JP2005519146A - Photocurable resin composition for optical waveguide and optical waveguide produced therefrom - Google Patents

Photocurable resin composition for optical waveguide and optical waveguide produced therefrom Download PDF

Info

Publication number
JP2005519146A
JP2005519146A JP2003571327A JP2003571327A JP2005519146A JP 2005519146 A JP2005519146 A JP 2005519146A JP 2003571327 A JP2003571327 A JP 2003571327A JP 2003571327 A JP2003571327 A JP 2003571327A JP 2005519146 A JP2005519146 A JP 2005519146A
Authority
JP
Japan
Prior art keywords
acrylate
meth
diisocyanate
resin composition
photocurable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003571327A
Other languages
Japanese (ja)
Inventor
キム、マル・ソン
オー、ウォ・ジョン
ビュン、ヒュン・ホ
キム、ジュン・ウク
ハン、クワン・ソ
オー、ジュン・ヒュン
Original Assignee
ルバンティックス・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27764631&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2005519146(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ルバンティックス・カンパニー・リミテッド filed Critical ルバンティックス・カンパニー・リミテッド
Publication of JP2005519146A publication Critical patent/JP2005519146A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5003Polyethers having heteroatoms other than oxygen having halogens
    • C08G18/5015Polyethers having heteroatoms other than oxygen having halogens having fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Optical Integrated Circuits (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Epoxy Resins (AREA)

Abstract

【課題】光導波路の製造に有用な光硬化性樹脂組成物の提供。
【解決手段】下記式(I)のフッ素化された光硬化性ウレタンオリゴマー、反応性モノマーおよび光開始剤を含む、光導波路の製造に使用するための光硬化性樹脂組成物。
【化1】

Figure 2005519146

(式中、
1は、−CH2O−または−CH2(OCH2CH2mO−;
2は、炭素数6〜100の芳香族または脂肪族炭化水素基;
3は、炭素数2〜10の芳香族または脂肪族炭化水素基;
4は、メタ(アクリレート)基またはエポキシ基である)。A photocurable resin composition useful for the production of an optical waveguide is provided.
A photocurable resin composition for use in the production of an optical waveguide, comprising a fluorinated photocurable urethane oligomer of the following formula (I), a reactive monomer and a photoinitiator.
[Chemical 1]
Figure 2005519146

(Where
R 1 represents —CH 2 O— or —CH 2 (OCH 2 CH 2 ) m O—;
R 2 represents an aromatic or aliphatic hydrocarbon group having 6 to 100 carbon atoms;
R 3 represents an aromatic or aliphatic hydrocarbon group having 2 to 10 carbon atoms;
R 4 is a meth (acrylate) group or an epoxy group).

Description

本発明は、熱安定性および光透過度が改善された光硬化性樹脂組成物、およびマイクロモールディング技法によって前記樹脂組成物から製造された光導波路に関する。   The present invention relates to a photocurable resin composition having improved thermal stability and light transmittance, and an optical waveguide produced from the resin composition by a micromolding technique.

情報通信分野において、光導波路の開発は巨大容量の情報通信を可能にする重要な課題として認識されている。光導波路のような光通信部品を製造するための材料として、通常ガラスまたはその他の結晶性無機材料が使用されてきた。しかし、これらの材料は高価であり、加工が難しいという短所がある。   In the information and communication field, the development of optical waveguides is recognized as an important issue that enables information communication with huge capacity. Glass or other crystalline inorganic materials have typically been used as materials for producing optical communication components such as optical waveguides. However, these materials are expensive and difficult to process.

最近、PMMA(ポリメチルメタクリレート)およびPS(ポリスチレン)のような高分子素材は、ガラスまたはその他の結晶性無機材料に比べて安価であり、加工が容易であるため、より一般的に用いられている。このような高分子素材を用いる場合、通常の材料を用いた場合よりも光帯域幅が広く、柔軟性が高い薄膜型光導波路を提供できる。また、前記高分子素材に官能性化合物または官能基を混入することによって光導波路が得られる。   Recently, polymer materials such as PMMA (polymethylmethacrylate) and PS (polystyrene) are more commonly used because they are cheaper and easier to process than glass or other crystalline inorganic materials. Yes. When such a polymer material is used, it is possible to provide a thin film type optical waveguide having a wider optical bandwidth and higher flexibility than when a normal material is used. Moreover, an optical waveguide can be obtained by mixing a functional compound or a functional group into the polymer material.

しかし、PMMAおよびPSは、近赤外線領域、すなわち、1.0〜1.8μmの波長帯において分子中のC−H結合が光を吸収するので、重水素化またはフッ素化されたPMMA(すなわち、水素原子が重水素またはフッ素原子で置換されたPMMA)が開発された。このような重水素化またはフッ素化されたPMMAの吸光帯域は近赤外線領域から遠赤外線領域に移動する。   However, PMMA and PS have deuterated or fluorinated PMMA (i.e., C-H bonds in the molecule absorb light in the near infrared region, i.e., the wavelength band of 1.0 to 1.8 [mu] m). PMMA in which hydrogen atoms are replaced by deuterium or fluorine atoms has been developed. The absorption band of such deuterated or fluorinated PMMA moves from the near infrared region to the far infrared region.

前述の光導波路のコアを構成するPMMA、PSおよび重水素化またはフッ素化されたPMMAはガラス転移温度が低い。たとえば、PMMAおよび重水素化されたPMMAのいずれもガラス転移温度が約100℃であり、これらは熱処理によって容易に軟化し得るため熱安定性が低い(非特許文献1参照)。   PMMA, PS and deuterated or fluorinated PMMA constituting the core of the optical waveguide have a low glass transition temperature. For example, each of PMMA and deuterated PMMA has a glass transition temperature of about 100 ° C., and since these can be easily softened by heat treatment, thermal stability is low (see Non-Patent Document 1).

低い熱安定性の問題を解決するために、日本電気電話株式会社(NTT Co., Ltd)は、特定の過フッ素化されたポリイミド重合体を開発した。これらの重合体は大きい複屈折率によって偏光独立が難しく、比較的大きい吸収性による光損失が生じるという問題がある(非特許文献2参照)。   In order to solve the problem of low thermal stability, NTT Co., Ltd has developed a specific perfluorinated polyimide polymer. These polymers have a problem that polarization independence is difficult due to a large birefringence, and light loss due to relatively large absorption occurs (see Non-Patent Document 2).

アライドシグナル社(Allied Signal Co., Ltd.)は、アクリレートの光架橋(photo-cross linking)特性を用いて、最大限高い、たとえば、350℃の熱分解温度(Td)を有する、熱安定性の高いUV−硬化性フッ素化されたアクリレート(UV-curable fluorinated acrylate)を開発した。前記UV−硬化性フッ素化されたアクリレートは1.3〜1.6の範囲で屈折率を連続的に調節でき、複屈性(Δn)が0.0008と低く、1.3μmおよび1.55μm波長における光損失がそれぞれ0.03dB/cmおよび0.05dB/cmと低い。 Allied Signal Co., Ltd. uses the photo-cross linking properties of acrylates to have a thermally stable, maximum thermal decomposition temperature (T d ) of, for example, 350 ° C. A highly UV-curable fluorinated acrylate has been developed. The UV-curable fluorinated acrylate can continuously adjust the refractive index in the range of 1.3 to 1.6, the birefringence (Δn) is as low as 0.0008, 1.3 μm and 1.55 μm. The optical loss at the wavelength is as low as 0.03 dB / cm and 0.05 dB / cm, respectively.

さらに、水素原子がフッ素および塩素で置換されたポリイミドが開発されたが、これは複屈折が非常に大きい(非特許文献3参照)。また、熱硬化技術によって製造された、熱硬化性のフッ素化されたポリアリーレンエーテルは熱安定性の面で優れるが、生産性が低い(非特許文献4参照)。   Furthermore, a polyimide in which hydrogen atoms are substituted with fluorine and chlorine has been developed, but this has a very large birefringence (see Non-Patent Document 3). In addition, thermosetting fluorinated polyarylene ethers produced by thermosetting technology are excellent in terms of thermal stability, but have low productivity (see Non-Patent Document 4).

したがって、近赤外線領域における光損失が少なく、複屈折率が低く、低い屈折率を有する伝統的な光ファイバと同等な光導波路用光硬化性樹脂組成物が依然として要求されている。   Accordingly, there is still a need for a photocurable resin composition for optical waveguides that is equivalent to a traditional optical fiber that has low optical loss in the near infrared region, low birefringence, and low refractive index.

伝統的に、導波路は導波路の形態と一致するマスクセットをコーティングされたコア層基板に塗布し、フォトリソグラフィー法によって基板をエッチングしてパターンを形成し、マスクを取り外した後、導波路材料層を付着することを含む工程によって製造されてきた。しかし、このような通常の方法は、製造に多くの時間がかかり、エッチング工程が難しく、多重モード導波路の場合、単一モード導波路とは異なり、コア物質を40μm以上の深さにエッチングしなければならないという問題がある。   Traditionally, waveguides are applied to a coated core layer substrate with a mask set that matches the shape of the waveguide, the substrate is etched by photolithography to form a pattern, the mask is removed, and the waveguide material It has been manufactured by a process that includes depositing a layer. However, such a conventional method takes a lot of time to manufacture and the etching process is difficult. In the case of a multimode waveguide, the core material is etched to a depth of 40 μm or more unlike a single mode waveguide. There is a problem of having to.

したがって、本発明者らは、前記で提示した必要条件を満足する新規な光硬化性組成物およびマイクロモールディング方法を用いて前記光硬化性樹脂組成物から製造された光導波路を開発することによって本発明を完成するに至った。
S. Imamura et al., Electronics Letters, 27, 1342, 1991 T. Matsuda et al., Electronics Letters, 29(3), 269, 1993 K. Han et al., Polym. Bull., 41, 455, 1998 J. Polym. Sci., Polym. Chem., 37, 235, 1999
Accordingly, the inventors have developed the present invention by developing an optical waveguide manufactured from the photocurable resin composition using a novel photocurable composition and a micromolding method that satisfies the requirements presented above. The invention has been completed.
S. Imamura et al., Electronics Letters, 27, 1342, 1991 T. Matsuda et al., Electronics Letters, 29 (3), 269, 1993 K. Han et al., Polym. Bull., 41, 455, 1998 J. Polym. Sci., Polym. Chem., 37, 235, 1999

したがって、本発明の目的は、光損失および複屈折率が低く、熱安定性を有する、光導波路の製造に使用するための光硬化性樹脂組成物を提供することである。   Accordingly, an object of the present invention is to provide a photocurable resin composition for use in the production of an optical waveguide, which has low optical loss and birefringence and has thermal stability.

本発明の他の目的は、マイクロモールディング法を用いて前記光硬化性樹脂から製造された光導波路を提供することである。   Another object of the present invention is to provide an optical waveguide manufactured from the photocurable resin using a micromolding method.

本発明の一実施態様によって、本発明では、下記式(I)のフッ素化された光硬化性ウレタンオリゴマー、反応性モノマーおよび光開始剤を含む、光導波路の製造に使用するための光硬化性樹脂組成物が提供される。

Figure 2005519146
According to one embodiment of the present invention, the present invention provides a photocurable composition for use in the manufacture of an optical waveguide comprising a fluorinated photocurable urethane oligomer of formula (I) below, a reactive monomer and a photoinitiator. A resin composition is provided.
Figure 2005519146

(式中、
1は、−CH2O−または−CH2(OCH2CH2mO−;
2は、炭素数6〜100の芳香族または脂肪族炭化水素基;
3は、炭素数2〜10の芳香族または脂肪族炭化水素基;
4は、メタ(アクリレート)基またはエポキシ基である)。
(Where
R 1 represents —CH 2 O— or —CH 2 (OCH 2 CH 2 ) m O—;
R 2 represents an aromatic or aliphatic hydrocarbon group having 6 to 100 carbon atoms;
R 3 represents an aromatic or aliphatic hydrocarbon group having 2 to 10 carbon atoms;
R 4 is a meth (acrylate) group or an epoxy group).

本発明によれば、通常のエッチング工程なしでUV照射のみで容易に光導波路を製造できる。   According to the present invention, an optical waveguide can be easily manufactured by only UV irradiation without a normal etching process.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明は、下記式(I)のフッ素化された光硬化性ウレタンオリゴマー、反応性モノマーおよび光開始剤を含む、光導波路の製造に使用するための光硬化性樹脂組成物を提供する。

Figure 2005519146
The present invention provides a photocurable resin composition for use in the production of an optical waveguide, comprising a fluorinated photocurable urethane oligomer of formula (I) below, a reactive monomer and a photoinitiator.
Figure 2005519146

(式中、
1は、−CH2O−または−CH2(OCH2CH2mO−;
2は、炭素数6〜100の芳香族または脂肪族炭化水素基;
3は、炭素数2〜10の芳香族または脂肪族炭化水素基;
4は、メタ(アクリレート)基またはエポキシ基である)。
(Where
R 1 represents —CH 2 O— or —CH 2 (OCH 2 CH 2 ) m O—;
R 2 represents an aromatic or aliphatic hydrocarbon group having 6 to 100 carbon atoms;
R 3 represents an aromatic or aliphatic hydrocarbon group having 2 to 10 carbon atoms;
R 4 is a meth (acrylate) group or an epoxy group).

(A)フッ素化された光硬化性ウレタンオリゴマー
本発明の組成物として用いられるフッ素化された光硬化性ウレタンオリゴマー(A)は、(a)ポリオール、(b)ジイソシアネート、(c)ヒドロキシ(メタ)アクリレートまたはヒドロキシエポキシ、(d)ウレタン反応触媒および(e)重合開始剤を用いて製造される。
(A) Fluorinated photocurable urethane oligomer (A) used as the composition of the present invention comprises (a) polyol, (b) diisocyanate, (c) hydroxy (meta ) Acrylate or hydroxy epoxy, (d) urethane reaction catalyst, and (e) polymerization initiator.

(a)ポリオール
前記フッ素化された光硬化性ウレタンオリゴマー(A)の製造に用いられるポリオールは分子量が500〜10,000であり、好ましくは、フッ素化されたパーフルオロポリエーテルポリオール(perfluoropolyether polyol)またはパーフルオロポリエーテル鎖の末端に非フッ素化ポリエーテル基を有するパーフルオロポリエーテルポリオールが含まれる。前記ポリオールはオリゴマー組成物の総量を基準として20〜80重量%の含量で用いられる。
(A) Polyol The polyol used for the production of the fluorinated photocurable urethane oligomer (A) has a molecular weight of 500 to 10,000, preferably a fluorinated perfluoropolyether polyol. Alternatively, a perfluoropolyether polyol having a non-fluorinated polyether group at the end of the perfluoropolyether chain is included. The polyol is used in a content of 20 to 80% by weight based on the total amount of the oligomer composition.

(b)ジイソシアネート
前記フッ素化された光硬化性ウレタンオリゴマー(A)の製造に用いられるジイソシアネートは、イソホロンジイソシアネート(IPDI)、1,6−ヘキサンジイソシアネート(HDI)、1,8−オクタメチレンジイソシアネート、テトラメチルキシレンジイソシアネート(TMXDI)、4,4’ −ジシクロヘキシルメタンジイソシアネート(HMDI)、4,4’−ジフェニルメタンジイソシアネート、3,3’−ジメチル−4,4’−ビフェニレンジイソシアネート、3,3’−ジメチルジフェニルメタン−4,4’−ジイソシアネート、4−ブロモ−6−メチル−1,3−フェニレンジイソシアネート、4−クロロ−6−メチル−1,3−フェニレンジイソシアネート、2,4−ジイソシアネートで末端化されたポリ(1,4−ブタンジオール)トリレン、ジイソシアネートで末端化されたポリ(1,4−ブタンジオール)イソホロン、2,4−ジイソシアネートで末端化されたポリ(エチレンアジペート)トリレン、ポリ[1,4−フェニレンジイソシアネート−コ−ポリ(1,4−ブタノール)]ジイソシアネート、ポリヘキサメチレンジイソシアネート、2,4−ジイソシアネートで末端化されたポリ(プロピレングリコール)トリレン、ポリ(テトラフルオロエチレンオキシド−コ−ジフルオロメチレンオキシド)α,ω−ジイソシアネート、2,4−トルエンジイソシアネート、2,5−トルエンジイソシアネート、2,6−トルエンジイソシアネート、1,5−ナフタレンジイソシアネートおよびこれらの混合物からなる群から選ばれることが好ましい。
(B) Diisocyanate The diisocyanate used in the production of the fluorinated photocurable urethane oligomer (A) is isophorone diisocyanate (IPDI), 1,6-hexane diisocyanate (HDI), 1,8-octamethylene diisocyanate, tetra Methyl xylene diisocyanate (TMXDI), 4,4′-dicyclohexylmethane diisocyanate (HMDI), 4,4′-diphenylmethane diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate, 3,3′-dimethyldiphenylmethane Terminated with 4,4'-diisocyanate, 4-bromo-6-methyl-1,3-phenylene diisocyanate, 4-chloro-6-methyl-1,3-phenylene diisocyanate, 2,4-diisocyanate Poly (1,4-butanediol) tolylene, poly (1,4-butanediol) isophorone terminated with diisocyanate, poly (ethylene adipate) tolylene terminated with 2,4-diisocyanate, poly [1,4 -Phenylene diisocyanate-co-poly (1,4-butanol)] diisocyanate, polyhexamethylene diisocyanate, poly (propylene glycol) tolylene terminated with 2,4-diisocyanate, poly (tetrafluoroethylene oxide-co-difluoromethylene oxide) ) Α, ω-diisocyanate, 2,4-toluene diisocyanate, 2,5-toluene diisocyanate, 2,6-toluene diisocyanate, 1,5-naphthalene diisocyanate and mixtures thereof. It is preferred.

前記ジイソシアネートは、オリゴマー組成物の総量を基準として10〜50重量%の含量で用いられる。   The diisocyanate is used in a content of 10 to 50% by weight based on the total amount of the oligomer composition.

(c)ヒドロキシ(メタ)アクリレートまたはヒドロキシエポキシ
前記フッ素化された光硬化性ウレタンオリゴマー(A)の製造に用いられるヒドロキシ(メタ)アクリレートまたはヒドロキシエポキシは、少なくとも一つの(メタ)アクリロイル基および一つのヒドロキシ基を有する化合物(c1)、または少なくとも一つのエポキシ基および一つのヒドロキシ基を有する化合物(c2)である。
(C) Hydroxy (meth) acrylate or hydroxyepoxy The hydroxy (meth) acrylate or hydroxyepoxy used in the production of the fluorinated photocurable urethane oligomer (A) comprises at least one (meth) acryloyl group and one The compound (c 1 ) having a hydroxy group, or the compound (c 2 ) having at least one epoxy group and one hydroxy group.

化合物(c1)の代表的な例としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、1−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェニルオキシプロピル(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、4−ヒドロキシシクロヘキシル(メタ)アクリレート、1,6−ヘキサンジオールモノ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、2−メタクリロキシエチル2−ヒドロキシプロピルフタレート、グリセリンジ(メタ)アクリレート、2−ヒドロキシ−3−アクリロイルオキシプロピル(メタ)アクリレート、ポリカプロラクトンポリオールモノ(メタ)アクリレートおよびこれらの混合物である。 Representative examples of the compound (c 1 ) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 1-hydroxybutyl (meth) acrylate, 2 -Hydroxy-3-phenyloxypropyl (meth) acrylate, neopentyl glycol mono (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, pentaerythritol penta (meth) acrylate , Dipentaerythritol penta (meth) acrylate, 2-methacryloxyethyl 2-hydroxypropyl phthalate, glycerin di (meth) acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate Rate, a polycaprolactone polyol mono (meth) acrylate and mixtures thereof.

化合物(c2)の代表的な例としては、グリシドールおよびエポキシ化されたテトラヒドロベンジルアルコールがある。 Representative examples of compound (c 2 ) include glycidol and epoxidized tetrahydrobenzyl alcohol.

前記ヒドロキシ(メタ)アクリレートまたはヒドロキシエポキシはオリゴマー組成物の総量を基準として5〜50重量%の含量で用いられる。   The hydroxy (meth) acrylate or hydroxy epoxy is used in a content of 5 to 50% by weight based on the total amount of the oligomer composition.

(d)ウレタン反応触媒
ウレタン反応触媒は反応過程においてオリゴマー組成物の総量を基準として0.01〜1重量%の含量で添加される。
(D) Urethane reaction catalyst The urethane reaction catalyst is added in a content of 0.01 to 1% by weight based on the total amount of the oligomer composition in the reaction process.

ウレタン反応触媒の代表的な例としては、ナフテン酸銅、ナフテン酸コバルト、ナフテン酸亜鉛、n−ブチルチンラウレート、トリスチラミン、2−メチルトリエチレンジアミドおよびこれらの混合物が含まれる。   Representative examples of urethane reaction catalysts include copper naphthenate, cobalt naphthenate, zinc naphthenate, n-butyltin laurate, tristyramine, 2-methyltriethylenediamide and mixtures thereof.

(e)重合開始剤
重合開始剤は、オリゴマー組成物の総量を基準として0.01〜1重量%の含量で用いられる。
(E) Polymerization initiator The polymerization initiator is used in a content of 0.01 to 1% by weight based on the total amount of the oligomer composition.

重合開始剤の代表的な例としては、ヒドロキノン、ヒドロキノンモノメチルエーテル、パラ−ベンゾキノン、フェノチアジンおよびこれらの混合物を挙げることができる。   Typical examples of the polymerization initiator include hydroquinone, hydroquinone monomethyl ether, para-benzoquinone, phenothiazine, and a mixture thereof.

前記光硬化性オリゴマー(A)は通常の方法で製造でき、具体的な製造例は次の通りである。   The photocurable oligomer (A) can be produced by a usual method, and specific production examples are as follows.

フラスコにフッ素化されたパーフルオロポリエーテルポリオールまたはパーフルオロポリエーテル鎖の末端に非フッ素化ポリエーテル基を有するポリオールを入れ、減圧下で水分を除去する。イソシアネートおよびウレタン反応触媒を反応混合物に加えながら200〜300rpmで攪拌する。反応は65〜85℃の温度で−OHピークがIRスペクトル上で観察されなくなるまで約2〜3時間行う。この際、反応を終結するために引き続いて触媒をさらに加えてもよい。次に、重合開始剤およびヒドロキシ(メタ)アクリレートまたはヒドロキシエポキシ化合物を反応混合物に加え、生成した混合物を70〜90℃の温度で加熱し、これに適当量の触媒を加えた後、−NCOピークがIRスペクトル上で消滅するまで反応させることによって、本発明のフッ素化された光硬化性ウレタン組成物を得る。   A fluorinated perfluoropolyether polyol or a polyol having a non-fluorinated polyether group at the end of the perfluoropolyether chain is placed in a flask, and moisture is removed under reduced pressure. Stir at 200-300 rpm while adding isocyanate and urethane reaction catalyst to the reaction mixture. The reaction is run at a temperature of 65-85 ° C. for about 2-3 hours until no —OH peak is observed on the IR spectrum. At this time, a catalyst may be further added to terminate the reaction. Next, a polymerization initiator and a hydroxy (meth) acrylate or hydroxyepoxy compound are added to the reaction mixture, and the resulting mixture is heated at a temperature of 70 to 90 ° C., and an appropriate amount of catalyst is added thereto, followed by —NCO peak. Is allowed to react on the IR spectrum until the fluorinated photocurable urethane composition of the present invention is obtained.

平均分子量が2,000〜50,000のフッ素化された光硬化性ウレタンオリゴマー(A)は、従来のウレタンオリゴマーに比べて屈折率が低く、1.1〜1.8μmの波長領域における光透過性に優れている。   The fluorinated photocurable urethane oligomer (A) having an average molecular weight of 2,000 to 50,000 has a lower refractive index than conventional urethane oligomers and transmits light in the wavelength region of 1.1 to 1.8 μm. Excellent in properties.

フッ素化された光硬化性ウレタンオリゴマー(A)は、本発明の光硬化性組成物の総量を基準として20〜80重量%の含量で用いられる。   The fluorinated photocurable urethane oligomer (A) is used in a content of 20 to 80% by weight based on the total amount of the photocurable composition of the present invention.

(B)光反応性モノマー
本発明の組成物に用いられる光反応性モノマーは、少なくとも一つの(メタ)アクリロイル基を有する(メタ)アクリレート(B1)または少なくとも一つのエポキシ基を有する光反応性モノマー(B2)であってもよい。
(B) Photoreactive monomer The photoreactive monomer used in the composition of the present invention is a photoreactive monomer having (meth) acrylate (B 1 ) having at least one (meth) acryloyl group or at least one epoxy group. it may be a monomer (B 2).

光反応性モノマーは(メタ)アクリロイルまたはエポキシ官能基の数によって、多官能性モノマー、2官能性モノマー、3官能性モノマーなどに区分される。   The photoreactive monomer is classified into a polyfunctional monomer, a bifunctional monomer, a trifunctional monomer, and the like according to the number of (meth) acryloyl or epoxy functional groups.

少なくとも一つの(メタ)アクリロイル基を有する(メタ)アクリレート(B1)はフッ素化されたか、または非フッ素化(メタ)アクリレートであってもよい。 The (meth) acrylate (B 1 ) having at least one (meth) acryloyl group may be fluorinated or non-fluorinated (meth) acrylate.

単官能性フッ素化された(メタ)アクリレートとしては、2−パーフルオロオクチルエチルアクリレート、2−パーフルオロオクチルエチルメタクリレート、2,2,3,4,4,4−ヘキサフルオロブチルメタクリレート、2,2,3,3−テトラフルオロプロピルメタクリレート、トリフルオロエチルメタクリレート、2−パーフルオロアルキルエチルアクリレートおよび2−パーフルオロアルキルエチルメタクリレートが含まれる。   Monofunctional fluorinated (meth) acrylates include 2-perfluorooctylethyl acrylate, 2-perfluorooctylethyl methacrylate, 2,2,3,4,4,4-hexafluorobutyl methacrylate, 2,2 3,3-tetrafluoropropyl methacrylate, trifluoroethyl methacrylate, 2-perfluoroalkylethyl acrylate and 2-perfluoroalkylethyl methacrylate.

単官能性非フッ素化(メタ)アクリレートの代表的な例としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、1−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェニルオキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソデシル(メタ)アクリレート、2−(2−エトキシエトキシ)エチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、2−フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリデシル(メタ)アクリレート、ポリカプロラクトン(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレートおよびイミドアクリレートがある。   Representative examples of monofunctional non-fluorinated (meth) acrylates include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 1-hydroxybutyl ( (Meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isodecyl (meth) acrylate, 2- (2-ethoxyethoxy) ethyl (meth) acrylate, stearyl (meth) Acrylate, lauryl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, tridecyl (meth) acrylate, polycaprolactone (meth) acrylate, phenoxytetraethyleneglycol There is Le (meth) acrylate and imide acrylates.

本発明に用いられる2官能性非フッ素化(メタ)アクリレートの例としては、エトキシル化されたノニルフェノール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレートおよびトリシクロ[5.2.1.02,6]デカンジメタノールジアクリレートがある。 Examples of bifunctional non-fluorinated (meth) acrylates used in the present invention include ethoxylated nonylphenol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di ( (Meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, tripropylene glycol di ( meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate and tricyclo [5.2.1.0 2,6] decanedimethanol diacrylate A.

3官能性または多官能性の非フッ素化(メタ)アクリレートの好ましい例としては、トリス[2−(アクリロイルオキシ)エチル]イソシアヌレート、トリメチロールプロパントリアクリレート、エチレンオキシド付加されたトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、トリス(アクリロオキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレートおよびカプロラクトン変性ジペンタエリスリトールヘキサアクリレートがある。   Preferred examples of trifunctional or polyfunctional non-fluorinated (meth) acrylates include tris [2- (acryloyloxy) ethyl] isocyanurate, trimethylolpropane triacrylate, ethylene oxide-added trimethylolpropane triacrylate, There are pentaerythritol triacrylate, tris (acrylooxyethyl) isocyanurate, dipentaerythritol hexaacrylate and caprolactone modified dipentaerythritol hexaacrylate.

少なくとも一つのエポキシ基を有する光反応性モノマー(B2)の代表的な例としては、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、ビス−(3,4−エポキシシクロヘキシル)アジペート、3−エチル−3−ヒドロキシメチル−オキセタン、1,2−エポキシヘキサデカン、アルキルグリシジルエーテル、2−エチルヘキシルジグリコールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、PEG#200ジグリシジルエーテル、PEG#400ジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、PPG#400ジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、水素化されたビスフェノールAジグリシジルエーテル、プロピレンオキシド変形ビスフェノールAのジグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテルおよびトリメチロールプロパントリグリシジルエーテルがある。 Representative examples of the photoreactive monomer (B 2 ) having at least one epoxy group include 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, bis- (3,4-epoxycyclohexyl). Adipate, 3-ethyl-3-hydroxymethyl-oxetane, 1,2-epoxyhexadecane, alkyl glycidyl ether, 2-ethylhexyl diglycol glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, PEG # 200 diglycidyl ether, PEG # 400 diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, PPG # 400 diglycidyl ether, neopentyl glycol Diglycidyl ether, 1,6-hexanediol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, propylene oxide modified bisphenol A diglycidyl ether, dibromoneopentyl glycol diglycidyl ether and trimethylolpropane triglycidyl ether is there.

前記光反応性モノマーは本発明の光硬化性樹脂組成物の総量を基準として20〜80重量%の含量で使用できる。   The photoreactive monomer can be used in an amount of 20 to 80% by weight based on the total amount of the photocurable resin composition of the present invention.

(C)光重合開始剤
本発明に使用され得る光重合開始剤は、好ましくはIrgacure#184、Irgacure#907、Irgacure#500、Irgacure#651、Darocure#1173、Darocure#116、CGI#1800、CGI#1700、UVI−6990、UVI−6974、Sarcat CD1010、Sarcat CD1011、Sarcat CD1012、Sarcat K185またはこれらの混合物であってもよい。
(C) Photopolymerization initiator The photopolymerization initiator that can be used in the present invention is preferably Irgacure # 184, Irgacure # 907, Irgacure # 500, Irgacure # 651, Darocure # 1173, Darocure # 116, CGI # 1800, CGI # 1700, UVI-6990, UVI-6974, Sarcat CD1010, Sarcat CD1011, Sarcat CD1012, Sarcat K185, or mixtures thereof.

前記光重合開始剤は、本発明の光硬化性樹脂組成物の総量を基準として1〜10重量%の含量で使用できる。   The photopolymerization initiator can be used in an amount of 1 to 10% by weight based on the total amount of the photocurable resin composition of the present invention.

(D)熱安定化剤
さらに、貯蔵安定性を改善する目的で、様々な酸化防止剤および熱安定化剤を使用できる。
(D) Heat stabilizer Furthermore, various antioxidants and heat stabilizers can be used for the purpose of improving storage stability.

熱安定化剤は、本発明の光硬化性樹脂組成物の総量を基準に0.01〜5重量%の含量で使用することが好ましい。   The heat stabilizer is preferably used at a content of 0.01 to 5% by weight based on the total amount of the photocurable resin composition of the present invention.

(E)酸化防止剤
本発明に使用され得る酸化防止剤の例としては、Irganox1010、Irganox1035、Irganox1076(チバガイギ社製)およびこれらの混合物を挙げることができ、本発明の光硬化性樹脂組成物の総量を基準に0.01〜5重量%の含量で使用されることが好ましい。
(E) Antioxidant Examples of the antioxidant that can be used in the present invention include Irganox 1010, Irganox 1035, Irganox 1076 (manufactured by Ciba-Gaigi) and mixtures thereof. It is preferably used in a content of 0.01 to 5% by weight based on the total amount.

本発明の光導波路用光硬化性樹脂組成物は通常の方法によって製造できる。好ましい製造例は次の通りである:15〜50℃および60%以下の湿度条件で前記(A)〜(E)成分の混合物を重合反応器に入れ、500〜1000rpmの速度で攪拌して光硬化性樹脂組成物を製造する。反応温度が15℃未満の場合はオリゴマー(A)の粘度が非常に高いため問題が発生し、50℃を超える場合は反応生成物が架橋される。   The photocurable resin composition for an optical waveguide of the present invention can be produced by a usual method. A preferred production example is as follows: A mixture of the above components (A) to (E) is placed in a polymerization reactor under conditions of 15 to 50 ° C. and a humidity of 60% or less, and stirred at a speed of 500 to 1000 rpm. A curable resin composition is produced. When the reaction temperature is less than 15 ° C., a problem occurs because the viscosity of the oligomer (A) is very high, and when it exceeds 50 ° C., the reaction product is crosslinked.

光硬化性樹脂組成物の製造は組成物が1.38〜1.54の範囲の屈折率および50〜2000cpsの範囲の粘度を有するように調節してもよい。さらに、本発明の樹脂組成物は貯蔵安定性に優れ、約300℃程度に高い熱分解温度および1×10-4以下の複屈折率を有する。 The production of the photocurable resin composition may be adjusted so that the composition has a refractive index in the range of 1.38 to 1.54 and a viscosity in the range of 50 to 2000 cps. Furthermore, the resin composition of the present invention is excellent in storage stability, has a thermal decomposition temperature as high as about 300 ° C., and a birefringence of 1 × 10 −4 or less.

また、本発明のフッ素化された光硬化性樹脂組成物は光通信波長領域、すなわち、0.85μm、1.3μm、1.55μmの波長においてそれぞれ90%以上の優れた光透過度を有し、特に0.85μmの波長において0.3dB/cm程度の光損失を有する。さらに、本発明の光硬化性樹脂組成物は、従来の樹脂組成物の硬化に使用された熱硬化方式の代わりに室温におけるUV照射によって簡便に硬化させてもよい。   In addition, the fluorinated photocurable resin composition of the present invention has excellent light transmittance of 90% or more in the optical communication wavelength region, that is, in the wavelengths of 0.85 μm, 1.3 μm, and 1.55 μm. In particular, it has an optical loss of about 0.3 dB / cm at a wavelength of 0.85 μm. Furthermore, the photocurable resin composition of the present invention may be simply cured by UV irradiation at room temperature instead of the thermosetting method used for curing the conventional resin composition.

また、本発明は、本発明の光硬化性樹脂組成物から光導波路を製造する方法を提供し、この方法は、本発明の光硬化性樹脂組成物を下部クラッド層としてシリコンウエハ上にコーティングした後、コーティングされた層をUV照射によって光硬化させる段階;前記光硬化性樹脂組成物をコア層としてエッチングされたコアパターンを有するシロキサンモールド上にコーティングした後、コーティングされたコア層をシリコンウエハ上にコーティングされた下部クラッド層に付着し、UV照射によってコア層を光硬化させた後、シロキサンモールドを除去する段階;および前記光硬化性樹脂組成物を上部クラッド層としてコア層上にコーティングした後、上部クラッド層をUV照射によって光硬化させる段階を含む。   The present invention also provides a method for producing an optical waveguide from the photocurable resin composition of the present invention, which is coated on a silicon wafer with the photocurable resin composition of the present invention as a lower cladding layer. Thereafter, the coated layer is photocured by UV irradiation; after the photocurable resin composition is coated on a siloxane mold having a core pattern etched using the core layer, the coated core layer is coated on a silicon wafer. After the core layer is attached to the lower clad layer coated on the substrate and photocured by UV irradiation, the siloxane mold is removed; and after the photocurable resin composition is coated on the core layer as the upper clad layer , Photocuring the upper cladding layer by UV irradiation.

本発明に係る光導波路の製造の好ましい態様は次の通りである。   A preferable mode of manufacturing the optical waveguide according to the present invention is as follows.

図1において、フォトレジストによって目的とする形態のコアパターンを基板上に形成し、前記基板上にポリジメチルシロキサン層をコーティングした後、室温で放置して気泡を除去する。その後、基板上のポリジメチルシロキサンを30〜100℃で2〜10時間硬化させた後、基板を除去してポリジメチルシロキサンモールドを得る。得られたシロキサンモールドは本発明の光硬化性樹脂組成物でスピンコーティングし、この際、樹脂組成物はコアパターン部分のみを充填する。光硬化性樹脂組成物を下部クラッド層としてシリコンウエハ上にコーティングした後、コーティングされた層をUV照射によって光硬化させ、シロキサンモールド上にコーティングされたコア樹脂層の表面を下部クラッド層の物質に付着する。得られた製造物をUV照射によって光硬化させた後、シロキサンモールドを除去する。上部クラッド層物質として、本発明の光硬化性樹脂組成物をコア層にコーティングし、UV照射によって硬化させて光導波路を得る。このようなマイクロトランスファーモールド技法を用いることによって、光導波路は従来技術に比べて短時間で簡単な工程で製造できる。さらに、本発明の方法は、フォトレジスト材料の種類によって1mm×1mmサイズの大きい光導波路、およびコアパターンに従ってシングルモードまたはマルチモード光導波路を容易に製造できる。   In FIG. 1, a core pattern of a desired form is formed on a substrate with a photoresist, and a polydimethylsiloxane layer is coated on the substrate, and then left at room temperature to remove bubbles. Thereafter, the polydimethylsiloxane on the substrate is cured at 30 to 100 ° C. for 2 to 10 hours, and then the substrate is removed to obtain a polydimethylsiloxane mold. The obtained siloxane mold is spin-coated with the photocurable resin composition of the present invention, and at this time, the resin composition fills only the core pattern portion. After the photocurable resin composition is coated on the silicon wafer as a lower clad layer, the coated layer is photocured by UV irradiation, and the surface of the core resin layer coated on the siloxane mold is used as the material of the lower clad layer. Adhere to. After the obtained product is photocured by UV irradiation, the siloxane mold is removed. As the upper clad layer material, the core layer is coated with the photocurable resin composition of the present invention and cured by UV irradiation to obtain an optical waveguide. By using such a micro transfer mold technique, the optical waveguide can be manufactured in a short time and with a simple process as compared with the prior art. Furthermore, the method of the present invention can easily manufacture a single mode or multimode optical waveguide according to a core pattern and a large optical waveguide having a size of 1 mm × 1 mm depending on the type of photoresist material.

以下、本発明を下記実施例によってさらに詳細に説明する。ただし、これらは本発明を例示するためのものであり、本発明の範囲を制限しない。   Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these are for illustrating the present invention and do not limit the scope of the present invention.

オリゴマーの製造
[製造例1]
フッ素化されたポリエーテル(Fluorolink E10、製造元:Ausimount Co., Ltd.イタリア)375.27gおよびイソホロンジイソシアネート(IPDI)89.38gの混合物を40〜60℃に加熱した後、n−ブチルチンラウレート(DBTL)0.10gを加えながら200〜300rpmで攪拌した。反応を約75℃で−OHピークがIRスペクトル上で観察されなくなるまで行った。これに、ヒドロキノンモノメチルエーテル(HQMME)0.13gおよび2−ヒドロキシエチルメタクリレート(2−HEMA)34.85gを加え、混合物を約80℃で−NCOピークがIRスペクトル上で完全に消滅するまで反応させてフッ素化された光硬化性ウレタンオリゴマーを得た。
Production of oligomer [Production Example 1]
After heating a mixture of 375.27 g of fluorinated polyether (Fluorolink E10, manufacturer: Ausimount Co., Ltd. Italy) and 89.38 g of isophorone diisocyanate (IPDI) to 40-60 ° C., n-butyltin laurate (DBTL) It stirred at 200-300 rpm, adding 0.10g. The reaction was run at about 75 ° C. until no —OH peak was observed on the IR spectrum. To this was added 0.13 g of hydroquinone monomethyl ether (HQMME) and 34.85 g of 2-hydroxyethyl methacrylate (2-HEMA) and the mixture was allowed to react at about 80 ° C. until the —NCO peak completely disappeared on the IR spectrum. Thus, a fluorinated photocurable urethane oligomer was obtained.

[製造例2〜13]
下記表1に示す成分を用いて製造例1と同様な工程を繰り返して様々なフッ素化されたウレタンオリゴマーを得た。

Figure 2005519146
[Production Examples 2 to 13]
Using the components shown in Table 1 below, the same steps as in Production Example 1 were repeated to obtain various fluorinated urethane oligomers.
Figure 2005519146

光導波路用樹脂組成物の製造
[実施例1〜10および比較例1]
下記表2に示す成分(A)〜(D)およびZ−6030(Dow Corning Co., Ltd.)を添加剤として反応器に入れ、25℃の温度および30〜60%の相対湿度下で300〜1,000rpmで攪拌して様々なフッ素化された光硬化性樹脂組成物を得た。

Figure 2005519146
Production of resin composition for optical waveguide [Examples 1 to 10 and Comparative Example 1]
Ingredients (A)-(D) and Z-6030 (Dow Corning Co., Ltd.) shown in Table 2 below were added to the reactor as additives and were added at a temperature of 25 ° C. and a relative humidity of 30-60%. Various fluorinated photocurable resin compositions were obtained by stirring at ˜1,000 rpm.
Figure 2005519146

物性評価
前記実施例1−10および比較例1で製造された樹脂組成物の各々の物性を下記方法によって評価し、その結果を表3に示す。
Evaluation of Physical Properties The physical properties of the resin compositions produced in Examples 1-10 and Comparative Example 1 were evaluated by the following methods. The results are shown in Table 3.

(1)固有粘度(cps):25℃でブルックフィールド粘度計(No.41スピンドル)で測定
(2)硬化されていない樹脂組成物の屈折率
各々の樹脂組成物の屈折率はアッベ屈折計(Abbe's Refractometer)を用いて23℃でナトリウムDライン(波長589.3μm)で測定した。
(1) Intrinsic viscosity (cps): measured with a Brookfield viscometer (No. 41 spindle) at 25 ° C. (2) Refractive index of uncured resin composition The refractive index of each resin composition is Abbe refractometer ( Using an Abbe's Refractometer, the sodium D line (wavelength: 589.3 μm) was measured at 23 ° C.

(3)屈折率(硬化されたフィルム)
それぞれの組成物を1500〜3000rpmの速度で20〜30秒間シリコンウエハ上にコーティングし、コーティングされた樹脂をフュージョンランプを用いて100mJ/cm2のUVで光硬化させ、さらに60〜100℃で10分以上硬化させてシリコンウエハ上にコーティングされたフィルムを得た。厚さが2〜15μmの硬化されたフィルムの屈折率をプリズム−カプラー(Prism-Coupler, Sairon Co. Ltd.)を用いて850nmの波長で測定した。電場モードにおける屈折率(nTE)と磁場モードにおける屈折率(nTM)との差(Δ(nTE−nTM))をコーティングされたフィルムの複屈折率とした。
(3) Refractive index (cured film)
Each composition was coated on a silicon wafer for 20-30 seconds at a speed of 1500-3000 rpm, the coated resin was photocured with 100 mJ / cm 2 UV using a fusion lamp, and further 10 ° C. at 60-100 ° C. A film coated on a silicon wafer was obtained by curing for at least minutes. The refractive index of a cured film having a thickness of 2-15 μm was measured at a wavelength of 850 nm using a prism-coupler (Prism-Coupler, Sairon Co. Ltd.). The difference (Δ (nTE−nTM)) between the refractive index (nTE) in the electric field mode and the refractive index (nTM) in the magnetic field mode was defined as the birefringence of the coated film.

(4)光透過度(%T)
各樹脂組成物を150μmの厚さにガラス基板上にコーティングし、その上に100mJ/cm2のUVを照射して樹脂を硬化させた後、60〜100℃で10分以上後硬化させて硬化された樹脂フィルムを得た。その後、フィルムサンプル(サイズ:3cm×3cm)を基板から取り外し、これの光透過度を600〜1600nmの波長でUV−VIS−NIS分光光度計(Varian社製、オーストラリア)で測定した。
(4) Light transmittance (% T)
Each resin composition is coated on a glass substrate to a thickness of 150 μm, and 100 mJ / cm 2 UV is irradiated thereon to cure the resin, followed by post-curing at 60 to 100 ° C. for 10 minutes or more and curing. The obtained resin film was obtained. Thereafter, a film sample (size: 3 cm × 3 cm) was removed from the substrate, and the light transmittance thereof was measured with a UV-VIS-NIS spectrophotometer (Varian, Australia) at a wavelength of 600 to 1600 nm.

(5)硬度(AまたはD):光透過度測定と同じ条件で硬化させた試験片(サイズ:50mm×20mm×5mm)の硬度をショア硬度計(Shore Durometer Hardness)で測定した。   (5) Hardness (A or D): The hardness of a test piece (size: 50 mm × 20 mm × 5 mm) cured under the same conditions as the light transmittance measurement was measured with a Shore Durometer Hardness.

(6)硬化収縮率(%):ASTM D−792に従って測定した。   (6) Curing shrinkage (%): Measured according to ASTM D-792.

(7)ガラス転移温度(Tg):光透過度の測定時に用いられた試験片に対するガラス転移温度は動力学熱分析機(Dynamic Mechanical Thermal Analyzer, DMTA)を用いて25〜250℃で10℃/minの昇温速度で測定した。   (7) Glass transition temperature (Tg): The glass transition temperature with respect to the test piece used at the time of measuring the light transmittance is 10 ° C./25 to 250 ° C. using a dynamic mechanical thermal analyzer (DMTA). The measurement was performed at a heating rate of min.

(8)熱分解温度(Td):窒素雰囲気の下で熱重量測定分析器(Thermogravimeteric Analyzer, TGA)を用いて25〜700℃で10℃/minの昇温速度で測定した。 (8) Thermal decomposition temperature (T d ): Measured at a temperature increase rate of 10 ° C./min at 25 to 700 ° C. using a thermogravimetric analyzer (TGA) under a nitrogen atmosphere.

(9)貯蔵安定性:組成物を室温で6ヶ月間放置した後、外観を観察した。   (9) Storage stability: After the composition was left at room temperature for 6 months, the appearance was observed.

(10)光損失(dB/cm):サンプル組成物の硬化されたフィルムの場合よりも低い屈折率を有する物質をシリコンウエハ上にコーティングし、その上にサンプル組成物をコーティングした後、屈折率測定で用いた試験片の製造におけると同様に硬化させた(フィルム)。得られた硬化フィルムの光損失をプリズム−カプラー(Sairon社製)で測定した。

Figure 2005519146
(10) Light loss (dB / cm): after coating a silicon wafer with a material having a lower refractive index than in the case of a cured film of the sample composition, and coating the sample composition thereon, the refractive index It was cured (film) in the same manner as in the production of the test piece used in the measurement. The optical loss of the obtained cured film was measured with a prism-coupler (manufactured by Sairon).
Figure 2005519146

光導波路の製造
[実施例11]
実施例1で得られたフッ素化された樹脂組成物をクラッド層としてシリコンウエハ上に3000rpmで30秒間スピンコーティングし、300Wの水銀ランプであるフュージョンランプを用いて100mJ/cm2のUVで光硬化させた後、次いで60〜100℃で10分以上熱硬化させた。その上にフォトレジストを用いて目的とするパターンを形成し、パターン形成された基板上にポリジメチルシロキサン層をコーティングした後、室温で放置して気泡を除去した。シロキサン樹脂を40℃で2時間硬化させた後、基板から取り外して硬化されたシロキサン樹脂モールド(コアサイズ:45μm)を得た。硬化されたシロキサン樹脂モールドを実施例2で得られた光硬化性樹脂組成物でスピンコーティングし、モールドのパターン部分を樹脂組成物で充填した。充填されたパターン部分の面がクラッド層と接触するように、コーティングされたシロキサン樹脂モールドをクラッド層がコーティングされたシリコンウエハ上に載せた。これらをフュージョンランプを用いて100mJ/cm2のUVで室温で5〜15分間硬化させ、次いで60〜100℃で10分以上熱硬化させた後、シロキサン樹脂モールドを取り外した。コア層の断面に対する電子顕微鏡写真と走査電子顕微鏡写真をそれぞれ図2Aおよび図2Bに示す。上部クラッド層として、実施例1で得られた樹脂組成物をコア層の表面上に1000rpmで20秒間スピンコーティングした後、100mJ/cm2のUVで室温で光硬化させ、次いで60〜100℃で10分以上硬化させて光硬化性光導波路を得た。
Production of Optical Waveguide [Example 11]
The fluorinated resin composition obtained in Example 1 was spin-coated on a silicon wafer as a clad layer at 3000 rpm for 30 seconds, and photocured with 100 mJ / cm 2 UV using a fusion lamp which is a 300 W mercury lamp. Then, it was heat-cured at 60 to 100 ° C. for 10 minutes or longer. A desired pattern was formed thereon using a photoresist, and a polydimethylsiloxane layer was coated on the patterned substrate, and then left at room temperature to remove bubbles. The siloxane resin was cured at 40 ° C. for 2 hours, and then removed from the substrate to obtain a cured siloxane resin mold (core size: 45 μm). The cured siloxane resin mold was spin-coated with the photocurable resin composition obtained in Example 2, and the pattern portion of the mold was filled with the resin composition. The coated siloxane resin mold was placed on the silicon wafer coated with the clad layer so that the surface of the filled pattern portion was in contact with the clad layer. These were cured for 5 to 15 minutes at room temperature with UV of 100 mJ / cm 2 using a fusion lamp, then thermally cured at 60 to 100 ° C. for 10 minutes or more, and then the siloxane resin mold was removed. An electron micrograph and a scanning electron micrograph of the cross section of the core layer are shown in FIGS. 2A and 2B, respectively. As the upper clad layer, the resin composition obtained in Example 1 was spin-coated on the surface of the core layer at 1000 rpm for 20 seconds, then photocured at 100 mJ / cm 2 UV at room temperature, and then at 60-100 ° C. A photocurable optical waveguide was obtained by curing for 10 minutes or more.

[実施例12]
実施例1および2の組成物の代わりに、実施例3および4で得られた樹脂組成物を用いたことを除いては、実施例11と同様な方法で光導波路を得た。
[Example 12]
An optical waveguide was obtained in the same manner as in Example 11 except that the resin compositions obtained in Examples 3 and 4 were used in place of the compositions in Examples 1 and 2.

光導波路の物性測定
実施例11および12で得られた光硬化性光導波路の物性を測定して下記表4に示し、この際、光伝播損失(propagation loss)は850nmの波長でカット−バック方法(cut-back method)で測定した。

Figure 2005519146
Measurement of Physical Properties of Optical Waveguide The physical properties of the photocurable optical waveguides obtained in Examples 11 and 12 were measured and shown in Table 4 below, where the light propagation loss (propagation loss) was cut-back method at a wavelength of 850 nm. (Cut-back method).
Figure 2005519146

前記結果から、本発明に従って少なくとも一つの(メタ)アクリロイル基を有するフッ素化された光硬化性ウレタンオリゴマーを含む光導波路用のフッ素化された樹脂組成物は、光透過度、熱安定性および貯蔵寿命が高いだけでなく、複屈折率が低く、本発明の樹脂組成物からマイクロモールディング技法を用いて、従来のエッチング工程なしにUV照射のみで光導波路を簡便に製造できる。   From the above results, a fluorinated resin composition for an optical waveguide comprising a fluorinated photo-curable urethane oligomer having at least one (meth) acryloyl group according to the present invention has light transmittance, thermal stability and storage. Not only has a long lifetime, but also has a low birefringence, and an optical waveguide can be easily produced from the resin composition of the present invention by using UV molding only by UV irradiation without using a conventional etching process.

本発明に従って、マイクロトランスファーモールド技法を用いて本発明の光硬化性物質から製造された光導波路の概略的な製造工程図である。FIG. 3 is a schematic manufacturing process diagram of an optical waveguide manufactured from the photocurable material of the present invention using a micro transfer mold technique according to the present invention. 本発明の実施例11で得られたコア層がコーティングされたウエハの断面に対する電子顕微鏡写真である。It is an electron micrograph with respect to the cross section of the wafer with which the core layer obtained in Example 11 of this invention was coated. 本発明の実施例11で得られたコア層がコーティングされたウエハの断面に対する走査電子顕微鏡写真である。It is a scanning electron micrograph with respect to the cross section of the wafer with which the core layer obtained in Example 11 of this invention was coated.

Claims (13)

下記式(I)のフッ素化された光硬化性ウレタンオリゴマー。
Figure 2005519146
(式中、
1は、−CH2O−または−CH2(OCH2CH2mO−;
2は、炭素数6〜100の芳香族または脂肪族炭化水素基;
3は、炭素数2〜10の芳香族または脂肪族炭化水素基;
4は、メタ(アクリレート)基またはエポキシ基である)。
A fluorinated photocurable urethane oligomer of the following formula (I):
Figure 2005519146
(Where
R 1 represents —CH 2 O— or —CH 2 (OCH 2 CH 2 ) m O—;
R 2 represents an aromatic or aliphatic hydrocarbon group having 6 to 100 carbon atoms;
R 3 represents an aromatic or aliphatic hydrocarbon group having 2 to 10 carbon atoms;
R 4 is a meth (acrylate) group or an epoxy group).
請求項1に記載の式(I)のフッ素化された光硬化性ウレタンオリゴマー、反応性モノマーおよび光硬化性開始剤を含む、光導波路の製造に使用するための光硬化性樹脂組成物。   A photocurable resin composition for use in the manufacture of an optical waveguide comprising the fluorinated photocurable urethane oligomer of formula (I) according to claim 1, a reactive monomer and a photocurable initiator. 前記フッ素化された光硬化性ウレタンオリゴマーが、ポリオールとジイソシアネートをウレタン反応触媒の存在下で反応させた後、得られた生成物と少なくとも一つの(メタ)アクリロイル基および一つのヒドロキシ基を有するヒドロキシ(メタ)アクリロイル基、または少なくとも一つのエポキシ基および一つのヒドロキシ基を有するヒドロキシエポキシをウレタン反応触媒および重合開始剤の存在下で反応させることによって製造されることを特徴とする、請求項2記載の光硬化性樹脂組成物。   The fluorinated photocurable urethane oligomer is obtained by reacting a polyol and a diisocyanate in the presence of a urethane reaction catalyst, and then obtaining a hydroxy product having at least one (meth) acryloyl group and one hydroxy group. 3. A (meth) acryloyl group or a hydroxyepoxy having at least one epoxy group and one hydroxy group is produced by reacting in the presence of a urethane reaction catalyst and a polymerization initiator. Photocurable resin composition. 前記ポリオールが500〜10,000の平均分子量を有し、フッ素化されたパーフルオロポリエーテルポリオールまたはパーフルオロポリエーテル鎖の末端に非フッ素化ポリエーテル基を有するパーフルオロポリエーテルポリオールを含むことを特徴とする、請求項3記載の光硬化性樹脂組成物。   The polyol has an average molecular weight of 500 to 10,000 and includes a fluorinated perfluoropolyether polyol or a perfluoropolyether polyol having a non-fluorinated polyether group at the end of a perfluoropolyether chain. The photocurable resin composition according to claim 3, wherein 前記ジイソシアネートが、イソホロンジイソシアネート(IPDI)、1,6−ヘキサンジイソシアネート(HDI)、1,8−オクタメチレンジイソシアネート、テトラメチルキシレンジイソシアネート(TMXDI)、4,4’−ジシクロヘキシルメタンジイソシアネート(HMDI)、4,4’−ジフェニルメタンジイソシアネート、3,3’−ジメチル−4,4’−ビフェニレンジイソシアネート、3,3’−ジメチルジフェニルメタン−4,4’−ジイソシアネート、4−ブロモ−6−メチル−1,3−フェニレンジイソシアネート、4−クロロ−6−メチル−1,3−フェニレンジイソシアネート、2,4−ジイソシアネートで末端化されたポリ(1,4−ブタンジオール)トリレン、ジイソシアネートで末端化されたポリ(1,4−ブタンジオール)イソホロン、2,4−ジイソシアネートで末端化されたポリ(エチレンアジペート)トリレン、ポリ[1,4−フェニレンジイソシアネート−コ−ポリ(1,4−ブタノール)]ジイソシアネート、ポリヘキサメチレンジイソシアネート、2,4−ジイソシアネートで末端化されたポリ(プロピレングリコール)トリレン、ポリ(テトラフルオロエチレンオキシド−コ−ジフルオロメチレンオキシド)α,ω−ジイソシアネート、2,4−トルエンジイソシアネート、2,5−トルエンジイソシアネート、2,6−トルエンジイソシアネート、1,5−ナフタレンジイソシアネートおよびこれらの混合物からなる群から選ばれることを特徴とする、請求項3記載の光硬化性樹脂組成物。   The diisocyanate is isophorone diisocyanate (IPDI), 1,6-hexane diisocyanate (HDI), 1,8-octamethylene diisocyanate, tetramethylxylene diisocyanate (TMXDI), 4,4′-dicyclohexylmethane diisocyanate (HMDI), 4, 4'-diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'-biphenylene diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4-bromo-6-methyl-1,3-phenylene diisocyanate 4-chloro-6-methyl-1,3-phenylene diisocyanate, 2,4-diisocyanate-terminated poly (1,4-butanediol) tolylene, diisocyanate-terminated poly (1 4-butanediol) isophorone, poly (ethylene adipate) tolylene terminated with 2,4-diisocyanate, poly [1,4-phenylene diisocyanate-co-poly (1,4-butanol)] diisocyanate, polyhexamethylene diisocyanate 2,4-diisocyanate terminated poly (propylene glycol) tolylene, poly (tetrafluoroethylene oxide-co-difluoromethylene oxide) α, ω-diisocyanate, 2,4-toluene diisocyanate, 2,5-toluene diisocyanate, 4. The photocurable resin composition according to claim 3, wherein the photocurable resin composition is selected from the group consisting of 2,6-toluene diisocyanate, 1,5-naphthalene diisocyanate, and mixtures thereof. 前記少なくとも一つの(メタ)アクリロイル基および一つのヒドロキシ基を有するヒドロキシ(メタ)アクリレートが、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、1−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェニルオキシプロピル(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、4−ヒドロキシシクロヘキシル(メタ)アクリレート、1,6−ヘキサンジオールモノ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、2−メタクリロキシエチル2−ヒドロキシプロピルフタレート、グリセリンジ(メタ)アクリレート、2−ヒドロキシ−3−アクリロイルオキシプロピル(メタ)アクリレート、ポリカプロラクトンポリオールモノ(メタ)アクリレートおよびこれらの混合物からなる群から選ばれることを特徴とする、請求項3記載の光硬化性樹脂組成物。   The hydroxy (meth) acrylate having at least one (meth) acryloyl group and one hydroxy group is 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 1-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, neopentyl glycol mono (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, 1,6-hexanediol mono (meta) ) Acrylate, pentaerythritol penta (meth) acrylate, dipentaerythritol penta (meth) acrylate, 2-methacryloxyethyl 2-hydroxypropyl phthalate, glycerin di (meth) 4. The photocurable resin composition according to claim 3, wherein the photocurable resin composition is selected from the group consisting of acrylate, 2-hydroxy-3-acryloyloxypropyl (meth) acrylate, polycaprolactone polyol mono (meth) acrylate, and mixtures thereof. Stuff. 前記少なくとも一つのエポキシ基と一つのヒドロキシ基を有するヒドロキシエポキシが、グリシドールまたはエポキシ化テトラヒドロベンジルアルコールであることを特徴とする請求項3記載の光硬化性樹脂組成物。   4. The photocurable resin composition according to claim 3, wherein the hydroxy epoxy having at least one epoxy group and one hydroxy group is glycidol or epoxidized tetrahydrobenzyl alcohol. 前記光反応性モノマーが少なくとも一つの(メタ)アクリロイル基を有する(メタ)アクリレートまたは少なくとも一つのエポキシ基を有する光反応性モノマーであることを特徴とする請求項2記載の光硬化性樹脂組成物。   3. The photocurable resin composition according to claim 2, wherein the photoreactive monomer is a (meth) acrylate having at least one (meth) acryloyl group or a photoreactive monomer having at least one epoxy group. . 前記(メタ)アクリレートが、フッ素化された(メタ)アクリレートまたは非フッ素化(メタ)アクリレートであり、前記フッ素化された(メタ)アクリレートが、2−パーフルオロオクチルエチルアクリレート、2−パーフルオロオクチルエチルメタクリレート、2,2,3,4,4,4−ヘキサフルオロブチルメタクリレート、2,2,3,3−テトラフルオロプロピルメタクリレート、トリフルオロエチルメタクリレート、2−パーフルオロアルキルエチルアクリレートおよび2−パーフルオロアルキルエチルメタクリレートからなる群から選ばれ;前記非フッ素化(メタ)アクリレートが、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、1−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェニルオキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソデシル(メタ)アクリレート、2−(2−エトキシエトキシ)エチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、2−フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリデシル(メタ)アクリレート、ポリカプロラクトン(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、イミドアクリレート、エトキシル化されたノニルフェノールアクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,3−ブチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカンジメタノールジアクリレート、トリス[2−(アクリロイルオキシ)エチル]イソシアヌレート、トリメチロールプロパントリアクリレート、エチレンオキシド3モル付加されたトリメチロールプロパントリアクリレート、エチレンオキシド6モル付加されたトリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、トリス(アクリロオキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート、カプロラクトン変性ジペンタエリスリトールヘキサアクリレートからなる群から選ばれる請求項8記載の光硬化性樹脂組成物。 The (meth) acrylate is fluorinated (meth) acrylate or non-fluorinated (meth) acrylate, and the fluorinated (meth) acrylate is 2-perfluorooctylethyl acrylate or 2-perfluorooctyl. Ethyl methacrylate, 2,2,3,4,4,4-hexafluorobutyl methacrylate, 2,2,3,3-tetrafluoropropyl methacrylate, trifluoroethyl methacrylate, 2-perfluoroalkylethyl acrylate and 2-perfluoro The non-fluorinated (meth) acrylate is selected from the group consisting of alkylethyl methacrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, -Hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isodecyl (meth) acrylate, 2- (2-ethoxyethoxy) ethyl (meth) acrylate, Stearyl (meth) acrylate, lauryl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, tridecyl (meth) acrylate, polycaprolactone (meth) acrylate, phenoxytetraethylene glycol (meth) acrylate, imide Acrylate, ethoxylated nonylphenol acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethyl Glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, tri Propylene glycol di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, tricyclo [5.2.1.0 2,6 ] decanedimethanol diacrylate, tris [2- (Acryloyloxy) ethyl] isocyanurate, trimethylolpropane triacrylate, trimethylolpropane triacrylate added with 3 mol of ethylene oxide, trimethylolproperate added with 6 mol of ethylene oxide Triacrylate, pentaerythritol triacrylate, tris (acryloxyethyl oxyethyl) isocyanurate, dipentaerythritol hexaacrylate, photocurable resin composition according to claim 8, wherein is selected from the group consisting of caprolactone-modified dipentaerythritol hexaacrylate. 前記少なくとも一つのエポキシ基を有する光反応性モノマーが、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、ビス−(3,4−エポキシシクロヘキシル)アジペート、3−エチル−3−ヒドロキシメチル−オキセタン、1,2−エポキシヘキサデカン、アルキルグリシジルエーテル、2−エチルヘキシルジグリコールグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、PEG#200ジグリシジルエーテル、PEG#400ジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、PPG#400ジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、水素化ビスフェノールAジグリシジルエーテル、プロピレンオキシド変形ビスフェノールAのジグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテルおよびトリメチロールプロパントリグリシジルエーテルからなる群から選ばれることを特徴とする請求項8記載の光硬化性樹脂組成物。   The photoreactive monomer having at least one epoxy group is 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, bis- (3,4-epoxycyclohexyl) adipate, 3-ethyl-3-hydroxy. Methyl-oxetane, 1,2-epoxyhexadecane, alkyl glycidyl ether, 2-ethylhexyl diglycol glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, PEG # 200 diglycidyl ether, PEG # 400 diglycidyl ether, propylene glycol Diglycidyl ether, tripropylene glycol diglycidyl ether, PPG # 400 diglycidyl ether, neopentyl glycol diglycidyl ether 1,6-hexanediol diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, propylene oxide modified bisphenol A diglycidyl ether, dibromoneopentyl glycol diglycidyl ether and trimethylolpropane triglycidyl ether The photocurable resin composition according to claim 8. 複屈折率が1×10-4以下であり、熱分解温度が300℃以上であり、屈折率を1.38〜1.54の範囲に調節でき、粘度を50〜2000cpsの範囲に調節できることを特徴とする請求項2〜10のいずれか一項に記載の光硬化性樹脂組成物。 The birefringence is 1 × 10 −4 or less, the thermal decomposition temperature is 300 ° C. or more, the refractive index can be adjusted to 1.38 to 1.54, and the viscosity can be adjusted to 50 to 2000 cps. The photocurable resin composition as described in any one of Claims 2-10 characterized by the above-mentioned. 請求項2〜10のいずれか一項に記載の光硬化性樹脂組成物を下部クラッド層としてシリコンウエハ上にコーティングした後、コーティングされた層をUV照射によって光硬化させる段階;前記光硬化性樹脂組成物をコア層としてエッチングされたコアパターンを有するシロキサンモールド上にコーティングした後、コーティングされたコア層をシリコンウエハ上にコーティングされた下部クラッド層に付着し、UV照射によってコア層を光硬化させた後、シロキサンモールドを除去する段階;および前記光硬化性樹脂組成物を上部クラッド層としてコア層上にコーティングした後、上部クラッド層をUV照射によって光硬化させる段階を含む、光導波路の製造方法。   A step of coating the photocurable resin composition according to any one of claims 2 to 10 on a silicon wafer as a lower cladding layer, and then photocuring the coated layer by UV irradiation; After coating the composition on a siloxane mold having an etched core pattern as a core layer, the coated core layer is attached to the lower cladding layer coated on the silicon wafer, and the core layer is photocured by UV irradiation. And then removing the siloxane mold; and coating the photocurable resin composition on the core layer as an upper clad layer, and then photocuring the upper clad layer by UV irradiation. . 請求項12の方法によって製造された光導波路。   An optical waveguide manufactured by the method of claim 12.
JP2003571327A 2002-02-28 2002-12-18 Photocurable resin composition for optical waveguide and optical waveguide produced therefrom Pending JP2005519146A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2002-0011002A KR100487025B1 (en) 2002-02-28 2002-02-28 Photo-curable resin composition for optical waveguide and optical waveguide prepared therefrom
PCT/KR2002/002381 WO2003072625A1 (en) 2002-02-28 2002-12-18 Photocurable resin composition for optical waveguide and optical waveguide made of the same

Publications (1)

Publication Number Publication Date
JP2005519146A true JP2005519146A (en) 2005-06-30

Family

ID=27764631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003571327A Pending JP2005519146A (en) 2002-02-28 2002-12-18 Photocurable resin composition for optical waveguide and optical waveguide produced therefrom

Country Status (4)

Country Link
JP (1) JP2005519146A (en)
KR (1) KR100487025B1 (en)
AU (1) AU2002358336A1 (en)
WO (1) WO2003072625A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522433A (en) * 2003-09-23 2007-08-09 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル Photocurable perfluoropolyethers for use as novel materials in microfluidic devices
US7632874B2 (en) 2003-10-21 2009-12-15 Tdk Corporation Hardcoat agent composition and optical information medium thereof
JP2010143220A (en) * 2008-12-19 2010-07-01 Obducat Ab Process and method for modifying polymer film surface interaction
JP2010183064A (en) * 2008-12-19 2010-08-19 Obducat Ab Method and process for modifying polymer material surface interaction
WO2010107005A1 (en) * 2009-03-18 2010-09-23 旭硝子株式会社 Optical waveguide
US7847017B2 (en) 2005-11-10 2010-12-07 Nec Corporation Photosensitive resin composition for optical waveguide formation, optical waveguide and method for producing optical waveguide
JP2011511722A (en) * 2008-01-29 2011-04-14 エルジー・ケム・リミテッド Manufacturing method of viewing angle limiting film
WO2011122391A1 (en) * 2010-03-31 2011-10-06 Dic株式会社 Curable fluorine-containing resin and active energy ray curable composition using same
JP2012072296A (en) * 2010-09-29 2012-04-12 Dic Corp Polymerizable fluorine-containing resin, actinic-radiation-curable coating composition, and cured product thereof
JP2012096542A (en) * 2004-09-13 2012-05-24 Dow Corning Corp Lithography technique using silicone molds
KR101624976B1 (en) 2009-05-14 2016-05-27 디아이씨 가부시끼가이샤 Fluorine-containing polymerizable polymer and active energy ray-curable composition using the same
WO2016163479A1 (en) * 2015-04-07 2016-10-13 日産化学工業株式会社 Curable composition for use in scratch-resistant coating
WO2016163478A1 (en) * 2015-04-07 2016-10-13 日産化学工業株式会社 Curable composition for use in antiglare coating
WO2016175317A1 (en) * 2015-04-30 2016-11-03 旭硝子株式会社 Fluorinated-compound-containing composition, production method therefor, coating solution, composition for forming hard coat layer, and article
JP2017149985A (en) * 2011-10-17 2017-08-31 オルネクス ベルギー エス エー Fluorinated water-oil repellency agent

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040090B2 (en) 2003-12-19 2015-05-26 The University Of North Carolina At Chapel Hill Isolated and fixed micro and nano structures and methods thereof
EP2159262B1 (en) 2004-10-07 2013-04-03 Hitachi Chemical Company, Ltd. Optical waveguide comprising a resin film
JP5211423B2 (en) * 2004-10-07 2013-06-12 日立化成株式会社 Resin composition for optical material, resin film for optical material, and optical waveguide using the same
JP4810956B2 (en) * 2004-12-13 2011-11-09 日立化成工業株式会社 Resin composition for optical material, resin film for optical material, and optical waveguide using the same
JP2008527090A (en) 2004-12-30 2008-07-24 スリーエム イノベイティブ プロパティズ カンパニー Contamination resistant fluorochemical composition
CA2593694A1 (en) 2004-12-30 2006-07-13 3M Innovative Properties Company Articles comprising a fluorochemical surface layer and related methods
US20060216524A1 (en) 2005-03-23 2006-09-28 3M Innovative Properties Company Perfluoropolyether urethane additives having (meth)acryl groups and hard coats
EP1922364A4 (en) 2005-08-09 2010-04-21 Univ North Carolina Methods and materials for fabricating microfluidic devices
US7722955B2 (en) 2006-04-13 2010-05-25 3M Innovative Properties Company Flooring substrate having a coating of a curable composition
US7537828B2 (en) 2006-06-13 2009-05-26 3M Innovative Properties Company Low refractive index composition comprising fluoropolyether urethane compound
US7575847B2 (en) 2006-06-13 2009-08-18 3M Innovative Properties Company Low refractive index composition comprising fluoropolyether urethane compound
US20080103226A1 (en) * 2006-10-31 2008-05-01 Dsm Ip Assets B.V. Photo-curable resin composition
US20080124555A1 (en) 2006-11-29 2008-05-29 3M Innovative Properties Company Polymerizable composition comprising perfluoropolyether urethane having ethylene oxide repeat units
US8728623B2 (en) 2007-08-31 2014-05-20 3M Innovative Properties Company Hardcoats having low surface energy and low lint attraction
KR100929381B1 (en) * 2007-11-22 2009-12-02 주식회사 미뉴타텍 Mold sheet composition and mold sheet manufacturing method using the same
KR101003002B1 (en) * 2008-06-30 2010-12-22 에스에스씨피 주식회사 Resin composition for cladding layer of optical fiber
KR101051287B1 (en) * 2008-08-19 2011-07-22 에스에스씨피 주식회사 Photopolymerization oligomer, photopolymerization resin composition and optical fiber containing the oligomer
KR101653626B1 (en) * 2009-07-13 2016-09-02 주식회사 동진쎄미켐 Photocurable fluoro resin composition and method for preparing of mold using the same
US9096712B2 (en) 2009-07-21 2015-08-04 3M Innovative Properties Company Curable compositions, method of coating a phototool, and coated phototool
US9051423B2 (en) 2009-09-16 2015-06-09 3M Innovative Properties Company Fluorinated coating and phototools made therewith
US8420281B2 (en) * 2009-09-16 2013-04-16 3M Innovative Properties Company Epoxy-functionalized perfluoropolyether polyurethanes
GB0919014D0 (en) 2009-10-30 2009-12-16 3M Innovative Properties Co Soll and stain resistant coating composition for finished leather substrates
KR101436018B1 (en) * 2013-01-23 2014-09-01 한국화학연구원 antifouling photo-curable resin composition containing per-fluoro polyether modified compound and antifouling transparent thin film for hard coating using the same
US20190002633A1 (en) * 2015-12-22 2019-01-03 Solvay Specialty Polymers Italy S.P.A. Functionalized (poly)alkoxylated (per)fluoropolyether polymers
CN105837784B (en) * 2016-05-06 2021-04-16 南昌航空大学 Preparation method of environment-friendly anti-fingerprint resin for galvanized steel sheet
CN105860015B (en) * 2016-05-06 2021-04-16 南昌航空大学 Preparation method of green environment-friendly fingerprint-resistant transparent resin
CN106833093A (en) * 2016-11-28 2017-06-13 江南大学 A kind of preparation method of photocuring hydrophobic resin modified manometer silicon dioxide
KR102268129B1 (en) 2017-10-16 2021-06-22 주식회사 엘지화학 Unreactive fluoro compound and photopolymer composition comprising the same
WO2019078585A1 (en) * 2017-10-16 2019-04-25 주식회사 엘지화학 Non-reactive fluorine-based compound and photopolymerizable composition including same
BR112020012081B1 (en) 2017-12-26 2023-04-25 Akzo Nobel Coatings International B.V COATING COMPOSITION, COATING COMPOSITION PREPARATION METHOD AND COATING COMPOSITION OR OLIGOMER USE METHOD

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278255A (en) * 1994-04-06 1995-10-24 Sumitomo Electric Ind Ltd New compound and plastic-clad optical fiber using same
DE69531001T2 (en) * 1995-01-30 2004-03-25 Dsm Ip Assets B.V. FLUORED URETHANE OLIGOMER CONTAINING RADIATION-CURABLE COMPOSITION
US6017603A (en) * 1995-04-28 2000-01-25 Nippon Kayaku Kabushiki Kaisha Ultraviolet-curing adhesive composition and article
JPH08301959A (en) * 1995-05-08 1996-11-19 Sumitomo Electric Ind Ltd Polyurethane (meth)acrylate, resin composition, and optical fiber using the same
KR100403667B1 (en) * 1995-12-30 2004-04-03 고려화학 주식회사 Photocurable coating composition using urethane acrylate oligomer
JP3913824B2 (en) * 1997-02-25 2007-05-09 昭和電工株式会社 Photo-curing adhesive
JPH11349646A (en) * 1998-06-12 1999-12-21 Nippon Kayaku Co Ltd Resin composition and cured product
JP3988267B2 (en) * 1998-08-20 2007-10-10 Jsr株式会社 Adhesive for optical disc

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522433A (en) * 2003-09-23 2007-08-09 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル Photocurable perfluoropolyethers for use as novel materials in microfluidic devices
US7632874B2 (en) 2003-10-21 2009-12-15 Tdk Corporation Hardcoat agent composition and optical information medium thereof
US7838097B2 (en) 2003-10-21 2010-11-23 Tdk Corporation Hardcoat agent composition and optical information medium thereof
JP2012096542A (en) * 2004-09-13 2012-05-24 Dow Corning Corp Lithography technique using silicone molds
US7847017B2 (en) 2005-11-10 2010-12-07 Nec Corporation Photosensitive resin composition for optical waveguide formation, optical waveguide and method for producing optical waveguide
US8414733B2 (en) 2005-11-10 2013-04-09 Nec Corporation Photosensitive resin composition for optical waveguide formation, optical waveguide and method for producing optical waveguide
US8444885B2 (en) 2008-01-29 2013-05-21 Lg Chem, Ltd. Method for making privacy film
JP2011511722A (en) * 2008-01-29 2011-04-14 エルジー・ケム・リミテッド Manufacturing method of viewing angle limiting film
JP2015097293A (en) * 2008-12-19 2015-05-21 オブダカット・アーベー Method and process for modifying polymer material surface interaction
JP2010143220A (en) * 2008-12-19 2010-07-01 Obducat Ab Process and method for modifying polymer film surface interaction
JP2010183064A (en) * 2008-12-19 2010-08-19 Obducat Ab Method and process for modifying polymer material surface interaction
WO2010107005A1 (en) * 2009-03-18 2010-09-23 旭硝子株式会社 Optical waveguide
CN102301264A (en) * 2009-03-18 2011-12-28 旭硝子株式会社 Optical waveguide
JP5459310B2 (en) * 2009-03-18 2014-04-02 旭硝子株式会社 Optical waveguide and method for manufacturing the same
KR101624976B1 (en) 2009-05-14 2016-05-27 디아이씨 가부시끼가이샤 Fluorine-containing polymerizable polymer and active energy ray-curable composition using the same
KR101732391B1 (en) 2010-03-31 2017-05-04 디아이씨 가부시끼가이샤 Curable fluorine-containing resin and active energy ray curable composition using same
JP4873107B2 (en) * 2010-03-31 2012-02-08 Dic株式会社 Fluorine-containing curable resin and active energy ray-curable composition using the same
US8716361B2 (en) 2010-03-31 2014-05-06 Dic Corporation Curable fluorine-containing resin and active-energy-ray-curable composition including the same
WO2011122391A1 (en) * 2010-03-31 2011-10-06 Dic株式会社 Curable fluorine-containing resin and active energy ray curable composition using same
JP2012072296A (en) * 2010-09-29 2012-04-12 Dic Corp Polymerizable fluorine-containing resin, actinic-radiation-curable coating composition, and cured product thereof
JP2017149985A (en) * 2011-10-17 2017-08-31 オルネクス ベルギー エス エー Fluorinated water-oil repellency agent
WO2016163478A1 (en) * 2015-04-07 2016-10-13 日産化学工業株式会社 Curable composition for use in antiglare coating
WO2016163479A1 (en) * 2015-04-07 2016-10-13 日産化学工業株式会社 Curable composition for use in scratch-resistant coating
CN107406564A (en) * 2015-04-07 2017-11-28 日产化学工业株式会社 Marresistance coating solidification compound
JPWO2016163479A1 (en) * 2015-04-07 2018-02-01 日産化学工業株式会社 Curable composition for scratch-resistant coating
CN107406564B (en) * 2015-04-07 2020-05-22 日产化学工业株式会社 Curable composition for scratch-resistant coating
WO2016175317A1 (en) * 2015-04-30 2016-11-03 旭硝子株式会社 Fluorinated-compound-containing composition, production method therefor, coating solution, composition for forming hard coat layer, and article
JPWO2016175317A1 (en) * 2015-04-30 2018-03-01 旭硝子株式会社 Fluorine-containing compound-containing composition, process for producing the same, coating liquid, hard coat layer forming composition and article
US10138315B2 (en) 2015-04-30 2018-11-27 AGC Inc. Fluorinated compound-containing composition, method for its production, coating liquid, hard coat layer-forming composition and article

Also Published As

Publication number Publication date
WO2003072625A1 (en) 2003-09-04
KR20030071343A (en) 2003-09-03
AU2002358336A1 (en) 2003-09-09
KR100487025B1 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP2005519146A (en) Photocurable resin composition for optical waveguide and optical waveguide produced therefrom
EP1854822B1 (en) Optical devices made from radiation curable fluorinated compositions
EP1203031B1 (en) Optical devices made from radiation curable fluorinated compositions
US6778753B2 (en) Halogenated optical polymer composition
JP4238729B2 (en) Adhesive multilayer diffractive optical element
CN101925840B (en) Resin composition for production of clad layer, resin film for production of clad layer utilizing resin composition, and optical waveguide and optical module each utilizing resin composition or resin film
KR100500191B1 (en) Uv-curable resin composition for cladding layer of optical fiber
TW200415154A (en) Photocurable resin composition and optical material
EP1287047B1 (en) Photo-polymers and use thereof
TW202225345A (en) Resin composition, optical fiber, and method for producing optical fiber
KR20060024375A (en) Curing resin composition, optical component and optical waveguide
JP2007527035A (en) Optical fiber with strippable coating and method for stripping such a single fiber
WO2010002175A2 (en) Resin composition for cladding of optical fiber
WO2006009173A1 (en) Polymer optical waveguide and process for production thereof
JP2004182909A (en) Resin composition for polymer optical waveguide and polymer optical waveguide using the same
JP4014369B2 (en) Monomer compounds used in the production of reactive polymer compounds
JP2000081520A (en) Resin composition for polymeric optical waveguide and polymeric optical waveguide using same
JP2007137998A (en) Curable composition and optical material obtained by curing the same
JP4151508B2 (en) Photosensitive resin composition for optical waveguide and optical waveguide
JP4967331B2 (en) Film optical waveguide and manufacturing method thereof
JP2008116971A (en) Optical waveguide
JPH09274116A (en) Optical waveguide
JP4793346B2 (en) Reactive polymer compound and production method thereof
JP4178996B2 (en) Polymer optical waveguide
JP2006215447A (en) Optical waveguide mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080311

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930