (en) 2002-02-28 2002-02-28 Photo-curable resin composition for optical waveguide and optical waveguide prepared therefrom

Country Status (4)

Country Link
JP (1) JP2005519146A (en)
KR (1) KR100487025B1 (en)
AU (1) AU2002358336A1 (en)
WO (1) WO2003072625A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929381B1 (en) 2007-11-22 2009-12-02 주식회사 미뉴타텍 Mold sheet composition and mold sheet manufacturing method using the same

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1997691B (en) 2003-09-23 2011-07-20 北卡罗来纳大学查珀尔希尔分校 Photocurable perfluoropolyethers for use as novel materials in microfluidic devices
JP4779293B2 (en) 2003-10-21 2011-09-28 Tdk株式会社 Hard coating agent composition and optical information medium using the same
US9040090B2 (en) 2003-12-19 2015-05-26 The University Of North Carolina At Chapel Hill Isolated and fixed micro and nano structures and methods thereof
JP2008512281A (en) * 2004-09-13 2008-04-24 ダウ・コーニング・コーポレイション Lithographic techniques using silicone molds
WO2006038691A1 (en) * 2004-10-07 2006-04-13 Hitachi Chemical Company, Ltd. Resin composition for optical material, resin film for optical material and optical waveguide using same
JP5211423B2 (en) * 2004-10-07 2013-06-12 日立化成株式会社 Resin composition for optical material, resin film for optical material, and optical waveguide using the same
JP4810956B2 (en) * 2004-12-13 2011-11-09 日立化成工業株式会社 Resin composition for optical material, resin film for optical material, and optical waveguide using the same
CA2593694A1 (en) 2004-12-30 2006-07-13 3M Innovative Properties Company Articles comprising a fluorochemical surface layer and related methods
KR20070094942A (en) 2004-12-30 2007-09-27 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Stain-resistant fluorochemical compositions
US20060216524A1 (en) 2005-03-23 2006-09-28 3M Innovative Properties Company Perfluoropolyether urethane additives having (meth)acryl groups and hard coats
EP2537657A3 (en) * 2005-08-09 2016-05-04 The University of North Carolina At Chapel Hill Methods and materials for fabricating microfluidic devices
JP5176546B2 (en) 2005-11-10 2013-04-03 日本電気株式会社 Photosensitive resin composition for forming optical waveguide, optical waveguide, and method for producing optical waveguide
US7722955B2 (en) 2006-04-13 2010-05-25 3M Innovative Properties Company Flooring substrate having a coating of a curable composition
US7575847B2 (en) 2006-06-13 2009-08-18 3M Innovative Properties Company Low refractive index composition comprising fluoropolyether urethane compound
US7537828B2 (en) 2006-06-13 2009-05-26 3M Innovative Properties Company Low refractive index composition comprising fluoropolyether urethane compound
US20080103226A1 (en) * 2006-10-31 2008-05-01 Dsm Ip Assets B.V. Photo-curable resin composition
US20080124555A1 (en) 2006-11-29 2008-05-29 3M Innovative Properties Company Polymerizable composition comprising perfluoropolyether urethane having ethylene oxide repeat units
WO2009029438A1 (en) 2007-08-31 2009-03-05 3M Innovative Properties Company Hardcoats
KR101091533B1 (en) 2008-01-29 2011-12-13 주식회사 엘지화학 Method for making privacy film
KR101003002B1 (en) * 2008-06-30 2010-12-22 에스에스씨피 주식회사 Resin composition for cladding layer of optical fiber
KR101051287B1 (en) * 2008-08-19 2011-07-22 에스에스씨피 주식회사 Photopolymerization oligomer, photopolymerization resin composition and optical fiber containing the oligomer
EP2199855B1 (en) 2008-12-19 2016-07-20 Obducat Methods and processes for modifying polymer material surface interactions
EP2199854B1 (en) * 2008-12-19 2015-12-16 Obducat AB Hybrid polymer mold for nano-imprinting and method for making the same
CN102301264A (en) * 2009-03-18 2011-12-28 旭硝子株式会社 Optical waveguide
TWI464224B (en) 2009-05-14 2014-12-11 Dainippon Ink & Chemicals A fluoropolymerizable polymer and an active energy ray hardening type composition using the same
KR101653626B1 (en) * 2009-07-13 2016-09-02 주식회사 동진쎄미켐 Photocurable fluoro resin composition and method for preparing of mold using the same
US9096712B2 (en) 2009-07-21 2015-08-04 3M Innovative Properties Company Curable compositions, method of coating a phototool, and coated phototool
EP2478034A1 (en) 2009-09-16 2012-07-25 3M Innovative Properties Company Fluorinated coating and phototools made therewith
US8420281B2 (en) * 2009-09-16 2013-04-16 3M Innovative Properties Company Epoxy-functionalized perfluoropolyether polyurethanes
GB0919014D0 (en) 2009-10-30 2009-12-16 3M Innovative Properties Co Soll and stain resistant coating composition for finished leather substrates
CN102834421B (en) * 2010-03-31 2014-09-24 Dic株式会社 Fluorine-containing curable resin and active energy ray curable composition using the same
JP5581943B2 (en) * 2010-09-29 2014-09-03 Dic株式会社 Fluorine-containing polymerizable resin, active energy ray-curable coating composition and cured product thereof
EP2631254A1 (en) * 2012-02-27 2013-08-28 Cytec Surface Specialties, S.A. Fluorinated water-oil repellency agents
KR101436018B1 (en) * 2013-01-23 2014-09-01 한국화학연구원 antifouling photo-curable resin composition containing per-fluoro polyether modified compound and antifouling transparent thin film for hard coating using the same
KR102345843B1 (en) * 2015-04-07 2021-12-31 닛산 가가쿠 가부시키가이샤 Curable composition for anti-glare coating
JP6802528B2 (en) * 2015-04-07 2020-12-16 日産化学株式会社 Curable composition for scratch resistant coating
CN107531816B (en) * 2015-04-30 2020-04-28 Agc株式会社 Composition containing fluorine-containing compound, method for producing same, coating liquid, composition for forming hard coat layer, and article
JP2018538416A (en) * 2015-12-22 2018-12-27 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Functionalized (poly) alkoxylated (per) fluoropolyether polymers
CN105860015B (en) * 2016-05-06 2021-04-16 南昌航空大学 Preparation method of green environment-friendly fingerprint-resistant transparent resin
CN105837784B (en) * 2016-05-06 2021-04-16 南昌航空大学 Preparation method of environment-friendly anti-fingerprint resin for galvanized steel sheet
CN106833093A (en) * 2016-11-28 2017-06-13 江南大学 A kind of preparation method of photocuring hydrophobic resin modified manometer silicon dioxide
KR102268129B1 (en) * 2017-10-16 2021-06-22 주식회사 엘지화학 Unreactive fluoro compound and photopolymer composition comprising the same
WO2019078585A1 (en) * 2017-10-16 2019-04-25 주식회사 엘지화학 Non-reactive fluorine-based compound and photopolymerizable composition including same
BR112020012081B1 (en) 2017-12-26 2023-04-25 Akzo Nobel Coatings International B.V COATING COMPOSITION, COATING COMPOSITION PREPARATION METHOD AND COATING COMPOSITION OR OLIGOMER USE METHOD

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278255A (en) * 1994-04-06 1995-10-24 Sumitomo Electric Ind Ltd New compound and plastic-clad optical fiber using same
JPH08301959A (en) * 1995-05-08 1996-11-19 Sumitomo Electric Ind Ltd Polyurethane (meth)acrylate, resin composition, and optical fiber using the same
KR970042894A (en) * 1995-12-30 1997-07-26 김충세 Photocurable coating film composition using urethane acrylate oligomer
JPH10237392A (en) * 1997-02-25 1998-09-08 Showa Denko Kk Photocurable adhesive
JPH11349646A (en) * 1998-06-12 1999-12-21 Nippon Kayaku Co Ltd Resin composition and cured product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1467995A (en) * 1995-01-30 1996-08-21 Dsm N.V. Radiation curable composition comprising fluorinated urethane oligomer
US6017603A (en) * 1995-04-28 2000-01-25 Nippon Kayaku Kabushiki Kaisha Ultraviolet-curing adhesive composition and article
JP3988267B2 (en) * 1998-08-20 2007-10-10 Jsr株式会社 Adhesive for optical disc

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278255A (en) * 1994-04-06 1995-10-24 Sumitomo Electric Ind Ltd New compound and plastic-clad optical fiber using same
JPH08301959A (en) * 1995-05-08 1996-11-19 Sumitomo Electric Ind Ltd Polyurethane (meth)acrylate, resin composition, and optical fiber using the same
KR970042894A (en) * 1995-12-30 1997-07-26 김충세 Photocurable coating film composition using urethane acrylate oligomer
JPH10237392A (en) * 1997-02-25 1998-09-08 Showa Denko Kk Photocurable adhesive
JPH11349646A (en) * 1998-06-12 1999-12-21 Nippon Kayaku Co Ltd Resin composition and cured product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929381B1 (en) 2007-11-22 2009-12-02 주식회사 미뉴타텍 Mold sheet composition and mold sheet manufacturing method using the same

Also Published As

Publication number Publication date
KR20030071343A (en) 2003-09-03
AU2002358336A1 (en) 2003-09-09
WO2003072625A1 (en) 2003-09-04
JP2005519146A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
KR100487025B1 (en) Photo-curable resin composition for optical waveguide and optical waveguide prepared therefrom
JP3207145B2 (en) Clad optical fiber
EP1854822B1 (en) Optical devices made from radiation curable fluorinated compositions
JP5136358B2 (en) Optical resin precursor composition, optical resin, optical element and optical article
JP5359889B2 (en) Clad layer forming resin composition, clad layer forming resin film using the same, optical waveguide and optical module using the same
KR100500191B1 (en) Uv-curable resin composition for cladding layer of optical fiber
JP4906289B2 (en) Resin molded body and its use
EP1845109A2 (en) Optical devices made from radiation curable fluorinated compositions
JP5321899B2 (en) Clad layer forming resin composition, optical waveguide and optical module
KR20100094481A (en) Radiation curable cladding layer for polymer-clad optical fiber
WO2012026435A1 (en) Resin composition for formation of optical waveguide, resin film for formation of optical waveguide which comprises the resin composition, and optical waveguide produced using the resin composition or the resin film
KR101003002B1 (en) Resin composition for cladding layer of optical fiber
JP5698566B2 (en) Silicone resin composition and molded body thereof
JP2009175244A (en) Resin composition for optical material, resin film for optical material, and optical waveguide using them
KR101051287B1 (en) Photopolymerization oligomer, photopolymerization resin composition and optical fiber containing the oligomer
JP2002128845A (en) Liquid radiation curable resin composition of, coating composition for optical fiber and optical fiber
WO2010008201A2 (en) Uv-curable coating composition having improved water resistance and optical fiber using the same
JP4151508B2 (en) Photosensitive resin composition for optical waveguide and optical waveguide
Nakagawa et al. Optical channel waveguides based on photopolymerizable di/tri acrylates
JP2007316094A (en) Polymer optical waveguide and process for production thereof
JP2008116971A (en) Optical waveguide
KR20120092944A (en) The photocurable coating composion for an optical fiber and the optical fiber
JP2000309615A (en) Photocurable resin composition and covering material for optical fiber
JP2003026738A (en) Photocurable resin composition and optical fiber unit obtained using the same
WO2008038838A1 (en) Film optical waveguide

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20140409

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150506

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160503

Year of fee payment: 12

J204 Request for invalidation trial [patent]
J206 Request for trial to confirm the scope of a patent right
FPAY Annual fee payment

Payment date: 20170502

Year of fee payment: 13

J301 Trial decision

Free format text: TRIAL NUMBER: 2016100003201; TRIAL DECISION FOR INVALIDATION REQUESTED 20161014

Effective date: 20170630

Free format text: TRIAL NUMBER: 2016100003202; TRIAL DECISION FOR CONFIRMATION OF THE SCOPE OF RIGHT_DEFENSIVE REQUESTED 20161014

Effective date: 20170630

J2X1 Appeal (before the patent court)

Free format text: TRIAL NUMBER: 2017200005597; INVALIDATION

J202 Request for trial for correction [limitation]
J301 Trial decision

Free format text: TRIAL NUMBER: 2018105000004; TRIAL DECISION FOR CORRECTION REQUESTED 20180110

Effective date: 20180620

J301 Trial decision

Free format text: TRIAL NUMBER: 2018130000063; TRIAL DECISION FOR INVALIDATION REQUESTED 20180604

Effective date: 20180628

FPAY Annual fee payment

Payment date: 20180903

Year of fee payment: 14

G170 Publication of correction
G170 Publication of correction