KR100480430B1 - 인터페론-베타와 폴리에틸렌글리콜 유도체의 배합체 - Google Patents

인터페론-베타와 폴리에틸렌글리콜 유도체의 배합체 Download PDF

Info

Publication number
KR100480430B1
KR100480430B1 KR10-2001-0076130A KR20010076130A KR100480430B1 KR 100480430 B1 KR100480430 B1 KR 100480430B1 KR 20010076130 A KR20010076130 A KR 20010076130A KR 100480430 B1 KR100480430 B1 KR 100480430B1
Authority
KR
South Korea
Prior art keywords
interferon
peg
propionaldehyde
beta
pendant
Prior art date
Application number
KR10-2001-0076130A
Other languages
English (en)
Other versions
KR20030045414A (ko
Inventor
노광
박민구
이은정
Original Assignee
선바이오(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 선바이오(주) filed Critical 선바이오(주)
Priority to KR10-2001-0076130A priority Critical patent/KR100480430B1/ko
Publication of KR20030045414A publication Critical patent/KR20030045414A/ko
Application granted granted Critical
Publication of KR100480430B1 publication Critical patent/KR100480430B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/565IFN-beta
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes

Abstract

본 발명은 인터페론-베타(Interferon-β; IFN-β)의 아미노 말단(amino-terminus, N-terminus)의 알파-아미노기(α-amino group)에 신규한 형태의 메톡시 또는 펜던트형 폴리에틸렌 글리콜-프로피온알데히드(methoxypolyethylene glycol-propionaldehyde) 유도체가 결합된 배합체(conjugate)에 관한 것으로, 본 배합체는 인터페론-베타의 항원유발성(immunogenicity)을 감소시키고 생리활성 저하를 최대한 감소시키면서 체내 잔존 시간을 증가시켜 향상된 약동학 프로필 (pharmacokinetic profile)과 약리적 성질을 갖게 되므로, 다발성 경화증의 치료제 및 바이러스성 암 치료제 등으로 유용하게 사용될 수 있다.

Description

인터페론-베타와 폴리에틸렌글리콜 유도체의 배합체{CONJUGATES OF INTERFERON-BETA AND POLYETHYLENE GLYCOL DERIVATIVES}
본 발명은 인터페론-베타(Interferon-β)의 아미노 말단(amino-terminus, N-terminus)에 신규한 형태의 메톡시 또는 펜던트형 폴리에틸렌글리콜-프로피온알데히드 유도체를 결합시킨 폴리에틸렌글리콜-인터페론 베타 배합체(conjugate)에 관한 것이다.
인터페론(interferon, IFN)은 핵이 존재하는 대부분의 세포로부터 유래하는 당단백질로, 바이러스의 복제를 억제함으로써 항 바이러스 성질을 가지며, 세포 증식을 억제하고 면역 반응을 조절한다. 인터페론은 세포 표면 세포막의 특정 수용체와 결합하여 일련의 세포내 반응을 개시하는데, 이러한 세포내 반응에는 특정 효소들의 활성화 유도, 세포 증식의 억제 등이 포함되고, 면역조절 반응으로서 대식세포(macrophage)의 식세포(phagocytosis) 활성의 증가, 표적 세포에 대한 임파구들의 세포 독성 증가, 그리고 바이러스에 감염된 세포들의 바이러스 증식 억제 등이 포함된다.
인간의 인터페론은 현재 5 종류가 알려져 있다. 인터페론-알파는 말초 혈액 백혈구나 림프 모세포에 의해 분비하고, 인터페론-베타는 섬유모세포(섬유아세포, fibroblast)가, 그리고 인터페론-감마는 B 세포가 분비하고 있으며, 이외에도 오메가 및 타우 인터페론이 존재한다.
인터페론-베타는 바이러스 감염이나 다른 생물제제들에 반응해서 생체내 대부분의 세포들에서 생산되는 사이토카인(cytokine)으로, 특히 다발성 경화증 (multiple sclerosis, MS)에 상당한 치료 효과를 보이므로 그 유용성이 높이 평가되고 있다. 다발성 경화증은 뇌와 척수에서 신경세포섬유들을 절연하고 신경전도를 촉진하는 수초(myelin)들의 감소를 수반하는 중추신경계 질환이다. 즉, 신경세포섬유들이 신경전달을 관장하는데, 다발성 경화증 환자들은 신경전달이 감소하거나 완전히 차단되어 기능이 감소하거나 상실되는 것이다.
현재 미국에는 다발성 경화증 치료를 위한 2 가지 종류의 인터페론-베타가 존재하는데, 첫 번째로 인터페론-베타-1a(Interferon-β-1a, IFN-β-1a)는 인간 인터페론-베타 유전자를 포함하는 포유류 세포주로부터 생산되는 166 개 아미노산 잔기로 구성된 당화(glycosylated) 단백질이다. 두 번째 인터페론-베타-1b (Interferon-β-1b, IFN-β-1b)는 인터페론-베타의 당이 결여된(non-glycosylated) 재조합 단백질로, 대장균(E. coli)으로부터 생산되는 165 개 아미노산 잔기로 구성되는데, 아미노산 1 번 메티오닌(methionine) 잔기가 결실되어 있고, 17 번 시스테인(cysteine) 잔기가 세린(Serine)으로 치환되어 있다.
폴리에틸렌 글리콜(polyethylene glycol, 이하 PEG)은 HO-(-CH2CH2O-)n-H의 구조를 갖는 고분자 화합물로, 친수성이 강하기 때문에 의약 단백질에 결합시켜 그 용해도를 증가시킬 수 있다. 또한 적절하게 결합시키면 효소활성, 수용체 결합과 같은 주요 생물학적 기능들을 유지하면서 결합된 단백질의 분자량을 증가시키는 것에 의해, 신장여과를 감소시키고 외부항원을 인식하는 세포와 항체로부터 단백질을 보호하며 분해효소에 의한 단백질의 분해도 감소시킬 수 있다. 이와 같이 단백질에 결합 가능한 PEG의 분자량 범위는 대략 1,000∼100,000으로, PEG 분자량이 1,000 이상일 경우에는 독성이 상당히 낮은 편으로 알려져 있다. PEG의 분자량 범위가 1,000∼6,000인 것은 전신에 분포하고 신장을 통해 대사되며, 특히 분자량 40,000의 분지 PEG는 혈액과 간을 포함한 기관들에 분포되고 대사는 간에서 이루어지는 것으로 알려져 있다.
비경구(parenteral) 경로를 통해 투여되는 의학적, 약리학적으로 유용한 단백질들은 항원성을 가지며, 대체로 수용성이 낮고 체내 잔존기간이 짧다는 단점이 있어 이를 극복하고자 하는 연구가 수행되고 있다. 데이비스(Frank F. Davis) 등의 미국특허 제4,179,337호에서는, PEG와 결합된 단백질 및 효소 등을 치료제로 사용할 경우, PEG가 갖는 장점인 항원성의 감소, 수용성의 증가, 체내 잔류 기간 증가 등의 효과를 얻을 수 있음을 개시하고 있다. 이 특허 이후, 생리활성 단백질을 PEG와 결합시켜 그 단점을 극복하고자 하는 시도가 이루어지고 있는데, 예를 들어, 베로니즈 등(Veronese et al., Applied Biochem. and Biotech. 11:141-152, 1985)은 리보뉴클레아제(ribonuclease)와 수퍼옥사이드 디스뮤타제(superoxide dismutase)를 PEG와 결합시키고 있다. 또한, 카터 등(Katre et al.)은 미국특허 제4,766,106호와 제4,917,888호에서 단백질들에 PEG를 포함한 폴리머(polymer, 중합체)를 결합시켜 단백질의 수용성을 증가시킨 내용을 개시하고 있으며, 나이테키 등(Nitecki et al.)은 미국특허 제4,902,502호에서 PEG나 다른 중합체들을 재조합 단백질에 결합시켜 항원성을 줄이고 체내 잔존 기간을 증가시키고 있다.
PEG와 단백질의 결합에는 이와 같은 장점 외에 결점도 존재한다. 즉, PEG는 대개 결합할 단백질의 하나 또는 그 이상의 자유 라이신(lysine, Lys) 잔기에 공유결합을 통해 결합하게 되는데, 이때 단백질의 표면 부위중 단백질의 활성도와 직접적인 관계가 있는 부위가 PEG와 결합할 경우, 그 부위는 더 이상 생물학적 기능을 수행할 수 없게 되어 단백질의 활성도가 감소하게 된다. 또한, PEG와 라이신 잔기의 결합은 대개 무작위적으로 일어나게 되므로 결합 위치에 따라 많은 종류의 PEG-단백질 배합체(conjugate)들이 혼합물로 존재하게 되고, 따라서 원하는 배합체를 순수 분리하는 과정이 복잡하고 어려워지게 된다. 예를 들어, 인터페론-알파 2b의 경우에는 단백질 표면에 8 개의 자유 라이신 잔기가 존재하는데, 이 잔기들 중에서 인터페론의 생물학적 활성에 영향을 미치지 않는 아미노산 부위에 위치 선택적인 방법으로 PEG를 결합시켜야만 의학적으로 유용한 배합체를 얻을 수 있게 된다.
여러 저분자량 단백질 의약품과 마찬가지로 인터페론 치료요법에서도 비교적 짧은 혈중 반감기를 극복하려는 시도가 있었는데, 이중 성공적인 것의 하나가 단백질 의약품에 대한 PEG 폴리머의 결합(pegylation)에 의해 혈관잔류(vascular retention) 증가 등 변화된 약동학적 성질을 갖도록 한 것이다(Francis, et al., J. Drug Target, 3: 321-340, 1996). 이와 같은 페길레이션(pegylation)으로 얻어지는 효과들은 대상 단백질에 따라 큰 차이가 나는데, PEG의 결합 부위, 배합체 형성에 사용되는 화학반응, 그리고 PEG 폴리머의 분자량과 형태 등에 따라 더 현저한 차이가 발생할 수 있다(Delgado et al., Pharm. Sci, 3: 59-66, 1997).
바이오젠(Biogen)사는 인터페론-베타-1a에서 수용체 결합부위와 물리적인 거리가 멀고 이에 따라 생리활성의 소실 없이 PEG 폴리머를 결합시킬 수 있는 부위로서 아미노 말단(N-terminus)을 선택하였다. 즉, 분자량 20,000의 PEG-알데히드 (aldehyde)를 인터페론-베타-1a와 실온, pH 6.0의 완충용액 중에서 20 시간 동안 반응시켜, 인터페론-베타-1a의 아미노 말단에 위치 특이적으로 PEG 폴리머를 결합시켰다. 이 배합체는 72 시간 동안 비교적 장시간 체내에 잔존하였으며, PEG가 인터페론-베타-1a의 항바이러스 활성에 악영향을 미치지는 않은 것으로 보고하고 있다(Pepinsky et al., J Pharm. and Exp. Therapeutics, 297: 1059-1066, 2001).
아미노 말단의 알파-아미노(α-amino)기에 선택적으로 결합할 수 있는 PEG 폴리머로는 메톡시PEG-알데히드, 메톡시PEG-아세트알데히드(acetaldehyde), 메톡시 PEG-프로피온알데히드(propionaldehyde) 등이 사용되어 왔는데, 이는 알데히드 그룹이 아미노 말단에 선택적으로 반응하기 때문이다. 또한, 메톡시PEG-아세트알데히드는 알돌 축합(aldol condensation)에 의한 이합체 형성(dimerization)에 민감하기 때문에, 아세트알데히드 보다 프로피온알데히드 형태가 합성과 사용이 수월하다고 알려져 있다. 결합 반응은 쉬프(Schiff) 염기를 통해 알파-아미노기와 알데히드 그룹 간에 안정한 2차 아민 결합이 형성되어 PEG와 단백질의 배합체를 형성하게 되는 것이다. 메톡시PEG-프로피온알데히드를 사용한 예로서는, 재조합 인간 G-CSF(granulocyte-colony stimulating factor)의 아미노 말단(Kinstler et al., Pharm Res., 13(7): 996-1002, 1996)과, 재조합 인간 TNF(tumor necrosis factor) 수용체 타입 1의 아미노 말단(Edwards et al., Ann. Rheum. Dis., 58(S1): I73-I81, 1999)에 PEG 폴리머를 결합시킨 것을 들 수 있다.
이와 같은 종래의 PEG-단백질 간의 결합을 고려해볼 때, 다발성 경화증에 상당한 치료 효과를 보이는 인터페론-베타에 있어서 수용체 결합에 관여하지 않는 부위의 특정 아미노산 특정 잔기에 선택적인 반응성을 나타내는 신규한 형태의 PEG 유도체를 제공하고, 이러한 신규의 PEG 유도체와 인터페론-베타와의 배합체를 제공할 수 있다면 매우 유용하게 사용될 수 있을 것이다.
본 발명에서는 야생형(wild-type) 또는 재조합 인터페론-베타의 아미노 말단 (N-terminus)에 신규한 형태의 메톡시 또는 펜던트형 PEG-프로피온알데히드 유도체를 선택적으로 결합시킴으로써, 인터페론-베타의 항원유발성(immunogenicity)을 감소시키고 생리활성 저하를 최대한 감소시키면서 체내 잔존 시간을 증가시켜, 야생형이나 재조합 인터페론-베타 단백질의 치료효과에 필요한 투여량(dose)이나 투여횟수를 줄일 수 있도록 향상된 약동학 프로필(pharmacokinetic profile)과 약리적 성질을 갖도록 변형된 인터페론-베타와 PEG의 배합체를 제공하는 것을 그 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명에서는, 인터페론-베타(Interferon-β; IFN-β)의 아미노 말단(amino-terminus, N-terminus)의 알파-아미노기(α-amino group)에 메톡시 또는 펜던트형 폴리에틸렌 글리콜-프로피온알데히드 (methoxypolyethylene glycol-propionaldehyde) 유도체가 결합된 배합체(conjugate)를 제공한다.
여기에서 인터페론-베타는 야생형 또는 재조합 인터페론-베타일 수 있으며, 또한 인터페론-베타-1a 또는 인터페론-베타-1b인 것이 바람직하다.
또한, 상기 메톡시 또는 펜던트형 폴리에틸렌글리콜(PEG)-프로피온알데히드 유도체는 인터페론-베타의 아미노 말단의 알파-아미노기(α-amino group)에 선택적인 반응성을 나타내는 신규한 형태의 메톡시PEG-프로피온알데히드 유도체로서, 직선(linear)형의 메톡시PEG-아미드(amide)-프로피온알데히드 유도체 및 메톡시PEG-우레탄(urethane) -프로피온알데히드 유도체, 그리고 펜던트(pendant)형의 PEG-아미드-프로피온알데히드 유도체 및 PEG-우레탄-프로피온알데히드 유도체의 적어도 하나일 수 있다.
여기에서, 메톡시 또는 펜던트형 폴리에틸렌글리콜-프로피온알데히드 유도체는 분자량 범위가 1,000∼1,000,000인 것이 바람직하다. 구체적으로, 직선형의 메톡시PEG-프로피온알데히드 유도체는 분자량 범위가 1,000∼100,000인 것이 바람직하고, 1,000∼40,000인 것이 더욱 바람직하다. 또한, 펜던트형의 PEG-프로피온알데히드 유도체는 PEG 뼈대의 분자량 범위가 5,000∼1,000,000인 것이 바람직하고, 5,000∼100,000인 것이 더욱 바람직하다. 그리고, 펜던트 그룹인 아미드-프로피온알데히드나 우레탄-프로피온알데히드의 개수는 1∼20인 것이 바람직하다.
본 발명에서는, 인터페론-베타의 아미노 말단의 알파-아미노기에 선택적인 반응성을 나타내는 신규한 형태의 메톡시 또는 펜던트형 PEG-프로피온알데히드 유도체를 결합시킴으로써, 이에 의해 형성되는 배합체의 종류를 한정시키는 동시에 단백질 활성도 감소를 최대한 억제하고 있다. 즉, 단백질의 2, 3 차 구조상에서 라이신(lysine) 잔기의 곁사슬(side chain)에 존재하는 입실론-아미노기에 반응성을 갖는 PEG 유도체들은 단백질 표면에 노출된 다수의 입실론-아미노기와 반응함으로써 단백질의 활성부위를 저해하여 활성도를 감소시키지만, 본 발명에 따른 메톡시 또는 펜던트형 PEG-프로피온알데히드 유도체는 아미노 말단의 알파-아미노기에 선택적인 반응성을 나타내기 때문에 목적하는 단백질에 하나의 PEG 유도체만을 결합시킬 수 있다. 또한, 이 아미노 말단이 수용체와의 결합에 관여하지 않는 부위라면, PEG 유도체와의 배합체 형성에 의한 야생형의 활성도 감소를 최대한 억제할 수 있다.
본 발명에 따르면, 인터페론-베타와의 배합체 형성에 사용되는 메톡시 또는 펜던트형 PEG-프로피온알데히드 유도체의 양(amount)은 적어도 인터페론-베타와 동일한 당량 (equimolar)이어야 하며, 아미노 말단의 알파-아미노 그룹과의 완전한 반응을 유도하기 위하여 메톡시 또는 펜던트형 PEG-프로피온알데히드 유도체를 과량(인터페론 단백질 1 몰당 PEG 유도체의 몰비가 1∼10 배의 범위)으로 가해주는 것이 바람직하다. 또한, 인터페론-베타와 메톡시 또는 펜던트형 PEG-프로피온알데히드의 배합반응은 pH 6.0∼7.0 범위에서 실온 조건 하에 약 5∼20 시간이 소요된다.
이와 같이, 인터페론-베타의 아미노 말단의 알파-아미노기에 메톡시 또는 펜던트형 PEG-프로피온알데히드 유도체가 결합되어 얻어지는 인터페론-베타와 PEG 유도체의 배합체는, 인터페론-베타의 항원유발성(immunogenicity)이 감소되고 생리활성 저하가 억제되면서 체내 잔존 시간이 증가되어 향상된 약동학 프로필과 약리적 성질을 갖게 된다.
이하, 실시예를 통해 본 발명을 더욱 상세히 설명한다. 단, 이들 실시예는 본 발명의 일부 실험방법과 조성을 나타낸 예시일 뿐, 본 발명의 범위가 이들만으로 제한되는 것은 아니다.
다음 실시예에서 사용된 PEG 유도체들은 선바이오(주)에 의해 합성된 제품을 이용한 것이다.
[실시예 1] 메톡시PEG-아미드(amide)-프로피온알데히드의 제조
메톡시PEG(mPEG-OH)(MW. 20,000)과 포타슘 t-부톡사이드(potassium t-butoxide)를 t-부틸알콜(t-buthyl alcohol)에 넣고 60 ℃ 조건 하에서 교반하였다. 이 혼합물에 에틸브로모아세테이트(ethyl bromoacetate)를 천천히 첨가하고 80∼85 ℃ 조건 하에 15 시간 동안 교반하였다. 반응 혼합물을 여과한 후 여액을 감압증류하여 유기용매를 제거하고 증류수를 가하여 녹였다. 디에틸에테르(diethyl ether)로 1 회 세척하고 디클로로메탄(dichloromethane)으로 2 회 추출하였다. 추출된 유기층을 황산마그네슘(magnesium sulfate)으로 건조한 후 감압증류하여 유기용매를 제거하였다. 농축된 반응 혼합물에 디에틸에테르를 첨가하여 침전을 유도하고, 침전된 화합물은 감압 여과후 진공 감압 하에 건조하여 백색 분말 형태의 mPEG-에틸아세테이트 화합물을 얻었다. 이상의 반응 과정을 다음 반응식 1에 나타내었다.
여기에서, n=22∼2273으로, 22∼909가 바람직하다. 이는 반응식 1∼5까지 적용된다.
상기 mPEG-에틸아세테이트를 1 N 수산화나트륨 수용액에 녹여 상온에서 15 시간 동안 교반하였다. 1 N 염산수용액으로 반응 수용액의 pH를 2로 산성화시키고 디클로로메탄으로 2 회 추출하였다. 추출된 유기층을 황산마그네슘으로 건조하고, 유기용매를 감압증류하여 제거하였다. 농축된 반응 혼합물에 디에틸에테르를 첨가하여 침전을 유도하고, 침전된 화합물은 감압 여과후 진공 감압 하에 건조하여 백색 분말 형태의 mPEG-아세트산(mPEG-acetic acid) 화합물을 얻었다. 이상의 반응 과정을 다음 반응식 2에 나타내었다.
상기 mPEG-아세트산을 디클로로메탄에 녹여 0∼5 ℃ 조건 하에 교반하였다. 이 혼합물에 N-하이드록시석시니미드(N-hydroxysuccinimide)를 첨가한 다음, 디사이클로헥실카르보디이미드(dicyclohexylcarbodiimide)를 디클로로메탄에 녹여 0∼5 ℃ 조건 하에 천천히 첨가하였다. 반응 혼합물을 상온에서 약 15 시간 동안 교반하였다. 반응 혼합물을 감압 여과하여 부산물인 디사이클로헥실우레아 (dicyclohexylurea)를 제거하고 감압 증류하여 유기용매를 제거하였다. 농축된 반응 혼합물은 에틸 아세테이트로 재결정하였다. 재결정 화합물은 감압 여과후 디에틸에테르로 2 회 세척하고, 진공 감압 하에 12 시간 동안 건조하여 백색 분말 형태의 mPEG-석시니미딜 아세테이트(mPEG-succinimidyl acetate) 화합물을 얻었다. 이상의 반응 과정을 다음 반응식 3에 나타내었다.
상기 mPEG-석시니미딜 아세테이트를 디클로로메탄에 녹여 상온에서 교반하였다. 이 혼합물에 1-아미노-3,3-디에톡시프로판(1-amino-3,3-diethoxypropane)을 첨가하였다. 반응 혼합물을 상온에서 2 시간 동안 교반하였다. 반응 혼합물에 디에틸에테르를 첨가하여 침전을 유도하고, 침전된 혼합물은 감압 여과한 후 에틸아세테이트로 재결정하였다. 재결정 화합물은 감압 여과하고 디에틸에테르로 2 회 세척후 진공 감압 하에 12 시간 동안 건조하여 백색 분말 형태의 mPEG-프로피온알데히드디에틸아세탈(mPEG-propionaldehydediethylacetal) 화합물을 얻었다. 이상의 반응 과정을 다음 반응식 4에 나타내었다.
상기 mPEG-프로피온알데히드디에틸아세탈을 인산(phosphoric acid, pH 1) 수용액에 녹여 40∼50 ℃ 조건 하에 2 시간 동안 교반하였다. 반응 혼합물을 상온으로 식힌 다음, 5 % 중탄산나트륨(sodium bicarbonate) 수용액으로 pH를 6으로 조정하고 브라인(brine)을 넣어준 후 디클로로메탄으로 2 회 추출하였다. 추출된 유기층은 황산마그네슘으로 건조하고 유기용매를 감압 증류하여 제거하였다. 농축된 반응 혼합물에 디에틸에테르를 첨가하여 침전을 유도하고, 침전된 화합물을 감압 여과후 진공 감압하에 건조하여 백색 분말 형태의 메톡시PEG-아미드-프로피온알데히드 화합물을 얻었다. 이상의 반응 과정을 다음 반응식 5에 나타내었다.
[실시예 2] 메톡시PEG-우레탄(urethane)-프로피온알데히드의 제조
메톡시PEG(mPEG-OH)(MW. 20,000)를 디클로로메탄에 넣고 상온에서 교반하였다. 이 혼합물에, 디클로로메탄에 녹인 트라이포스겐(triphosgene)를 천천히 첨가하고 상온에서 15 시간 동안 교반하였다. 반응 혼합물을 감압 증류하여 유기용매와 남아있는 포스겐을 제거하였다. 감압 증류한 혼합물을 디클로로메탄에 녹여서 교반하였다. 이 반응 혼합물에 N-하이드록시석시니미드를 첨가한 다음, 트리에틸아민을 넣고 상온 조건에서 3 시간 동안 교반하였다. 반응 혼합물을 여과한 후 여액을 감압 증류하여 유기용매를 제거하고, 따뜻한(50 ℃) 에틸아세테이트에 녹였다. 반응혼합물을 여과한 여액을 저온에서 침전을 유도하고, 침전된 화합물은 감압 여과후 진공 감압하에 건조하여 백색 분말 형태의 mPEG-석시니미딜카보네이트(mPEG-succinimidylcarbonate) 화합물을 얻었다. 이상의 반응 과정을 다음 반응식 6에 나타내었다.
다음 반응식에서, n=22∼2273으로, 22∼909가 바람직하다. 이는 반응식 6∼8까지 적용된다.
상기 mPEG-석시니미딜카보네이트를 디클로로메탄에 녹여 상온에서 교반하였다. 이 혼합물에 1-아미노-3,3-디에톡시프로판(1-amino-3,3-diethoxypropane)을 첨가하였다. 반응 혼합물을 상온에서 2 시간 동안 교반하였다. 반응 혼합물에 디에틸에테르를 첨가하여 침전을 유도하고, 침전된 혼합물은 감압 여과한 후 에틸아세테이트로 재결정하였다. 재결정 화합물은 감압 여과하고 디에틸에테르로 2 회 세척후 진공 감압 하에 12 시간 동안 건조하여 백색 분말 형태의 mPEG-프로피온알데히드디에틸아세탈 화합물을 얻었다. 이상의 반응 과정을 다음 반응식 7에 나타내었다.
상기 mPEG-프로피온알데히드디에틸아세탈을 인산(pH 1) 수용액에 녹여 40∼50 ℃ 조건 하에 2 시간 동안 교반하였다. 반응 혼합물을 상온으로 식힌 다음, 5 % 중탄산나트륨 수용액으로 pH를 6으로 조정하고 브라인(brine)을 넣어준 후 디클로로메탄으로 2 회 추출하였다. 추출된 유기층은 황산마그네슘으로 건조하고 유기용매를 감압 증류하여 제거하였다. 농축된 반응 혼합물에 디에틸에테르를 첨가하여 침전을 유도하고, 침전된 화합물을 감압 여과후 진공 감압 하에 건조하여 백색 분말 형태의 메톡시PEG-우레탄-프로피온알데히드 화합물을 얻었다. 이상의 반응 과정을 다음 반응식 8에 나타내었다.
[실시예 3] 펜던트 PEG-아미드-프로피온알데히드의 제조
메톡시PEG(MW 20,000) 또는 PEG(MW 20,000)이 들어있는 반응 용기에 노난(nonane)을 넣고 140∼145 ℃ 온도 조건으로 상승시키면서 교반하였다. 이 반응 혼합물에 아크릴산(acrylic acid)과 반응 개시제 t-부틸 퍼옥시벤조에이트(t-butyl peroxybenzoate)를 각각 1.5 시간 동안 천천히 첨가하였다. 반응물 첨가후 약 1 시간 동안 140∼145 ℃ 조건 하에서 교반하였다. 반응 혼합물을 감압 증류하여 노난을 제거하고 메탄올을 가하여 균일한 액상이 되도록 가열한 후 교반하였다. 이 혼합물을 여과지로 여과한 후 메탄올과 증류수의 혼합용액(9:1)을 가하고 팔 필트론 울트라필트레이션 장치(Pall Filtron Ultrafiltration system)로 정제하였다. 정제된 혼합물을 감압 증류하여 용매를 제거한 후 아세톤과 이소프로필알콜의 혼합용액(1:1)을 가하고 가열하여 균일한 용액을 얻었다. 이 혼합 용액을 0 ℃ 조건에서 12 시간 동안 방치하여 침전을 유도하였다. 침전된 화합물을 아세톤과 이소프로필알콜의 혼합용액(1:1)으로 3 회 및 디에틸에테르로 1 회 세척하면서 감압 여과하고, 진공 감압하에 건조하여 백색 분말 형태의 펜던트-PEG-프로피온산(pendant-PEG-propionic acid) 화합물을 얻었다. 이상의 반응 과정을 다음 반응식 9에 나타내었다.
다음 반응식에서 n=113∼22,728로, 113∼2273이 바람직하고. m=1∼20이다. 이는 반응식 9∼12까지 적용된다.
상기 펜던트-PEG-프로피온산을 디클로로메탄에 녹여 0∼5 ℃ 조건 하에 교반하였다. 이 혼합물에 N-하이드록시석시니미드를 첨가한 다음, 디사이클로헥실카르보디이미드(dicyclohexylcarbodiimide, DCC)와 4-(디메틸아미노)피리딘[4-(dimethylamino)pyridine, DMAP]을 디클로로메탄에 녹여 0∼5 ℃ 조건 하에 천천히 첨가하였다. 반응 혼합물을 상온에서 약 15 시간 동안 교반하였다. 반응 혼합물을 감압 여과하여 부산물인 디사이클로헥실우레아(dicyclohexylurea)를 제거하고 감압 증류하여 유기용매를 제거하였다. 농축된 반응 혼합물은 에틸아세테이트로 재결정하였다. 재결정 화합물은 감압 여과하고 디에틸에테르로 2 회 세척후 진공 감압 하에 12 시간 동안 건조하여 백색 분말 형태의 펜던트-PEG-석시니미딜 프로피오네이트(pendant PEG-succinimidyl propionate) 화합물을 얻었다. 이상의 반응 과정을 다음 반응식 10에 나타내었다.
상기 펜던트-PEG-석시니미딜 프로피오네이트를 디클로로메탄에 녹여 상온에서 교반하였다. 이 혼합물에 1-아미노-3,3-디에톡시프로판(1-amino-3,3-diethoxypropane)을 첨가하였다. 반응 혼합물을 상온에서 2 시간 동안 교반하였다. 반응 혼합물에 디에틸에테르를 첨가하여 침전을 유도하고, 침전된 혼합물은 감압 여과한 후 에틸아세테이트로 재결정하였다. 재결정 화합물은 감압 여과하고 디에틸에테르로 2 회 세척후 진공 감압 하에 12 시간 동안 건조하여 백색 분말 형태의 펜던트-PEG-프로피온알데히드디에틸아세탈 화합물을 얻었다. 이상의 반응 과정을 다음 반응식 11에 나타내었다.
상기 펜던트-PEG-프로피온알데히드디에틸아세탈을 인산(pH 1) 수용액에 녹여 40∼50 ℃ 조건 하에 2 시간 동안 교반하였다. 반응 혼합물을 상온으로 식힌 다음, 5 % 중탄산나트륨 수용액으로 pH를 6으로 조정하고 브라인(brine)을 넣어준 후 디클로로메탄으로 2 회 추출하였다. 추출된 유기층은 황산마그네슘으로 건조하고 유기용매를 감압 증류하여 제거하였다. 농축된 반응 혼합물에 디에틸에테르를 첨가하여 침전을 유도하고, 침전된 화합물을 감압 여과후 진공 감압하에 건조하여 백색 분말 형태의 펜던트-PEG-아미드-프로피온알데히드(pendant PEG-amide propionaldehyde) 화합물을 얻었다. 이상의 반응 과정을 다음 반응식 12에 나타내었다.
[실시예 4]
인터페론-베타와 직선형 메톡시PEG-아미드-프로피온알데히드의 배합(conjugation)
위 실시예 1에서 제조한 분자량 1,000∼40,000의 직선형 메톡시PEG-아미드-프로피온알데히드와 인터페론-베타 단백질을 배합하는데, 인터페론:PEG의 몰비율 (molar ratio)이 1:1∼1:5가 되도록 준비하고 소디움 시아노보로하이드라이드를 포함하는 NaH2PO4, pH 6.0 완충용액에서 반응시켜 PEG-인터페론-베타 배합체를 형성하였다. 반응은 실온에서 5∼20 시간 동안 수행하며, 배합체의 완성은 SDS-폴리아크릴아미드 전기영동(SDS-polyacrylamide electrophoresis)으로 확인하였다.
[실시예 5]
인터페론-베타와 직선형 메톡시PEG-우레탄-프로피온알데히드의 배합
위 실시예 2에서 제조한 분자량 1,000∼40,000의 직선형 메톡시PEG-우레탄-프로피온알데히드와 인터페론-베타 단백질을 배합하는데, 인터페론:PEG의 몰비율이 1:1∼1:5가 되도록 준비하고 소디움 시아노보로하이드라이드를 포함하는 NaH2PO4, pH 6.0 완충용액에서 반응시켜 PEG-인터페론-베타 배합체를 형성하였다. 반응은 실온에서 5∼20 시간 동안 수행하며, 배합체의 완성은 SDS-폴리아크릴아미드 전기영동으로 확인하였다.
[실시예 6]
인터페론-베타와 펜던트형 PEG-아미드-프로피온알데히드의 배합
위 실시예 3에서 제조한 분자량 5,000∼1,000,000의 PEG 뼈대에 1∼20 개의 아미드-프로피온알데히드 그룹을 갖는 펜던트 PEG-아미드-프로피온알데히드와 인터페론-베타 단백질을 배합하는데, 인터페론:PEG의 몰비율이 1:1∼1:5가 되도록 준비하고 소디움 시아노보로하이드라이드를 포함하는 NaH2PO4, pH 6.0 완충용액에서 반응시켜 PEG-인터페론-베타 배합체를 형성하였다. 반응은 실온에서 5∼20 시간 동안 수행하며, 배합체의 완성은 SDS-폴리아크릴아미드 전기영동으로 확인하였다.
[실시예 7]
인터페론-베타와 펜던트형 PEG-우레탄-프로피온알데히드의 배합
분자량 5,000∼1,000,000의 PEG 뼈대에 1∼20 개의 우레탄-프로피온알데히드 그룹을 갖는 펜던트 PEG-우레탄-프로피온알데히드와 인터페론-베타 단백질을 배합하는데, 인터페론:PEG의 몰비율이 1:1∼1:5가 되도록 준비하고 소디움 시아노보로하이드라이드를 포함하는 NaH2PO4, pH 6.0 완충용액에서 반응시켜 PEG-인터페론-베타 배합체를 형성하였다. 반응은 실온에서 5∼20 시간 동안 수행하며, 배합체의 완성은 SDS-폴리아크릴아미드 전기영동으로 확인하였다.
본 발명에 따라 제조된 인터페론-베타의 아미노 말단의 알파-아미노기에 메톡시PEG-프로피온알데히드 유도체가 결합된 배합체는, 인터페론-베타의 항원유발성을 감소시키고 생리활성 저하를 최대한 감소시키면서 체내 잔존 시간을 증가시켜 향상된 약동학 프로필(pharmacokinetic profile)과 약리적 성질을 갖게 되므로, 다발성 경화증의 치료제 및 바이러스성 암 치료제 등으로 유용하게 사용될 수 있다.

Claims (7)

  1. 삭제
  2. 삭제
  3. 인터페론-베타 (Interferon-β; IFN-β)의 아미노 말단(amino-terminus, N-terminus)의 알파-아미노기(α-amino group)에 직선(linear)형 메톡시폴리에틸렌글리콜-프로피온알데히드(methoxypolyethylene glycol-propionaldehyde) 유도체가 결합된 배합체(conjugate)에 있어서, 상기 직선형 메톡시폴리에틸렌글리콜-프로피온알데히드 유도체는 메톡시폴리에틸렌글리콜-아미드(amide)-프로피온알데히드 유도체 또는 메톡시폴리에틸렌글리콜-우레탄(urethane)-프로피온알데히드 유도체로 이루어지는 것을 특징으로 하는 배합체.
  4. 삭제
  5. 제 3 항에 있어서, 상기 직선형 메톡시폴리에틸렌글리콜-프로피온알데히드 유도체는 분자량 범위가 1,000∼40,000인 것을 특징으로 하는 배합체.
  6. 인터페론-베타 (Interferon-β; IFN-β)의 아미노 말단(amino-terminus, N-terminus)의 알파-아미노기(α-amino group)에 펜던트(pendant)형 폴리에틸렌글리콜-프로피온알데히드(methoxypolyethylene glycol-propionaldehyde) 유도체가 결합된 배합체(conjugate)에 있어서, 상기 펜던트형 폴리에틸렌글리콜-프로피온알데히드 유도체는 펜던트 폴리에틸렌글리콜-아미드-프로피온알데히드 유도체 또는 펜던트 폴리에틸렌글리콜-우레탄-프로피온알데히드 유도체로 이루어지는 것을 특징으로 하는 배합체.
  7. 제 6 항에 있어서, 상기 펜던트형 폴리에틸렌글리콜-프로피온알데히드 유도체는 폴리에틸렌글리콜 뼈대의 분자량 범위가 5,000∼1,000,000으로, 펜던트 그룹인 아미드-프로피온알데히드 또는 우레탄-프로피온알데히드의 개수가 1∼20인 것을 특징으로 하는 배합체.
KR10-2001-0076130A 2001-12-04 2001-12-04 인터페론-베타와 폴리에틸렌글리콜 유도체의 배합체 KR100480430B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0076130A KR100480430B1 (ko) 2001-12-04 2001-12-04 인터페론-베타와 폴리에틸렌글리콜 유도체의 배합체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0076130A KR100480430B1 (ko) 2001-12-04 2001-12-04 인터페론-베타와 폴리에틸렌글리콜 유도체의 배합체

Publications (2)

Publication Number Publication Date
KR20030045414A KR20030045414A (ko) 2003-06-11
KR100480430B1 true KR100480430B1 (ko) 2005-04-06

Family

ID=29572847

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0076130A KR100480430B1 (ko) 2001-12-04 2001-12-04 인터페론-베타와 폴리에틸렌글리콜 유도체의 배합체

Country Status (1)

Country Link
KR (1) KR100480430B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488351B1 (ko) * 2001-12-11 2005-05-11 선바이오(주) 신규한 폴리에틸렌글리콜-프로피온알데히드 유도체
CN101163716B (zh) * 2005-04-30 2011-09-07 成都生物制品研究所 白细胞介素-6聚乙二醇结合物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252714A (en) * 1990-11-28 1993-10-12 The University Of Alabama In Huntsville Preparation and use of polyethylene glycol propionaldehyde
US5738846A (en) * 1994-11-10 1998-04-14 Enzon, Inc. Interferon polymer conjugates and process for preparing the same
US6042822A (en) * 1993-11-10 2000-03-28 Enzon, Inc. Interferon polymer conjugates
KR20030037598A (ko) * 2001-11-06 2003-05-14 선바이오(주) 변형된 인터페론-베타, 및 이의 화학적으로 변형된 배합체

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252714A (en) * 1990-11-28 1993-10-12 The University Of Alabama In Huntsville Preparation and use of polyethylene glycol propionaldehyde
US6042822A (en) * 1993-11-10 2000-03-28 Enzon, Inc. Interferon polymer conjugates
US5738846A (en) * 1994-11-10 1998-04-14 Enzon, Inc. Interferon polymer conjugates and process for preparing the same
KR20030037598A (ko) * 2001-11-06 2003-05-14 선바이오(주) 변형된 인터페론-베타, 및 이의 화학적으로 변형된 배합체

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
297 *
Biochemistry. 2000 Sep 5;39(35):10634-40 *

Also Published As

Publication number Publication date
KR20030045414A (ko) 2003-06-11

Similar Documents

Publication Publication Date Title
US9364553B2 (en) Synergistic biomolecule-polymer conjugates
US7201897B2 (en) Interferon conjugates
EP1039921B1 (en) Substantially pure histidine-linked protein polymer conjugates
EP1039922B1 (en) Improved interferon polymer conjugates
EP0730470B1 (en) Improved interferon polymer conjugates
PL196533B1 (pl) Sposób stopniowego przyłączania ugrupowań poli (glikolu etylenowego) (PEG) szeregowo do polipeptydu
KR100480430B1 (ko) 인터페론-베타와 폴리에틸렌글리콜 유도체의 배합체
US20090117077A1 (en) Polyethylene glycol-interferon alpha conjugate
KR100480429B1 (ko) 인터페론-알파와 폴리에틸렌글리콜 유도체의 배합체
KR100480432B1 (ko) G-csf와 폴리에틸렌글리콜 유도체의 배합체
KR100480423B1 (ko) 에리트로포이에틴과 폴리에틸렌글리콜 유도체의 배합체
KR100888371B1 (ko) 가지 달린 고분자 유도체와 인터페론 결합체를 포함하는 항바이러스제
KR100761652B1 (ko) 단백질 또는 펩타이드에 결합되는 다가지의 고분자유도체와 접합체

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130311

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140324

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160323

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170323

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180323

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190318

Year of fee payment: 15