KR100467712B1 - The Manufacturing of Bake Hardening Steels with High Formability - Google Patents

The Manufacturing of Bake Hardening Steels with High Formability Download PDF

Info

Publication number
KR100467712B1
KR100467712B1 KR10-2000-0045984A KR20000045984A KR100467712B1 KR 100467712 B1 KR100467712 B1 KR 100467712B1 KR 20000045984 A KR20000045984 A KR 20000045984A KR 100467712 B1 KR100467712 B1 KR 100467712B1
Authority
KR
South Korea
Prior art keywords
steel
less
steel sheet
annealing
cold
Prior art date
Application number
KR10-2000-0045984A
Other languages
Korean (ko)
Other versions
KR20020012790A (en
Inventor
한상호
강대영
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2000-0045984A priority Critical patent/KR100467712B1/en
Publication of KR20020012790A publication Critical patent/KR20020012790A/en
Application granted granted Critical
Publication of KR100467712B1 publication Critical patent/KR100467712B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/663Bell-type furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 냉연강판을 제조하는 방법에 관한 것으로, 보다 상세하게는 프레스 성형성이 매우 우수하면서도 소부경화 특성을 동시에 갖는 고강도 냉연강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a cold rolled steel sheet, and more particularly, to a method for producing a high strength cold rolled steel sheet having excellent press formability and simultaneously having a hardening hardening characteristic.

본 발명은 중량 %로 C함량0.004%이하, Mn:0.6~1.0%, P:0.04~0.08%, S:0.006%이하, N:0.003%이하, 산가용 Al:0.06%이하, Ti:0.026~0.034% 잔부: Fe 및 기타 불가피한 불순물로 조성되며, 상기 Ti는 ((48/14×N)+(48/12×C))≤ Ti ≤ ((48/14×N)+(48/12×1.5C))의관계를 충족시키는 강의 슬라브를 910℃이상에서 마무리 열간압연하고, 700℃ 이상의 온도로 고온 권취한 다음 산세후 77%이상의 냉간압하율로 냉간압연하고, 계속해서 상자 소둔로에서 650~750℃의 온도 범위로 재결정 소둔을 행하는 것을 특징으로 하는 고성형성 소부경화형 고강도 냉연강판의 제조 방법이 제공된다.The present invention is by weight% C content 0.004% or less, Mn: 0.6 ~ 1.0%, P: 0.04 ~ 0.08%, S: 0.006% or less, N: 0.003% or less, acid value Al: 0.06% or less, Ti: 0.026 ~ 0.034% balance: composed of Fe and other unavoidable impurities, wherein Ti is ((48/14 × N) + (48/12 × C)) ≦ Ti ≦ ((48/14 × N) + (48/12 × 1.5C)) steel slab finishing hot-rolled at temperatures above 910 ° C, hot-wound at temperatures above 700 ° C, cold-rolled at a cold reduction rate of 77% or more after pickling, and then 650 in a box annealing furnace. Provided is a method for producing a highly hardened bake hardened type high strength cold rolled steel sheet characterized by recrystallization annealing in a temperature range of ˜750 ° C.

Description

성형성이 매우 우수한 소부경화형 고강도 냉연강판 제조법{The Manufacturing of Bake Hardening Steels with High Formability}The Manufacturing of Bake Hardening Steels with High Formability

본 발명은 냉연강판을 제조하는 방법에 관한 것으로, 보다 상세하게는 프레스 성형성이 매우 우수하면서도 소부경화 특성을 동시에 갖는 고강도 냉연강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a cold rolled steel sheet, and more particularly, to a method for producing a high strength cold rolled steel sheet having excellent press formability and simultaneously having a hardening hardening characteristic.

최근 자동차 외관의 형상이 복잡화, 일체화되는 경향에 따라 그 자동차에 사용되는 강판의 성형성에 있어서 더욱더 우수한 특성이 요구되고 있다. 이와 같은 요구에 부응하기 위해 철강메이커에서는 제강공정과 연주공정 단계에서 강판의 가공성을 저해시키는 고용탄소, 고용질소 및 고용유황 등의 원소들이 강중으로 혼입되는 것을 최대한 억제 시키는 방법에 의해 조업을 하고 있다. 하지만 상기와 같은 고용원소들은 상기 공정에서 필연적으로 슬라브내에 미량으로 잔존되기 때문에 티타늄 혹은 니오븀등의 탄,질화물 형성 촉진원소들을 단독 혹은 복합 첨가하여 상기 미량의 고용원소들까지도 열간압연 단계에서 탄,질화물로 석출시켜 성형성을 확보하는 IF강(Interstitial Free Steel) 제조기술을 이용하고 있다.In recent years, as the shape of the automobile exterior becomes complicated and integrated, more excellent characteristics are required in formability of the steel sheet used in the automobile. To meet these demands, steel makers are working by minimizing the incorporation of elements such as solid carbon, solid solution nitrogen, and solid sulfur into steel, which impede the workability of steel sheets in steelmaking and refining processes. . However, since the above-mentioned solid elements are inevitably left in the slab in the process, carbon or nitrides such as titanium or niobium may be added alone or in combination to promote the formation of even small amounts of the solid elements in the hot rolling step. It uses IF steel (Interstitial Free Steel) manufacturing technology to secure formability by precipitating.

한편, 자동차 업계에서는 제조공정의 단순화를 통한 원가절감을 위해 종래의 여러 부품을 각각 성형한후 서로 용접하여 조립하는 방식을 탈피하여 한번에 원하는 부품으로 성형할 수 있는 일체형 성형화 기술을 도입하고 있다. 이러한 일체형 성형화 기술을 적용하는 주요 용도 부품은 사이드 패널(Side Panel)이나 후드(Hood)등 으로서 성형할 때 가공 크랙없이 성공적으로 가공하기 위해서는 종래보다도 더욱더 우수한 성형성이 요구되어지며, 또한 여기에 적용되는 강판은 폭 1700mm 이상의 광폭 강판이 사용된다.On the other hand, in the automotive industry, in order to reduce the cost through the simplification of the manufacturing process, the conventional molding parts technology that can be molded into a desired part at a time by eliminating the method of forming each of the conventional parts and then welding and assembling each other. The main application parts to which the integrated molding technology is applied are required to have better moldability than before in order to successfully process without forming cracks when molding as a side panel or a hood. As the steel sheet to be applied, a wide steel sheet having a width of 1700 mm or more is used.

그러나 종래에는 연속소둔 기술에 의해 생산되는 냉연강판의 경우 주로 1600mm 이하의 폭으로 제한되어 있어 일체형 성형화 기술을 적용하는 주요 용도 부품의 사용에는 어려움이 많았었다.However, in the past, the cold rolled steel sheet produced by the continuous annealing technology is mainly limited to a width of 1600 mm or less, and thus, it was difficult to use the main use parts to apply the integrated molding technology.

또한, 최근에는 자동차의 연비향상을 위한 경량화 및 환경문제등에 대한 적극적인 대응의 일환으로 적용되는 강판에 대한 두께의 감소가 요구된다. 그러나 자동차 외판재의 경우 강판의 두께감소는 내덴트성(강판 외부압력에 대한 저항성 지수를 나타내는 것으로 그 지수가 높을 수록 양호)의 감소를 수반함으로 자동차에 적용되는 강판의 두께를 감소시키는 것은 한계가 있다. 이와 같은 강판 두께감소로 인한 내덴트성 저하를 보상하기 위해 보다 높은 강도를 갖는 고강도강이 요구되지만 고간도강 적용시 가공성이 저하되어 상기와 같은 심가공이 요구되는 부품에 적용하는 것은 거의 불가능한 실정이다.In addition, in recent years, the reduction of the thickness of the steel sheet applied as part of an active response to light weight and environmental problems for improving the fuel economy of the automobile is required. However, in the case of automotive exterior materials, the thickness reduction of steel sheet is accompanied by a decrease in dent resistance (which indicates the index of resistance to external pressure of steel sheet. have. In order to compensate for the decrease in dent resistance due to the reduction of the thickness of the steel sheet, high strength steel having a higher strength is required, but it is almost impossible to apply it to a part requiring deep processing as the workability is deteriorated when the high strength steel is applied. .

따라서 자동차 외판재용 소재의 경우 소부경화 특성(이하 BH성이라 함)이 우수한 강판이 요구되며, 소부경화형 강판이란 성형전에는 항복강도가 낮아 가공 및 형상동결성이 우수하고, 성형후에는 높은 가공경화능으로 인해 항복강도가 증가하여 우수한 내덴트성이 확보되는 특성을 갖는 강판이다.Therefore, in the case of automotive exterior materials, steel sheets with excellent quench hardening properties (hereinafter referred to as BH properties) are required, and quench hardened steel sheets have low yield strength before molding, and are excellent in processing and shape freezing, and high processing hardening ability after molding. Due to the increase in yield strength is a steel sheet having a characteristic that ensures excellent dent resistance.

종래 소부경화형 강판으로써 대표적인 것으로 철과강(68(1982) 제9호 p.1276)에 기 공지된 바에 의하면 저탄소-망간-크롬계를 이용한 인장강도 40Kgf/mm2급의 복합조직형 소부경화형 강판이 개발되어 항복비가 46%정도로 매우 낮고 가공경화지수값(n)이 0.28정도로 매우 높을 뿐만 아니라, 소부경화능의 평가 지수인 BH(Bake Hardening)값 또한 5Kgf/mm2 정도로 매우 우수한 것으로 나타났으나 가공성 평가지수인 소성이방성(이하 r값이라고 칭한다)계수값이 1.2수준으로 매우 낮아 고성형성을 요구하는 부품에는 사용하지 못한다는 큰 결점을 안고 있다.As a conventional hardening hardened steel sheet, it is known from iron and steel (68 (1982) No. 9 p.1276) that the composite structured hardening hardened steel sheet having a tensile strength of 40 Kgf / mm2 grade using a low carbon-manganese-chromium system The yield ratio was very low as 46% and the work hardening index value (n) was very high as about 0.28, and the BH (Bake Hardening), which is an evaluation index of the hardening hardening ability, was also very good at about 5Kgf / mm2. The plastic anisotropy (hereinafter referred to as r-value) coefficient value, which is an index, is very low at 1.2 level, and it has a big drawback that it cannot be used for parts requiring high formability.

상기와 같은 저탄소형 복합조직강의 성형성 문제를 해결하기 위하여 최근 탄소함량이 중량 %로 0.005%이하인 극저탄소강을 이용하여 탄질화물 형성원소인 Ti 혹은 Nb를 단독 혹은 복합 첨가하여 제조 함으로써 r값이 1.7이상의 높은 성형성을 갖는 강판 개발 기술이 대두되고 있지만 이 강판도 목적으로 하는 강도 및 성형성 을 동시에 확보해야 하는 차원에서 문제가 있다. 이 기술로써 공지된 대표적인 것으로 CAMP ISIJ Vol.5(1992) P.2051, CAMP ISIJ,1991,P1934등이 있으며, 이는 중량 %로 C:0.003%이하의 극저탄소강에 Mn, P, Si, Ti, Nb등을 적절히 첨가하여 제조하고 있으나 900℃ 이상의 고온소둔 작업으로 인한 강판 표면에 스케일(scale)이 형성되고, 성형성 확보등의 문제점을 갖고 있기 때문에 실조업 적용이 어려운 실정이다.In order to solve the formability problem of the low carbon type composite steel as described above, r value is obtained by using Ti or Nb, which is a carbon nitride forming element, alone or in combination, using ultra low carbon steel having a carbon content of less than 0.005% by weight. Steel sheet development technology with high formability of 1.7 or more is emerging, but this steel sheet also has a problem in that it is necessary to simultaneously secure the desired strength and formability. Representative examples of this technique include CAMP ISIJ Vol. 5 (1992) P.2051, CAMP ISIJ, 1991, P1934, etc., which are Mn, P, Si, Ti in ultra-low carbon steels of C: 0.003% or less by weight. , Nb is properly added, but the scale is formed on the surface of the steel sheet due to the high temperature annealing operation of 900 ° C. or higher, and it is difficult to apply the actual manufacturing industry because it has problems such as securing formability.

한편, 기 공지된 특허로써 일본 특허 출원번호:95-90386호에 "심가공성 및 화성처리성이 우수한 고강도 냉연강판 제조법" 으로써 극저탄소강에 Mn, Nb, B등을 첨가하고 그 성분의 관계식이 (3Si/28+200P/31)/(Mn/55)=15~40 및 Nb(Nb/C=5~25)을 만족하도록 설계한 합금성분계를 이용하여 α영역압연, 열연재결정소둔, 소둔온도 ~950℃하에서 침탄처리를 행함으로써, 가공성 평가지수인 r값이 2.2이상이고 적절한 BH성도 확보되지만 열연의 α영역압연 및 윤활압연을 실시함에 따라 설비상 제약이 따르고 또한 연속소둔에 의해서 제조되기 때문에 폭 1700mm이상의 광폭의 냉연강판을 제조하는데 문제점이 있다.On the other hand, Japanese Patent Application No. 95-90386 as a previously known patent, "Mn, Nb, B, etc. are added to ultra low carbon steel as a" method of manufacturing a high strength cold rolled steel sheet having excellent deep workability and chemical conversion treatment " Α zone rolling, hot rolled crystal annealing, annealing temperature using alloy system designed to satisfy (3Si / 28 + 200P / 31) / (Mn / 55) = 15 ~ 40 and Nb (Nb / C = 5 ~ 25) By carburizing at ~ 950 ℃, r value of workability evaluation index is 2.2 or more and proper BH property is secured, but it is manufactured by continuous annealing due to equipment limitations due to α area rolling and lubrication rolling of hot rolling. There is a problem in manufacturing a cold rolled steel sheet having a width of more than 1700mm.

또한, 프레스 성형성이 우수한 고강도 냉연강판 제조방법으로 일본 특허 출원번호 97-118955호에 의하면, Si(1.0이하)-Mn(2.0이하)-P-Ti-Nb-Al-Ti(4C+3.4N+1.5S~0.1)-Nb,Ti(0.05이상),B(25ppm이하)등의 첨가원소의 조합과 그 석출물인 FeTiP의 크기 및 분포를 제어하여 r값 1.8~2.3을 확보할 수 있다고 하나, 소부경화 특성인 BH값이 거의 나타나지 않아 소부경화강으로는 부적합하다.In addition, according to Japanese Patent Application No. 97-118955, which is excellent in press formability, according to Japanese Patent Application No. 97-118955, Si (1.0 or less) -Mn (2.0 or less) -P-Ti-Nb-Al-Ti (4C + 3.4N) + 1.5S ~ 0.1) -Nb, Ti (0.05 or more), B (25ppm or less) combination of additive elements and the size and distribution of its precipitate FeTiP can be controlled to secure r value of 1.8 ~ 2.3. The BH value, which is the hardening hardening characteristic, hardly appeared, which is not suitable for hardening hardening steel.

이에 본 발명은 성형성 및 소부경화 특성이 매우 우수한 광폭 고강도 냉연강판을 제조하기 위하여, Ti 단독 첨가 극저탄소 IF강에 고용강화능이 우수한 Mn, P등을 적절히 조합시킨 성분계를 이용하여 통상의 열연 및 냉연을 행한 후 상자소둔 공정을 거쳐 성형성 및 소부 경화 특성이 우수한 고강도 냉연강판의 제조방법을 제공함에 그 목적이 있다.Accordingly, the present invention provides a conventional hot rolled steel sheet by using a component system in which Ti alone ultra low carbon IF steel is added with Mn, P and the like having excellent solid solution strengthening ability in order to manufacture a wide-strength cold rolled steel sheet having excellent moldability and baking hardening characteristics. It is an object of the present invention to provide a method for producing a high strength cold rolled steel sheet having excellent moldability and baking hardening characteristics after cold rolling.

도 1은 소둔온도에 따른 항복점연신 및 소부경화 특성을 나타낸 그래프.1 is a graph showing the yield point stretching and baking hardening characteristics according to the annealing temperature.

본 발명은 상기와 같은 목적을 달성하기 위하여, 중량 %로 C:0.004%이하, Mn:0.6~1.0%, P:0.04~0.08%, S:0.006%이하, N:0.003%이하, 산가용 Al:0.06%이하, Ti:0.026~0.034% 잔부: Fe 및 기타 불가피한 불순물로 조성되며, 상기 Ti는 ((48/14×N)+(48/12×C))≤ Ti ≤ ((48/14×N)+(48/12×1.5C))의관계를 충족시키는 강의 슬라브를 910℃이상에서 마무리 열간압연하고, 700℃ 이상의 온도로 고온 권취한 다음 산세후 77%이상의 냉간압하율로 냉간압연하고, 계속해서 상자 소둔로에서 650~750℃의 온도 범위로 재결정 소둔을 행하는 것을 특징으로 하는 고성형성 소부경화형 고강도 냉연강판의 제조 방법이 제공된다.The present invention, in order to achieve the above object, by weight% C: 0.004% or less, Mn: 0.6 ~ 1.0%, P: 0.04 ~ 0.08%, S: 0.006% or less, N: 0.003% or less, acid value Al : 0.06% or less, Ti: 0.026 to 0.034% balance: Fe and other inevitable impurities, wherein Ti is ((48/14 × N) + (48/12 × C)) ≦ Ti ≦ ((48/14 Finishing hot rolled steel slab that satisfies the relationship of × N) + (48/12 × 1.5C)) at over 910 ℃, hot rolled at a temperature above 700 ℃, and cold rolled at a cold reduction rate of 77% or more after pickling. Thereafter, there is provided a method for producing a high forming hardened type high strength cold rolled steel sheet characterized by recrystallization annealing at a temperature range of 650 to 750 ° C. in a box annealing furnace.

이하 본 발명강의 조성 및 성분에 대한 수치한정 이유를 설명한다.Hereinafter, the reason for numerical limitation of the composition and components of the inventive steel will be described.

우선, 강중에 함유되는 C은 소부경화성을 증가 시키는 역할을 한다. 또한 침입형 고용원소로서 냉간압연 및 소둔 과정에서 강판의 집합조직 형성에 매우 큰 영향을 미친다. 강중 고용된 C함량이 증가할 수록 가공성에 유리한 집합조직의 형성을 지연시켜 성형성을 열화 시킨다. 종래, 성형성 열화 방지를 위하여 강력한 탄,질화물 형성 원소인 Ti, Nb를 단독 혹은 복합 첨가하여 고용 C을 Ti(Nb)C로 석출시켜 제조하는 방식이 주류를 이루어 왔었다. 그러나 적절한 BH성을 갖기 위해서는고용 C량을 어느 정도 잔존 시켜야만 하므로 성형성 열화의 문제점을 적극적으로 해결하지 못했다. 즉, C함량을 증가 시킬 경우 BH 특성은 확보 되지만 가공성이 열화 되어 가공시 크랙 발생의 주요인으로 작용된다. 하지만, 본 발명강의 경우 C함량을 중량%로 0.004%이하로 관리함으로써 열간압연/냉간압연/소둔의 조업 특성을 제어함에 의해 목적으로 하는 BH성(≥3kgf/mm2) 확보 뿐만 아니라, 가공성 평가지수인 r값(≥2.0)를 동시에 확보할 수 있는 기술 개발이 가능하였다.First of all, C contained in steel serves to increase the baking hardness. In addition, as an invasive solid solution, it has a great influence on the formation of texture of the steel sheet during cold rolling and annealing. As the dissolved C content in the steel increases, the formation of the texture that favors the workability is delayed, thereby degrading the formability. Conventionally, in order to prevent formability deterioration, a method of producing solid solution C by Ti or Nb by adding Ti or Nb, which are strong carbon and nitride forming elements, alone or in combination has been mainstream. However, in order to have adequate BH property, the amount of employment C must be retained to some extent, and thus the problem of moldability deterioration was not actively solved. In other words, if the C content is increased, the BH characteristics are secured, but the machinability deteriorates, which acts as a major cause of cracking. However, in the case of the present invention, by controlling the C content in the weight% of 0.004% or less by controlling the operation characteristics of hot rolling / cold rolling / annealing, as well as securing the target BH property (≥3kgf / mm2), workability evaluation index It was possible to develop a technology that can secure the r value (≥2.0) at the same time.

상기 Mn은 고용체 강화 원소로 강도를 확보하는데 필수적인 원소이다. 특히 열간취성의 주요인으로 작용하는 강중 S를 MnS로 전부 석출시키는 역할을 하는 반면, TiS로써의 석출을 지연시켜 C함량 관리에 필요한 유효 Ti함량 범위 설정에 매우 유리한 원소이다. 즉, S를 석출 시키기에 필요한 유효 Ti함량이 필요치 않기 때문에 S함량의 변화와 상관없이 Ti는 강중 C와 N만을 고려하여 적정 범위를 설정하므로 제강 조업의 부하가 절감되고 안정된 BH성이 확보되는 장점이 있다. 그러나 Mn함량이 0.6%이하의 경우에는 상기 언급한 효과를 얻을 수 없을 뿐만 아니라 강도 확보에도 문제가 있다. 한편, 1.0%이상의 경우에는 목적으로 하는 강도와 MnS석출은 완벽하게 이루어지지만 잔류된 Mn이 불순물로 작용하여 재질열화를 가져오고, 또한 소둔중 강판 표면에 Mn농화층이 발생하여 내산화성에 문제가 발생될 가능성이 높아지므로 그함량을 중량%로 0.6 ~1.0%로 관리함이 바람직하다.Mn is a solid solution strengthening element and is essential for securing strength. In particular, it plays a role of precipitating all the steel S as MnS, which acts as a major factor of hot brittleness, while delaying the precipitation as TiS, which is a very advantageous element for setting the effective Ti content range required for C content management. In other words, since Ti is not required to precipitate S, Ti is set regardless of changes in S content, considering only C and N in steel, so the load of steelmaking operations is reduced and stable BH property is secured. There is this. However, when the Mn content is 0.6% or less, the above-mentioned effects are not obtained and there is a problem in securing the strength. On the other hand, in case of 1.0% or more, the target strength and MnS precipitation are perfectly achieved, but residual Mn acts as an impurity, resulting in material deterioration, and Mn thickening layer is generated on the surface of the steel sheet during annealing, thereby causing problems in oxidation resistance. It is preferable to manage the content at 0.6 to 1.0% by weight since it is more likely to occur.

상기 P는 성형성을 해치지 않고 강도 확보가 매우 유리한 원소이므로 가능한 다량 첨가하는 것이 목적으로 하는 강도 확보에 유리하지만, 너무 과잉으로 첨가시 성형시 2차가공취성 결함이 발생하여 크랙 발생의 주원인이 되므로 본발명에서는목적강도와 크랙 발생 방지에 유리한 P함량 범위를 0.04 ~ 0.08%로 제한하였다.Since P is an element which is very advantageous in securing strength without impairing formability, it is advantageous to secure as much strength as possible, but when added too much, secondary processing brittleness occurs during molding, which is the main cause of crack generation. In the present invention, the P content range for the purpose strength and crack prevention is limited to 0.04 to 0.08%.

상기 Ti은 본 발명에서 성형성 및 소부경화성 측면에서 중요한 원소이다, 첨가되는 Ti는 강중 포함된 C 및 N 함량을 고려하여 첨가되는데, Ti함량이 원자 당량비로 ((48/14×N)+(48/12×C))≤ Ti ≤ ((48/14×N)+(48/12×1.5C))의 조건을 만족하는 범위내에서 첨가되도록 하여 0.026~0.034%로 제한 하였다. 0.026%미만의 Ti함량의 경우 강중 질소와 탄소와 결합할 유효 Ti함량의 부족으로 BH성 측면에서는 유리하지만 성형성 측면에서 매우 불리하며, 0.034%초과의 Ti함량은 강중에 잔존된 미량의 고용탄소 마져 완벽하게 석출시키기 때문에 적절한 상소둔 열처리에 의해서도 고용 탄소는 재용해되지 않아 BH성이 나타나지 않으므로 상기와 같이 설정 하였다.In the present invention, Ti is an important element in terms of moldability and baking hardenability. Ti is added in consideration of the C and N content contained in steel, and the Ti content is ((48/14 × N) + ( 48/12 × C)) ≤ Ti ≤ ((48/14 × N) + (48/12 × 1.5C)) to be added within a range that satisfies the condition was limited to 0.026 ~ 0.034%. Ti content of less than 0.026% is advantageous in terms of BH property due to lack of effective Ti content to combine with nitrogen and carbon in the steel, but very disadvantageous in terms of formability, and Ti content above 0.034% is a small amount of solid carbon remaining in steel. Since the solid precipitates completely, the solid solution carbon is not re-dissolved even by proper annealing heat treatment, and thus BH property does not appear.

상기 Al은 강의 입도 미세화와 탈산을 위해 첨가되는 원소로서 그 함량은 통상 첨가되는 범위인 0.06%이하가 바람직하다.Al is an element added to refine the particle size and deoxidize the steel, and its content is preferably 0.06% or less, which is usually in the range of addition.

상기 S 및 N는 강중 불순물로서 가능한 한 낮게 관리 하는 것이 중요하며 그함량은 각각 0.006%이하, 0.003%이하로 유지되도록 함이 바람직하다.It is important to manage the S and N as low as possible as impurities in the steel, the content is preferably maintained to 0.006% or less, 0.003% or less, respectively.

이하, 본 발명에 따른 제조방법에 대하여 상세히 설명한다.Hereinafter, the manufacturing method according to the present invention will be described in detail.

상기와 같은 특성을 갖도록 조성된 합금 성분계를 통상의 조건으로 열간압연을 행한 뒤 910℃이상에서 마무리 열간압연하고, 이어서 700℃ 이상의 온도에서 고온권취를 행하여 강중 C을 TiC 형태의 석출물로 거의 완전하게 석출시켜 고용 C을 잔류치 않게 함으로써 재결정 소둔시 가공성에 유리한 (111)집합조직을 발달시켜성형성을 확보한다. 반면 700℃이하의 저온권취를 행할 경우 결정립도가 미세화되어 내 2차 가공 취성 특성에는 유리하지만 고용 C을 완전히 석출시키지 못하여 성형성 확보하는 데 어려운 문제를 야기 시킨다. 따라서 700℃ 이상의 온도에서 고온권취를 행해야 한다.After hot rolling the alloy component system formed to have the above characteristics under normal conditions and finishing hot rolling at 910 ° C. or higher, and then hot winding at a temperature of 700 ° C. or higher to almost completely form C in the TiC precipitate. By depositing so that the solid solution C does not remain, the (111) aggregate structure which is advantageous for workability at the time of recrystallization annealing is developed to secure the formation. On the other hand, low temperature winding below 700 ° C. results in a finer grain size, which is advantageous for secondary processing brittleness, but it does not completely precipitate solid solution C, which causes difficulty in securing moldability. Therefore, high temperature winding must be performed at the temperature of 700 degreeC or more.

다음은 산세한후 냉간압연을 행하는데, 이때 냉간압하율은 높을수록 성형성에 유리하지만 77%이하에서는 본 발명에서 요구되는 재질특성이 나오지 않으며 현장 조업특성을 고려한 77%이상에서 행하는 것이 좋다.Next, after pickling, cold rolling is performed. At this time, the higher the cold reduction rate is, the better the formability is, but below 77%, the material properties required by the present invention do not come out.

계속해서 냉연강판에 대한 재결정 소둔은 상자 소둔로에서 650~750℃의 온도 범위에서 행하는 것이 바람직하다. 650℃미만의 온도에서는 열간압연 미석출 고용탄소가 잔류되어 BH성 측면에서는 유리하지만 재결정 성장 둔화로 인한 미재결정 결정립의 형성으로 성형성 확보에 문제가 있을 뿐만 아니라 이미 석출된 TiC탄화물의 석출물이 재용해되지 않아 목적하는 소부경화성을 확보하는데 문제가 있다. 반면, 750℃이상의 온도에서는 고용탄소의 재용해에 따른 고BH성을 확보할 수 있다는 장점이 있긴 하지만, 고온 소둔에 따른 설비 부하 부담이 가중되고 형상 및 스케일 형성에 문제가 발생할 가능성이 크므로 650~750℃의 온도 범위에서 소둔처리하는 것이 바람직하다.Subsequently, recrystallization annealing of the cold rolled steel sheet is preferably performed in a box annealing furnace at a temperature range of 650 to 750 ° C. At temperatures below 650 ℃, hot-rolled unprecipitated solid solution carbon remains, which is advantageous in terms of BH properties, but there is a problem in securing formability due to formation of unrecrystallized crystal grains due to slow recrystallization growth, and the precipitates of precipitated TiC carbide are reused. Since it is not harmed, there is a problem in securing the desired hardening resistance. On the other hand, the temperature above 750 ℃ has the advantage of securing high BH properties due to the re-dissolution of solid carbon, but it is more likely to increase the load on the facility due to high temperature annealing and it is likely to cause problems in shape and scale formation. It is preferable to perform annealing in the temperature range of 750 degreeC.

이하 실시예를 통하여 본 발명에 대하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

실시예Example

표 1과 같은 조성의 발명강(1,2,3)과 비교강(1,2)의 슬라브를 표 2에 나타낸바와 같이 열간압연하여 910℃이상에서 마무리 열간압연후 권취를 행한 다음 산세하고, 다음 공정인 냉간압연에 있어서는 각각 적정의 냉간압하율을 적용하여 두께 0.8mm 크기의 냉연강판을 제작하였으며, 이어서 재결정 소둔을 위해 각각 임의의 소둔온도를 적용하여 상자 소둔 열처리를 행한후, 소둔강판의 재질특성(BH, r값, 인장특성) 및 성형성 등을 평가하였다.The slabs of the inventive steels (1,2,3) and the comparative steels (1,2) having the composition shown in Table 1 are hot rolled as shown in Table 2, and after winding hot finish rolling at 910 ° C or higher, pickling is carried out. In the cold rolling, which is the next process, a cold rolled steel sheet having a thickness of 0.8 mm was manufactured by applying a suitable cold rolling rate, and then, after annealing temperature was applied to each annealing temperature for recrystallization annealing, the annealing steel sheet was subjected to annealing. Material properties (BH, r value, tensile properties) and moldability were evaluated.

이때 비교강 1은 Ti함량이 발명강 대비 적은 경우로 고BH성은 확보되나 가공성에 문제가 있을 것으로 판단되며, 비교강 2는 발명강 대비 C함량 및 Ti이 높은 것으로 어느 정도 가공성은 향상되나 적절한 BH성을 확보하는데는 많은 문제점이 있을 것으로 예측된 강이다.At this time, the comparative steel 1 is less Ti than the invention steel, and the high BH property is secured, but there is a problem in workability, and the comparative steel 2 is higher in the C content and Ti than the invention steel, and the workability is improved to some extent, but the appropriate BH It is expected that there will be many problems in securing the castle.

표 1Table 1

구분division 화학조성(wt%)Chemical composition (wt%) 비고Remarks CC MnMn PP SS NN S.AlS.Al TiTi 비교강1Comparative Steel 1 0.00380.0038 0.700.70 0.070.07 0.00620.0062 0.00300.0030 0.0550.055 0.0150.015 저TiLow Ti 비교강2Comparative Steel 2 0.00450.0045 0.720.72 0.0650.065 0.00810.0081 0.00280.0028 0.0570.057 0.0480.048 고TiHigh Ti 발명강1Inventive Steel 1 0.00360.0036 0.680.68 0.0550.055 0.00590.0059 0.00270.0027 0.0560.056 0.0280.028 발명강Invention steel 발명강2Inventive Steel 2 0.00380.0038 0.850.85 0.0540.054 0.00580.0058 0.00260.0026 0.0480.048 0.0310.031 발명강Invention steel 발명강3Invention Steel 3 0.00340.0034 0.920.92 0.0590.059 0.00580.0058 0.00270.0027 0.0450.045 0.0300.030 발명강Invention steel

또 소둔강판의 재질특성중 성형성 평가지수인 r값은 ASTM 표준 사이즈를 이용하여 압연방향, 45도 방향, 90도 방향의 각각에 대하여 조건당 3개씩 실험을 행하고, 그 평균값을 구하여 그 강종조건에 대한 대표값으로 취하였다. 성형성 평가는 컵테스트(Cupping Test)로 행하였으며 이때 성형조건은 펀치스피드:300mm/min,펀치직경:40mm, 다이직경:43mm, 드로잉비:2.45, 시편유지압력(BHF):0.5톤의 조건으로 행하여 성형 가능 유무로 성형성을 판단했다.In addition, r values, which are the evaluation of formability, among the material properties of annealed steel sheets, were tested three times for each condition in the rolling direction, the 45 degree direction, and the 90 degree direction using ASTM standard size, and the average value was obtained. Taken as representative for. Formability evaluation was performed by a cupping test, in which the molding conditions were punch speed: 300 mm / min, punch diameter: 40 mm, die diameter: 43 mm, drawing ratio: 2.45, and specimen holding pressure (BHF): 0.5 ton. The moldability was determined with or without moldability.

표 2에 나타난 바와 같이 본 발명강(1,2,3)의 발명예(1,2,3,4)는 기본적으로 폭이 1700mm이상의 광폭으로써, 인장강도(TS)≥35kgf/mm2, r값≥ 2.0, 및 BH성≥ 3kgf/mm2의 조건을 모두 만족하고 성형시 크랙 발생이 없이 양호한 성형특성을 보여주고 있다. 이때 비교강 및 본발명강에 있어서 상기 조건에 부적합한 경우를 ※로 표시하여 구분하였다.As shown in Table 2, the inventive examples (1, 2, 3, 4) of the inventive steels (1, 2, 3) basically have a width of 1700 mm or more and have a tensile strength (TS) ≥ 35 kgf / mm2 and r value. It satisfies all the conditions of ≧ 2.0, and BH ≧ 3kgf / mm 2 and shows good molding characteristics without cracking during molding. In this case, the case of non-compliance with the above conditions in the comparative steel and the present invention was marked with *.

표 2TABLE 2

구 분division 열간압연Hot rolled 냉간압연Cold rolled 재질특성(kg/mm2)Material characteristics (kg / mm2) 성형특성Molding characteristics 불량특성Poor characteristics FT(℃)FT (℃) CT(℃)CT (℃) 압하율Rolling reduction 소둔(℃)Annealed (℃) TSTS R값R value BHBH o :양호x :불량o: Good x: Bad 비교강1Comparative Steel 1 비교예1Comparative Example 1 912912 700700 7878 680680 35.235.2 1.7 ※1.7 ※ 4.54.5 X※X ※ 크랙crack 가공성Machinability 비교강2Comparative Steel 2 비교예2Comparative Example 2 920920 700700 7777 710710 37.237.2 2.22.2 1.2※1.2 * OO 성형Molding 비교예3Comparative Example 3 917917 650※650 * 7878 700700 37.537.5 1.61.6 1.3※1.3 * X※X ※ 크랙crack BH,가공성BH, Machinability 발명강1Inventive Steel 1 발명예1Inventive Example 1 921921 700700 78.578.5 710710 36.236.2 2.02.0 3.43.4 OO 성형Molding 발명강2Inventive Steel 2 발명예2Inventive Example 2 922922 700700 77.877.8 680680 36.436.4 2.12.1 3.13.1 OO 성형Molding 발명예3Inventive Example 3 923923 700700 77.577.5 710710 36.736.7 2.062.06 3.23.2 OO 성형Molding 비교예4Comparative Example 4 918918 700700 77.677.6 810 ※810 ※ 36.436.4 1.961.96 3.83.8 X※X ※ 성형Molding 소둔온도 가공성Annealing Temperature 발명강3Invention Steel 3 발명예4Inventive Example 4 920920 700700 7777 700700 37.137.1 2.112.11 3.33.3 OO 성형Molding 비교예5Comparative Example 5 920920 630※630 * 78.278.2 610 ※610 ※ 37.537.5 1.721.72 2.8 ※2.8 ※ X※X ※ 크랙crack 가공성Machinability

반면에 비교강(1,2)의 비교예(1,2,3)는 Ti함량이 낮거나 높은 경우, 권취온도가 낮은 경우중 어느 한 경우로 상기 조건에 부적합함을 알 수 있으며, 특히 Ti함량이 많은 비교강 2에서는 어느 경우도 목표 BH성이 확보되지 못함을 알 수 있다. 또한 권취온도가 낮을 경우(발명강3/비교예5), 소둔온도가 높거나 낮을 경우(발명강2/비교예4, 발명강3/비교예5), 목표 대비 r값이 미달 되어 성형시 크랙발생 가능성이 높다.On the other hand, the comparative examples (1, 2, 3) of the comparative steel (1, 2) is one of the cases where the Ti content is low or high, the winding temperature is low, it can be seen that it is not suitable for the above conditions, in particular Ti In Comparative Steel 2 having a large content, it can be seen that the target BH property is not obtained in any case. In addition, when the coiling temperature is low (Inventive Steel 3 / Comparative Example 5), when the annealing temperature is high or low (Inventive Steel 2 / Comparative Example 4, Inventive Steel 3 / Comparative Example 5), the r value is less than the target when molding There is a high possibility of cracking.

도 1은 냉간압연 후 상자 소둔 열처리 온도에 따른 항복점 연신 특성 및 BH성을 보여주는 그림으로 소둔온도가 증가함에 따라 항복점연신 및 BH성은 증가하다가 감소하고 다시 재증가하는 현상이 나타났다. 이는 소둔온도가 증가함에 따라 전위가 일부 소실되어 고용탄소의 억제 작용이 없어지기 때문에 일시적으로 BH성은 증가하고 있으며, 더욱 온도가 증가함에 따라 고용탄소는 탄화물로 석출하기 시작하면서 BH성은 감소한다.1 is a diagram showing the yield point stretching characteristics and BH characteristics according to the box annealing heat treatment temperature after cold rolling, the yield point stretching and BH properties increase with decreasing annealing temperature and then decrease and reincrease again. As the annealing temperature increases, the dislocation is partially lost and thus the inhibitory effect of the dissolved carbon disappears temporarily. As the temperature increases, the dissolved carbon starts to precipitate as carbide, and the BH decreases.

그러나 650℃이상의 소둔온도에서는 다시 탄화물이 고용탄소로 재용해되어 항복점연신 뿐만 아니라 BH성도 다시 증가하여 목표로하는 3kgf/mm2이상의 BH성이 확보하게 된다. 더욱 온도가 증가함에 따라 BH성도 함께 증가하지만 750℃이상의 온도에서는 강판 표면의 스케일 형성등 품질 악영향 현상이 뚜렷이 나타나게 되어 적절한 소둔온도 관리는 매우 중요함을 이 그림에서 알수 있다.However, at annealing temperatures above 650 ° C, carbides are re-dissolved into solid carbon, which not only yields yield points but also increases BH properties, thus securing a target BH of 3kgf / mm2 or more. As the temperature increases, the BH property also increases, but at temperatures above 750 ℃, the adverse effect of quality such as scale formation on the surface of the steel sheet becomes apparent, so it is understood that proper annealing temperature management is very important.

즉, 이와 같이 성분과 소둔온도 제어를 통하여 고성형성 BH강 제조가 가능한 이유는 열간압연 후 고용탄소를 거의 완벽하게 탄화물로 석출시켜 제거한 후 소둔을 행하게 되면 가공성에 유리한 (111)집합조직이 우선적으로 형성되어 성형성 확보가 가능해지고, 이어서 고온소둔을 행하게 되면 탄화물이 고용탄소로 재용해되어 BH성도 확보가 가능하기 때문이다.That is, the reason why it is possible to manufacture high-forming BH steel by controlling the components and the annealing temperature is that after the hot rolling, the solid solution carbon is almost completely precipitated out of carbide and then removed, followed by annealing. This is because it is possible to secure moldability by forming, and then, when high temperature annealing is performed, carbides can be re-dissolved into solid solution carbon to secure BH properties.

상술한바와 같이 본 발명은 강성분을 적절히 조합하고, 열간압연, 냉간압연 조업조건 및 상자소둔 조업조건을 적절히 제어함으로써 성형성과 BH성이 동시에 우수한 고강도 냉연강판을 제공할 수 있고, 상기 제공된 강판은 자동차용 외판재의 고성형성이 요구되는 부품의 소재로 사용하기에 특히 적합한 효과가 있다.As described above, the present invention can provide a high-strength cold rolled steel sheet having excellent formability and BH property by appropriately combining steel components, and appropriately controlling hot rolling, cold rolling operating conditions, and box annealing operating conditions. Particularly suitable for use as a material for parts requiring high formability of automotive exterior materials.

Claims (2)

본 발명은 중량 %로 C:0.004%이하, Mn:0.6~1.0%, P:0.04~0.08%, S:0.006%이하, N:0.003%이하, 산가용 Al:0.06%이하, Ti:0.026~0.034% 잔부: Fe 및 기타 불가피한 불순물로 조성되며, 상기 Ti는 ((48/14×N)+(48/12×C))≤ Ti ≤ ((48/14×N)+(48/12×1.5C))의관계를 충족시키는 강의 슬라브를 통상의 조업조건으로 열간압연, 냉간압연을 한후, 계속해서 상자 소둔로에서 재결정 소둔을 행하는 것을 특징으로 하는 고성형성 소부경화형 고강도 냉연강판의 제조 방법.In the present invention, by weight% C: 0.004% or less, Mn: 0.6-1.0%, P: 0.04-0.08%, S: 0.006% or less, N: 0.003% or less, acid value Al: 0.06% or less, Ti: 0.026- 0.034% balance: composed of Fe and other unavoidable impurities, wherein Ti is ((48/14 × N) + (48/12 × C)) ≦ Ti ≦ ((48/14 × N) + (48/12 × 1.5C)) The slab of steel which satisfies the relationship of hot-rolled and cold-rolled under normal operating conditions, and then recrystallized annealing in a box annealing furnace, characterized in that the production method of high-forming hardened hardened cold-rolled high strength steel sheet. 제1항에 있어서, 상기 상자 소둔로에서 재결정 소둔은 650~750℃의 온도 범위에서 행하는 것을 특징으로 하는 고성형성 소부경화형 고강도 냉연강판의 제조 방법.2. The method for producing a high forming hardened type high strength cold rolled steel sheet according to claim 1, wherein the recrystallization annealing in the box annealing furnace is performed at a temperature range of 650 to 750 ° C.
KR10-2000-0045984A 2000-08-08 2000-08-08 The Manufacturing of Bake Hardening Steels with High Formability KR100467712B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0045984A KR100467712B1 (en) 2000-08-08 2000-08-08 The Manufacturing of Bake Hardening Steels with High Formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0045984A KR100467712B1 (en) 2000-08-08 2000-08-08 The Manufacturing of Bake Hardening Steels with High Formability

Publications (2)

Publication Number Publication Date
KR20020012790A KR20020012790A (en) 2002-02-20
KR100467712B1 true KR100467712B1 (en) 2005-01-24

Family

ID=19682347

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0045984A KR100467712B1 (en) 2000-08-08 2000-08-08 The Manufacturing of Bake Hardening Steels with High Formability

Country Status (1)

Country Link
KR (1) KR100467712B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517825A (en) * 1991-05-27 1993-01-26 Sumitomo Metal Ind Ltd Production of cold rolled high strength steel sheet excellent in formability
JPH05230543A (en) * 1992-02-19 1993-09-07 Nkk Corp Production of high strength cold rolled steel sheet excellent in baking hardenability and deep drawability
JPH05230540A (en) * 1992-02-25 1993-09-07 Kawasaki Steel Corp Production of high tensile strength cold rolled steel sheet excellent in chemical conversion treating property and deep drawability
JPH08109416A (en) * 1994-10-14 1996-04-30 Kawasaki Steel Corp Production of baking-hardened-type cold rolled steel sheet excellent in formability
JPH0931548A (en) * 1995-07-25 1997-02-04 Sumitomo Metal Ind Ltd Production of cold rolled steel sheet excellent in baking hardenability
JPH10280048A (en) * 1997-04-09 1998-10-20 Kawasaki Steel Corp Production of coating/baking haredening type cold rolled steel sheet excellent in strain aging resistance
JPH11229085A (en) * 1998-02-17 1999-08-24 Kawasaki Steel Corp Coating baking hardening type cold rolled steel sheet excellent in aging resistance and its production
KR20000038789A (en) * 1998-12-09 2000-07-05 이구택 Method for producing cold rolled steel sheets with high strength and formability
KR20000043767A (en) * 1998-12-29 2000-07-15 이구택 Cold-rolled steel strip of super high molding and high strength bh type and method of manufacturing the same
KR20010004488A (en) * 1999-06-29 2001-01-15 이구택 Bake hardening cold rolled steel with good formability and high strength and method of manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517825A (en) * 1991-05-27 1993-01-26 Sumitomo Metal Ind Ltd Production of cold rolled high strength steel sheet excellent in formability
JPH05230543A (en) * 1992-02-19 1993-09-07 Nkk Corp Production of high strength cold rolled steel sheet excellent in baking hardenability and deep drawability
JPH05230540A (en) * 1992-02-25 1993-09-07 Kawasaki Steel Corp Production of high tensile strength cold rolled steel sheet excellent in chemical conversion treating property and deep drawability
JPH08109416A (en) * 1994-10-14 1996-04-30 Kawasaki Steel Corp Production of baking-hardened-type cold rolled steel sheet excellent in formability
JPH0931548A (en) * 1995-07-25 1997-02-04 Sumitomo Metal Ind Ltd Production of cold rolled steel sheet excellent in baking hardenability
JPH10280048A (en) * 1997-04-09 1998-10-20 Kawasaki Steel Corp Production of coating/baking haredening type cold rolled steel sheet excellent in strain aging resistance
JPH11229085A (en) * 1998-02-17 1999-08-24 Kawasaki Steel Corp Coating baking hardening type cold rolled steel sheet excellent in aging resistance and its production
KR20000038789A (en) * 1998-12-09 2000-07-05 이구택 Method for producing cold rolled steel sheets with high strength and formability
KR20000043767A (en) * 1998-12-29 2000-07-15 이구택 Cold-rolled steel strip of super high molding and high strength bh type and method of manufacturing the same
KR20010004488A (en) * 1999-06-29 2001-01-15 이구택 Bake hardening cold rolled steel with good formability and high strength and method of manufacturing the same

Also Published As

Publication number Publication date
KR20020012790A (en) 2002-02-20

Similar Documents

Publication Publication Date Title
US4576657A (en) Process of manufacturing a cold rolled steel sheet having excellent press formability
KR100958019B1 (en) Dual phase steel sheet and method for manufacturing the same
KR101220619B1 (en) Ultra high strength cold rolled steel sheet, galvanized steel sheet and method for manufacturing thereof
KR100467712B1 (en) The Manufacturing of Bake Hardening Steels with High Formability
KR100411670B1 (en) Bake hardening cold rolled steel with good formability and high strength and method of manufacturing the same
KR100544645B1 (en) Manufacturing method of multiphase cold rolled steel sheet with good formability
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
KR100328023B1 (en) The method of manufacturing of high strength hot-rolled steel sheet
KR100470644B1 (en) A method for manufacturing deep drawing cold-rolled steel sheet with excellent secondary working brittleness resistance and press formability
KR100530073B1 (en) High strength steel sheet having superior workability and method for manufacturing there of
KR100530075B1 (en) High strength steel sheet having superior formability and method for manufacturing there of
KR100530076B1 (en) Drawing High Strength Steel Sheet With Secondary Working Brittleness Resistance and Press Formability and A Method for Manufacturing thereof
KR100530077B1 (en) Deep Drawing High Strength Steel Sheet With Secondary Working Brittleness Resistance and Formability and A Method for Manufacturing Thereof
KR100481364B1 (en) A method for manufacturing high strength cold rolled steel sheet with excellent workability
KR101105132B1 (en) Baking hardening cold rolled steel sheet having high strength, process for producing the same
KR20050032721A (en) Ultra high strength steel of 120kgf/㎟ grade having excellent formability
KR100691515B1 (en) bake hardenable galvannealed steel sheets with high formability
KR100544724B1 (en) Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet
KR100829682B1 (en) Manufacturing method for high strength cold rolled steel sheet with good elongation
KR101105098B1 (en) Bake-harding cold rolled steel sheet having excellent workability and high strength, process for producing the same
KR100584755B1 (en) Method for manufacturing high strength cold rolled steel sheet having Bake Hardening and superior press
KR100411278B1 (en) Deep drawing steel sheet having high strength and superior formability and method for manufacturing it
KR100711359B1 (en) Bake-hardening thin steel sheet having excellent anisotropy and the method for manufacturing the same
KR20010061575A (en) a cold-rolled steel with good formability and anti-dent property and the method of manufacturing the same
JPH0735544B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with excellent stretch flangeability

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121231

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140107

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150109

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190115

Year of fee payment: 15