KR100480587B1 - Lanthanum Strontium Cobalt Oxide Formation Method - Google Patents

Lanthanum Strontium Cobalt Oxide Formation Method Download PDF

Info

Publication number
KR100480587B1
KR100480587B1 KR10-1998-0027655A KR19980027655A KR100480587B1 KR 100480587 B1 KR100480587 B1 KR 100480587B1 KR 19980027655 A KR19980027655 A KR 19980027655A KR 100480587 B1 KR100480587 B1 KR 100480587B1
Authority
KR
South Korea
Prior art keywords
nitride
lanthanum
cobalt oxide
oxide film
lanthanum strontium
Prior art date
Application number
KR10-1998-0027655A
Other languages
Korean (ko)
Other versions
KR20000008012A (en
Inventor
박순오
이상인
주웅길
박순병
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR10-1998-0027655A priority Critical patent/KR100480587B1/en
Publication of KR20000008012A publication Critical patent/KR20000008012A/en
Application granted granted Critical
Publication of KR100480587B1 publication Critical patent/KR100480587B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 반도체 장치에 쓰이는 란탄스트론튬코발트 산화막(LSCO막)을 졸-겔법으로 형성하는 방법에 관한 것으로, 출발물질로서 란타늄 나이트라이드, 스트론튬 나이트라이드 및 코발트 나이트라이드를 증류수로 희석시킨 후, 2-메톡시에탄올과 물의 혼합용제를 첨가하는 과정을 포함하는 것을 특징으로 한다.The present invention relates to a method for forming a lanthanum strontium cobalt oxide film (LSCO film) used in a semiconductor device by a sol-gel method, and after diluting lanthanum nitride, strontium nitride and cobalt nitride with distilled water as a starting material, 2- It is characterized by including the process of adding a mixed solvent of methoxy ethanol and water.

본 발명에 의하면, 2-메톡시에탄올과 물을 첨가함으로써, 특히 백금막에 대하여 접착특성이 좋고 치밀한 LSCO 박막이 형성된다.According to the present invention, by adding 2-methoxyethanol and water, a thin LSCO thin film having good adhesion characteristics to the platinum film, in particular, is formed.

Description

란탄스트론튬코발트 산화막 형성방법Lanthanum Strontium Cobalt Oxide Formation Method

본 발명은 반도체 장치에 쓰이는 란탄스트론튬코발트 산화막(La0.5Sr0.5CoO3, 이하 LSCO막이라 한다)을 형성하는 방법에 관한 것으로, 특히 졸-겔(sol-gel)법으로 형성하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a lanthanum strontium cobalt oxide film (La 0.5 Sr 0.5 CoO 3 , hereinafter referred to as LSCO film) used in semiconductor devices, and more particularly, to a method of forming by a sol-gel method. .

LSCO막은 최근 강유전체 커패시터의 전극으로 각광받고 있는 물질이다. 특히, 반도체 장치의 고집적, 고속화에 따라 보다 좁은 면적에서 보다 큰 커패시턴스를 가지면서, 스위칭 사이클 내에서 스위칭된 극성이 감소하는 피로(fatigue)현상이 없는 커패시터가 요구되었다. 이와 같은 요구에 따라 고유전물질을 유전막으로 사용하는 강유전체 커패시터가 출현하였고, 특히 피로현상은 강유전체막에 RuO2, IrO2, Y1Ba2CuOx, LSCO 등의 산화물을 전극으로 사용함으로써 획기적으로 해결할 수 있다고 보고되고 있다. 또한 산화물 전극은 종래의 백금족 금속 전극보다 식각이 용이하고, 강유전체막과의 열팽창의 차가 적어 반도체 장치의 신뢰성을 높일 수 있는 장점이 있다.LSCO film is a material recently attracting attention as an electrode of a ferroelectric capacitor. In particular, there has been a demand for a capacitor having a larger capacitance in a smaller area and a fatigue phenomenon in which switching polarity is reduced in a switching cycle according to high integration and high speed of a semiconductor device. As a result, ferroelectric capacitors using high dielectric materials as dielectric films have emerged. Especially, fatigue phenomenon is remarkable by using oxides such as RuO 2 , IrO 2 , Y 1 Ba 2 CuO x , and LSCO as electrodes for ferroelectric films. It is reported that it can be solved. In addition, the oxide electrode is easier to etch than a conventional platinum group metal electrode, and has a difference in thermal expansion with a ferroelectric film, thereby improving reliability of a semiconductor device.

이러한 산화물 전극의 형성방법으로는 스퍼터링(sputtering), 유기금속 화학기상증착법(Metal-Organic Chemical Vapor Deposion), 졸-겔법 등이 사용되고 있는데, 특히 졸-겔법이 박막 형성이 용이하여 많이 사용되고 있다. Sputtering, a metal-organic chemical vapor deposition method, a sol-gel method and the like are used as a method of forming the oxide electrode. In particular, the sol-gel method is easily used to form a thin film.

졸-겔법을 사용하여 LSCO막을 형성하는 종래의 방법은 도1에 도시된 바와 같다. 먼저, 출발물질로서 란타늄 나이트라이드(La(NO3)3·6H2O), 스트론튬 나이트라이드(Sr(NO3)2) 및 코발트 나이트라이드(Co(NO3)3·6H2O)를 증류수로 희석한다(10). 이때 세 가지 출발물질의 혼합비율은 1:1:2이다. 여기에 점도와 표면장력을 조절하기 위해 폴리비닐알콜(polyvinyl alchol)과 글리신(glycine)을 첨가하고(20), 다시 증류수를 첨가하여 80℃에서 1시간 가량 저어주어(30) 최종 농도가 0.5 내지 1.25 몰농도인 코팅소스를 만든다.The conventional method of forming the LSCO film using the sol-gel method is as shown in FIG. First, lanthanum nitride (La (NO 3 ) 3 .6H 2 O), strontium nitride (Sr (NO 3 ) 2 ) and cobalt nitride (Co (NO 3 ) 3 .6H 2 O) as starting materials were distilled water. Dilute with (10). The mixing ratio of the three starting materials is 1: 1: 2. To control the viscosity and surface tension, polyvinyl alcohol and glycine are added (20), and distilled water is added and stirred at 80 ° C. for about 1 hour (30) to a final concentration of 0.5 to Make a coating source at 1.25 molarity.

이어서, 코팅하고자 하는 기판(예를 들어, 실리콘, 실리콘 산화막, 백금이 순차적으로 적층된 기판)을 6000rpm으로 회전시키면서 위에서 만들어진 소스를 기판에 20초간 코팅한 후, 120℃에서 10분간 건조한다(40). 이 과정을 반복함으로써 원하는 두께의 LSCO막을 얻는다. 마지막으로, LSCO막의 결정화를 위해 850℃에서 30분정도 열처리함으로써 LSCO 전극을 완성한다(50).Subsequently, while rotating the substrate to be coated (for example, a substrate in which silicon, a silicon oxide film, and platinum are sequentially stacked) at 6000 rpm, the source made above is coated on the substrate for 20 seconds, and then dried at 120 ° C. for 10 minutes (40 ). By repeating this process, an LSCO film of a desired thickness is obtained. Finally, the LSCO electrode is completed by heat treatment at 850 ° C. for 30 minutes to crystallize the LSCO film (50).

그러나 이러한 종래의 방법은, 특히 소스를 잘못 제조한 경우 하지막인 백금기판에 대한 접착성이 떨어지고 치밀한 박막을 형성하지 못한다는 문제가 있다.However, such a conventional method has a problem in that adhesion to a platinum substrate, which is a base film, is poor, especially when a source is manufactured incorrectly, and a dense thin film cannot be formed.

본 발명이 이루고자 하는 기술적 과제는 상기한 문제점을 극복하여 기판에 대한 접착성이 좋고 치밀한 박막이 형성가능한 LSCO막 형성방법을 제공하는 데에 있다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide an LSCO film forming method capable of forming a thin film having good adhesion to a substrate by overcoming the above problems.

상기한 기술적 과제를 해결하기 위한 본 발명에 따른 LSCO막 형성방법은, 출발물질로서 란타늄 나이트라이드(La(NO3)3·6H2O), 스트론튬 나이트라이드(Sr(NO3)2) 및 코발트 나이트라이드(Co(NO3)3·6H2O)를 증류수로 희석시킨 후, 2-메톡시에탄올(2-methoxyethanol)과 물의 혼합용제를 첨가하여 코팅소스를 만든 다음, 이 코팅소스를 LSCO막을 형성하고자 하는 기판에 스핀코팅하여 LSCO막을 형성하는 것을 특징으로 한다.LSCO film forming method according to the present invention for solving the above technical problem, lanthanum nitride (La (NO 3 ) 3 · 6H 2 O), strontium nitride (Sr (NO 3 ) 2 ) and cobalt as starting materials After diluting nitride (Co (NO 3 ) 3 .6H 2 O) with distilled water, a mixed solvent of 2-methoxyethanol and water is added to form a coating source. It is characterized in that the LSCO film is formed by spin coating the substrate to be formed.

이때, 2-메톡시에탄올과 물의 혼합비율은 2:3의 부피비로 하는 것이 바람직하다.At this time, the mixing ratio of 2-methoxyethanol and water is preferably set to a volume ratio of 2: 3.

또한, 점도조절을 위해 폴리비닐알콜을 더 첨가할 수도 있다.In addition, polyvinyl alcohol may be further added for viscosity control.

이와 같이, 본 발명에 따른 LSCO막 형성방법은 2-메톡시에탄올과 물을 혼합한 새로운 용제를 코팅소스에 첨가함으로써, 접착특성이 향상되고 치밀한 박막형성이 가능하게 한다.As described above, the LSCO film forming method according to the present invention adds a new solvent mixed with 2-methoxyethanol and water to the coating source, thereby improving adhesion properties and enabling compact thin film formation.

이하에서, 도 2를 참조하면서 본 발명의 실시예에 따른 LSCO막의 형성방법을 상세히 설명한다.Hereinafter, a method of forming an LSCO film according to an embodiment of the present invention will be described in detail with reference to FIG. 2.

출발물질로서 란타늄 나이트라이드, 스트론튬 나이트라이드 및 코발트 나이트라이드를 준비하고 이들을 증류수로 희석한다(100). 이때, 혼합비율은 란타늄 나이트라이드 : 스트론튬 나이트라이드 : 코발트 나이트라이드 = 1:1:2로 한다.Lanthanum nitride, strontium nitride and cobalt nitride are prepared as starting materials and diluted with distilled water (100). In this case, the mixing ratio is lanthanum nitride: strontium nitride: cobalt nitride = 1: 1: 2.

이어서, 본 발명의 특징인 2-메톡시에탄올과 물을 혼합한 용제를 첨가한다(200). 이때, 혼합비율은 란타늄 나이트라이드와 코발트 나이트라이드의 결정수 고용한계 내에서 유동적일 수 있으나, 그 부피비가 2:3일 때 접착특성 및 치밀성에 있어서 가장 효과가 큰 것으로 나타났다. Next, a solvent in which 2-methoxyethanol and water are mixed, which is a feature of the present invention, is added (200). In this case, the mixing ratio may be fluid within the crystal water solution limit of lanthanum nitride and cobalt nitride. However, when the volume ratio is 2: 3, the mixing ratio is most effective in adhesion properties and compactness.

여기에 코팅소스의 점도와 표면장력을 조절하기 위해 폴리비닐알콜과 글리신을 첨가한다(300). 이때, 폴리비닐알콜의 첨가비율은 점도에 따라 변화할 수 있으나, 본 실시예에서는 폴리비닐알콜의 단위체(CH2CHOH)를 기준으로 란타늄 나이트라이드와 같은 몰수로 하여 란타늄 나이트라이드 : 폴리비닐알콜 : 글리신 = 0.01몰:1g:0.02몰로 하였다.To this is added polyvinyl alcohol and glycine to control the viscosity and surface tension of the coating source (300). At this time, the addition ratio of the polyvinyl alcohol may vary depending on the viscosity, but in the present embodiment, based on the unit of polyvinyl alcohol (CH 2 CHOH), lanthanum nitride is used as the number of moles, such as lanthanum nitride: polyvinyl alcohol: Glycine = 0.01 mol: 1 g: 0.02 mol.

이상과 같이 모든 성분을 혼합하여 전체적으로 0.3몰농도의 용액을 만든 다음, 60 내지 90분 동안 저으면서 용해시켜 졸 즉, 코팅소스를 만든다(400).Mixing all the components as described above to make a total solution of 0.3 molarity, and then stirred for 60 to 90 minutes to dissolve to make a sol, that is, a coating source (400).

다음으로, 실제 코팅하는 과정으로서, LSCO막을 형성하고자 하는 기판, 예를 들어, 실리콘, 실리콘 산화막 및 백금이 순차적으로 적층된 기판을 6000rpm으로 회전시키면서, 이 기판에 코팅소스를 20초간 코팅한다. 그리고 400℃의 온도에서 10분간 건조한다(500). 이러한 코팅과 건조과정을 반복하여 원하는 두께의 LSCO막을 얻는다.Next, as an actual coating process, a coating source is coated on the substrate for 20 seconds while rotating the substrate on which the LSCO film is to be formed, for example, a substrate in which silicon, a silicon oxide film, and platinum are sequentially stacked at 6000 rpm. And it is dried for 10 minutes at a temperature of 400 ℃ (500). This coating and drying process is repeated to obtain LSCO film of desired thickness.

마지막으로, LSCO막의 결정화를 위하여 850℃의 온도에서 30분간 열처리하면 원하는 LSCO막이 얻어진다.Finally, the desired LSCO film is obtained by heat treatment at a temperature of 850 ° C. for 30 minutes to crystallize the LSCO film.

이상 상술한 바와 같이, 본 발명에 따르면 LSCO막의 코팅소스 제작시 2-메톡시에탄올과 물을 첨가함으로써, 특히 하지막인 백금에 대하여 접착특성이 좋고 치밀한 LSCO 박막이 형성되는 것을 확인할 수 있었다.As described above, according to the present invention, by adding 2-methoxyethanol and water when preparing a coating source of the LSCO film, it was confirmed that a dense LSCO thin film having good adhesion characteristics and formation to platinum, which is a base film, was formed.

도 1은 종래의 방법에 따라 란탄스트론튬코발트 산화막을 형성하는 공정을 도시한 흐름도이다.1 is a flowchart illustrating a process of forming a lanthanum strontium cobalt oxide film according to a conventional method.

도 2는 본 발명에 따라 란탄스트론튬코발트 산화막을 형성하는 공정을 도시한 흐름도이다.2 is a flowchart illustrating a process of forming a lanthanum strontium cobalt oxide film according to the present invention.

Claims (9)

(a) 란타늄 나이트라이드(La(NO3)3·6H2O), 스트론튬 나이트라이드(Sr(NO3)2) 및 코발트 나이트라이드(Co(NO3)3·6H2O)를 증류수로 희석시키는 단계;(a) Dilution of lanthanum nitride (La (NO 3 ) 3 · 6H 2 O), strontium nitride (Sr (NO 3 ) 2 ) and cobalt nitride (Co (NO 3 ) 3 · 6H 2 O) with distilled water Making a step; (b) 상기 (a) 단계의 결과물에 2-메톡시에탄올과 물의 혼합용제를 첨가하여 코팅소스를 만드는 단계; 및(b) adding a mixed solvent of 2-methoxyethanol and water to the resultant of step (a) to make a coating source; And (c) 상기 코팅소스를 란탄스트론튬코발트 산화막을 형성하고자 하는 기판에 스핀코팅하는 단계를 포함하는 것을 특징으로 하는 란탄스트론튬코발트 산화막의 형성방법.and (c) spin coating the coating source onto a substrate on which a lanthanum strontium cobalt oxide film is to be formed. 제1항에 있어서, 상기 (a) 단계의 란타늄 나이트라이드, 스트론튬 나이트라이드 및 코발트 나이트라이드의 혼합비는 1:1:2인 것을 특징으로 하는 란탄스트론튬코발트 산화막의 형성방법.The method of claim 1, wherein the mixing ratio of lanthanum nitride, strontium nitride and cobalt nitride in step (a) is 1: 1: 2. 제1항에 있어서, 상기 (b) 단계의 2-메톡시에탄올과 물의 혼합비율은 2:3의 부피비인 것을 특징으로 하는 란탄스트론튬코발트 산화막의 형성방법.The lanthanum strontium cobalt oxide film forming method according to claim 1, wherein the mixing ratio of 2-methoxyethanol and water in step (b) is 2: 3 by volume. 제1항에 있어서, 점도조절을 위해 폴리비닐알콜을 더 첨가하는 것을 특징으로 하는 란탄스트론튬코발트 산화막의 형성방법.The method of forming a lanthanum strontium cobalt oxide film according to claim 1, further comprising polyvinyl alcohol for viscosity control. 제4항에 있어서, 폴리비닐알콜의 첨가비율은 단위체를 기준으로 란타늄나이트라이드와 같은 몰수인 것을 특징으로 하는 란탄스트론튬코발트 산화막의 형성방법.The method for forming a lanthanum strontium cobalt oxide film according to claim 4, wherein the addition ratio of polyvinyl alcohol is a mole number such as lanthanum nitride based on the unit. (a) 란타늄 나이트라이드(La(NO3)3·6H2O), 스트론튬 나이트라이드(Sr(NO3)2) 및 코발트 나이트라이드(Co(NO3)3·6H2O)를 증류수로 희석시키는 단계;(a) Dilution of lanthanum nitride (La (NO 3 ) 3 · 6H 2 O), strontium nitride (Sr (NO 3 ) 2 ) and cobalt nitride (Co (NO 3 ) 3 · 6H 2 O) with distilled water Making a step; (b) 상기 결과물에 2-메톡시에탄올과 물의 혼합용제를 첨가하는 단계;(b) adding a mixed solvent of 2-methoxyethanol and water to the resultant; (c) 상기 결과물을 소정 시간 동안 저으면서 용해시키는 단계;(c) dissolving the resultant while stirring for a predetermined time; (d) 코팅하고자 하는 기판을 소정 회전수로 회전시키면서 상기 결과물을 상기 기판에 코팅하고 건조하는 과정을 1회 이상 수행하여 원하는 두께의 란탄스트론튬코발트 산화막을 형성하는 단계; 및(d) forming a lanthanum strontium cobalt oxide film having a desired thickness by rotating the substrate to be coated at a predetermined number of revolutions and coating the resultant on the substrate at least once; And (e) 상기 결과물을 열처리하여 상기 란탄스트론튬코발트 산화막을 결정화하는 단계를 포함하는 것을 특징으로 하는 란탄스트론튬코발트 산화막 형성방법.(e) forming a lanthanum strontium cobalt oxide film by heat-treating the resultant to crystallize the lanthanum strontium cobalt oxide film. 제6항에 있어서, 상기 (b) 단계의 2-메톡시에탄올과 물의 혼합비율은 2:3의 부피비인 것을 특징으로 하는 란탄스트론튬코발트 산화막 형성방법.The lanthanum strontium cobalt oxide film forming method according to claim 6, wherein the mixing ratio of 2-methoxyethanol and water in step (b) is 2: 3 by volume. 제6항에 있어서, 상기 (b) 단계는 점도조절을 위해 폴리비닐알콜을 더 첨가하는 것을 특징으로 하는 란탄스트론튬코발트 산화막 형성방법.The lanthanum strontium cobalt oxide film forming method according to claim 6, wherein the step (b) further comprises polyvinyl alcohol for viscosity control. 제6항에 있어서, 상기 (d) 단계의 회전수는 6000rpm이고, 코팅시간은 20초이며, 400℃에서 10분간 건조하는 것을 특징으로 하는 반도체 장치의 란탄스트론튬코발트 산화막 형성방법.The lanthanum strontium cobalt oxide film forming method according to claim 6, wherein the rotation speed of the step (d) is 6000 rpm, the coating time is 20 seconds, and dried at 400 ° C. for 10 minutes.
KR10-1998-0027655A 1998-07-09 1998-07-09 Lanthanum Strontium Cobalt Oxide Formation Method KR100480587B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0027655A KR100480587B1 (en) 1998-07-09 1998-07-09 Lanthanum Strontium Cobalt Oxide Formation Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0027655A KR100480587B1 (en) 1998-07-09 1998-07-09 Lanthanum Strontium Cobalt Oxide Formation Method

Publications (2)

Publication Number Publication Date
KR20000008012A KR20000008012A (en) 2000-02-07
KR100480587B1 true KR100480587B1 (en) 2005-06-08

Family

ID=19543589

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0027655A KR100480587B1 (en) 1998-07-09 1998-07-09 Lanthanum Strontium Cobalt Oxide Formation Method

Country Status (1)

Country Link
KR (1) KR100480587B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316579A (en) * 1988-12-27 1994-05-31 Symetrix Corporation Apparatus for forming a thin film with a mist forming means
JP2000143251A (en) * 1998-11-06 2000-05-23 Mitsubishi Materials Corp Solution for forming thin oxide film
KR20010037449A (en) * 1999-10-18 2001-05-07 정선종 Non-destructive read-out (NDRO) type Field Effect Transistor (FET) and Method for Fabricating The Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316579A (en) * 1988-12-27 1994-05-31 Symetrix Corporation Apparatus for forming a thin film with a mist forming means
JP2000143251A (en) * 1998-11-06 2000-05-23 Mitsubishi Materials Corp Solution for forming thin oxide film
KR20010037449A (en) * 1999-10-18 2001-05-07 정선종 Non-destructive read-out (NDRO) type Field Effect Transistor (FET) and Method for Fabricating The Same

Also Published As

Publication number Publication date
KR20000008012A (en) 2000-02-07

Similar Documents

Publication Publication Date Title
KR100269025B1 (en) Process ffor fabricating layered suferlattice materials
KR100274512B1 (en) Integrated circuit capacitors and manufacturing method thereof
US5358889A (en) Formation of ruthenium oxide for integrated circuits
KR19980703182A (en) Low Temperature Treatment for Fabrication of Stratified Superlattice Materials and Electronic Devices Comprising the Same
JPH08279599A (en) Preparation of ferroelectricity capacitor
US7009231B2 (en) Single-phase c-axis doped PGO ferroelectric thin films
Catalan et al. Preparation of barium strontium titanate thin film capacitors on silicon by metallorganic decomposition
US5244691A (en) Process for depositing a thin layer of a ceramic composition and a product obtained thereby
KR100480587B1 (en) Lanthanum Strontium Cobalt Oxide Formation Method
JPH08111411A (en) Manufacturing for ferroelectric thin film
KR19990082374A (en) High dielectric constant barium-strontium-niobium for integrated circuits
US6316651B1 (en) Environmentally benign Group II and Group IV or V spin-on precursor materials
JP3363091B2 (en) Manufacturing method of dielectric memory
Liu et al. Thick layer deposition of lead perovskites using diol-based chemical solution approach
KR100252744B1 (en) Thin films of abo3 with excess a-site and b-site modifiers and method of fabricating integrated circuits with the same
US6303804B1 (en) Environmentally benign bismuth-containing spin-on precursor materials
JPH05298920A (en) Highly dielectric thin film
JP2500611B2 (en) High dielectric constant thin film
CA2163130C (en) Thin film capacitors on gallium arsenide substrate and process for making the same
JP3789934B2 (en) Metal polyoxyalkylation precursor solution in octane solvent and method for producing the same
JP4245116B2 (en) Ceramic raw material liquid, ceramic film and ferroelectric memory device
US6984745B2 (en) Environmentally benign lead zirconate titanate ceramic precursor materials
KR100435177B1 (en) Environmentally Benign Group II and Group IV or V Spin-On Precursor Materials
JP2002094018A (en) Method of manufacturing electronic device
JPH09157008A (en) Composition for forming thin (barium, strontium) titanium trioxide dielectric film and formation of the same film

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee