KR20050032721A - Ultra high strength steel of 120kgf/㎟ grade having excellent formability - Google Patents

Ultra high strength steel of 120kgf/㎟ grade having excellent formability Download PDF

Info

Publication number
KR20050032721A
KR20050032721A KR1020030068654A KR20030068654A KR20050032721A KR 20050032721 A KR20050032721 A KR 20050032721A KR 1020030068654 A KR1020030068654 A KR 1020030068654A KR 20030068654 A KR20030068654 A KR 20030068654A KR 20050032721 A KR20050032721 A KR 20050032721A
Authority
KR
South Korea
Prior art keywords
less
steel
temperature
strength
grade
Prior art date
Application number
KR1020030068654A
Other languages
Korean (ko)
Other versions
KR101008104B1 (en
Inventor
김성규
진광근
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020030068654A priority Critical patent/KR101008104B1/en
Publication of KR20050032721A publication Critical patent/KR20050032721A/en
Application granted granted Critical
Publication of KR101008104B1 publication Critical patent/KR101008104B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided are a steel to which large quantities of carbon and silicon are added to prevent deterioration of plating property and weldability, and which has high strength as well as excellent formability by obtaining tensile strength of 120 kgf/mm^2 grade or more and yield ratio of 0.6 or less, and a method for manufacturing the same. A method for manufacturing an ultra high strength steel of 120 kgf/mm^2 grade having excellent formability comprises: a step of reheating a steel slab having a composition comprising 0.10 to 0.15 wt.% of C, 0.7 to 1.7 wt.% of Si, 4.0 to 7.0 wt.% of Mn, 0.03 wt.% or less of P, 0.005 wt.% or less of S, 0.05 to 0.15 wt.% of Al, 0.003 wt.% or less of N, 0.0001 to 0.002 wt.% of B, 0.01 to 0.05 wt.% of Mo and the balance being Fe and other inevitable impurities at a temperature of 1,200 to 1,250 deg.C for 60 to 180 minutes; a step of hot finish rolling the reheated slab at a temperature of Ar3 to Ar3+100 deg.C, and coiling the hot finish rolled steel sheet at a temperature of 560 to 680 deg.C; and a step of cold rolling the coiled hot rolled steel sheet to a reduction ratio of 15 to 75%, batch annealing the cold rolled steel sheet at a temperature of 620 to 650 deg.C for 1 to 12 hours, and air cooling the batch annealed steel sheet.

Description

가공성이 우수한 120kgf/㎟급 초고강도 강 및 그 제조방법{Ultra high strength steel of 120kgf/㎟ grade having excellent formability} Ultra high strength steel of 120 방법 Gf / mm2 grade with excellent workability and manufacturing method {Ultra high strength steel of 120kgf / mm2 grade having excellent formability}

본 발명은 자동차의 범퍼 보강재 혹은 도어내의 충격 흡수재에 사용되는 120 kgf/mm2급의 초고강도 강에 관한 것으로, 보다 상세하게는 강도와 더불어 가공성이 우수하여 부품 성형이 용이한 120kgf/mm2급 초고강도 강 및 그 제조방법에 관한 것이다.The present invention, more particularly, the strength and 120kgf / a The part molded easily and workability is excellent mm 2 class, with about the ultra-high strength steel of a 120 kgf / mm 2 grade is used in the shock absorber in the bumper reinforcement or the door It relates to an ultra high strength steel and a method of manufacturing the same.

자동차의 범퍼 보강재 혹은 도어내의 충격 흡수재는 차량의 충돌시 승객의 안전과 직접 관계되는 부품으로 인장강도 80kgf/mm2 이상의 고강도 냉연강판이 주로 사용되고 있다. 이 냉연강판은 높은 인장강도와 더불어 가공성 향상을 위해 낮은 항복비와 높은 연신율을 가져야 한다. 또한, 점차 심각해지고 있는 환경 오염 규제에 대응하기 위해 연비를 증가시키고자 고강도 강재의 사용 비율이 증가하고 있다. 최근에는 120kgf/mm2 이상의 초고강도 강의 상업화에 대한 연구가 증가하고 있는 추세이다.The bumper reinforcement of the vehicle or the shock absorber in the door is a part directly related to the safety of the passenger in the event of a vehicle collision, and high strength cold rolled steel sheets having a tensile strength of 80 kgf / mm 2 or more are mainly used. This cold rolled steel sheet should have high tensile strength and low yield ratio and high elongation to improve workability. In addition, the use of high strength steels is increasing in order to increase fuel economy in response to the increasingly severe environmental pollution regulations. Recently, research on the commercialization of ultra high strength steel of 120kgf / mm 2 or more is increasing.

자동차용 고강도 강은 대표적으로 변태유기소성(Transformation Induced Plasticity, 간단히 TRIP이라함)강과 이상조직(Dual Phase, 간단히 DP라 함)강이 있다.High-strength steel for automobiles is typically Transformation Induced Plasticity (hereinafter simply referred to as TRIP) steel and Dual Phase (hereinafter referred to as DP) steel.

자동차용 고강도 강의 제조공정은 크게 열간 압연, 냉간 압연 그리고 소둔공정으로 구분되는데, 페라이트와 펄라이트를 갖는 열간압연된 판재를 냉간압연하여 제품의 최종 두께로 가공한 후, A1 변태점 이상의 소둔온도로 가열하고 냉각한다. 이때 소둔과정에서 형성된 오스테나이트를 냉각과정에서 속도를 제어하여 마르텐사이트나 베이나이트로 변태시키게 되는데, 이때 마르텐사이트로 변태시키는 경우 이 강을 이상조직강이라고 한다. 상기 이상조직강은 마르텐사이트의 분율이 증가할수록 강도가 증가하고 페라이트 비율이 증가할수록 연성이 증가하는데, 강도 상승을 위하여 마르텐사이트 비율이 너무 커지면 상대적으로 페라이트의 비율이 감소하여 오히려 연성이 저하된다. 즉, 본 발명과 같이 120 kgf/mm2 이상의 고강도 강을 제조하는 경우 연신율이 급격하게 감소하는 단점이 있다.The manufacturing process of high strength steel for automobile is divided into hot rolling, cold rolling and annealing processes. The hot rolled sheet having ferrite and pearlite is cold rolled to be processed to the final thickness of the product, and then heated to an annealing temperature of A 1 transformation point or more. And cool. At this time, the austenite formed in the annealing process is transformed into martensite or bainite by controlling the speed in the cooling process. In this case, the steel is called an ideal tissue steel. The abnormal tissue steel has an increase in strength as the fraction of martensite increases and ductility increases as the ferrite ratio increases. If the martensite ratio is too large for the strength increase, the ratio of ferrite decreases and the ductility decreases. That is, when manufacturing high strength steel of 120 kgf / mm 2 or more as in the present invention has a drawback that the elongation is sharply reduced.

한편, 상기 방법과 같이 소둔과정에서 오스테나이트를 형성한 후 냉각과정에서 냉각 속도와 냉각종료온도 등을 제어하여 상온에서 오스테나이트를 일부 잔류 시킴으로써, 상기 변태 조직강의 강도와 연성을 동시에 높이는 방법이 있다. 즉, 잔류 오스테나이트를 소성변형 중에 가공에 의해 마르텐사이트로 변태 하도록 하면 강도와 함께 소성유기 변태에 의해 형성되는 변태상이 국부적인 응력집중을 완화(relax)함으로써 연성을 증가시키는데, 이를 변태유기소성강(TRansformation Induced Plasticity Steel, TRIP Steel)이라고 한다(CAMP-ISIJ vol. 1, p. 877). 상기 TRIP강은 강도와 연성이 동시에 우수한 특성을 가지므로 고강도 강으로 널리 이용되고 있다.On the other hand, there is a method to increase the strength and ductility of the metamorphic tissue steel at the same time by forming austenite in the annealing process and controlling the cooling rate and the cooling end temperature in the cooling process and remaining austenite at room temperature. . That is, when the residual austenite is transformed into martensite by processing during plastic deformation, the transformation phase formed by the plastic organic transformation along with the strength increases the ductility by relaxing local stress concentration. (TRansformation Induced Plasticity Steel, TRIP Steel) (CAMP-ISIJ vol. 1, p. 877). The TRIP steel is widely used as a high strength steel because it has excellent strength and ductility at the same time.

상기 변태유기소성강은 준안정한 오스테나이트를 상온에서 일정 분율 이상 유지하는 것이 중요하다. 이를 위해서는 Si, Al, P 등을 첨가하여 페라이트 내의 탄소 활동도를 크게 하고, 탄화물의 형성을 억제함으로써 오스테나이트 내의 탄소량을 증가시켜 오스테나이트를 잔류하도록 한다. 탄화물의 형성, 즉 베이나이트 변태를 억제하기 위해서는 소둔 후 연속 냉각시 오스테나이트가 베이나이트로 변태하는 것을 억제하는 원소를 첨가하여 베이나이트 변태를 지연시킴으로써 오스테나이트를 잔류 시키는 방법이 있다. 그러나, 상기 방법으로 다량의 잔류 오스테나이트를 얻기 위해서는 0.2중량% 이상의 탄소와 2.0중량% 이상의 Si을 첨가해야 하기 때문에 열연강판으로 제조시 탄소, 규소 등에 의해 프레시버트(flash-butt) 용접성이 매우 열화되고, 냉간압연을 위해 냉연 판재를 용접하는 경우 공정상 어려움이 있을 뿐만 아니라 최종 제품으로 제조 후에 용접하여 제조하는 부품에도 사용이 곤란한 문제점이 있다. In the metamorphic organic plastic steel, it is important to maintain a metastable austenite at a predetermined fraction or more at room temperature. To this end, Si, Al, P, etc. are added to increase the carbon activity in the ferrite, and the formation of carbides is suppressed to increase the amount of carbon in the austenite so that austenite remains. In order to suppress carbide formation, that is, bainite transformation, there is a method of retaining austenite by adding an element that inhibits austenite transformation into bainite during continuous cooling after annealing and delaying bainite transformation. However, in order to obtain a large amount of retained austenite by the above method, at least 0.2% by weight of carbon and at least 2.0% by weight of Si must be added. Therefore, the flash-butt weldability is very deteriorated by carbon, silicon, etc. when manufacturing a hot rolled steel sheet. In addition, when welding the cold rolled sheet material for cold rolling, there is a difficulty in the process as well as the use of the parts to be manufactured by welding after manufacturing to the final product.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로, 다량의 탄소와 실리콘의 첨가에 의한 도금성과 용접성 열화를 방지할 수 있고, 120kgf/mm2급 이상의 인장강도와 0.6 이하의 항복비를 가져 높은 강도와 동시에 우수한 가공성을 나타내는 강 및 그 제조방법을 제공하는데, 그 목적이 있다.The present invention is to solve the above problems of the prior art, it is possible to prevent the deterioration of plating and weldability due to the addition of a large amount of carbon and silicon, the tensile strength of 120kgf / mm 2 or more grade and yield ratio of 0.6 or less In order to provide a steel exhibiting high strength and excellent workability at the same time and a method of manufacturing the same, an object thereof is provided.

상기한 목적을 달성하기 위한 본 발명은 중량%로, C: 0.10~0.15%, Si: 0.7~1.7%, Mn: 4.0~7.0%, P: 0.03% 이하, S: 0.005% 이하, Al: 0.05~0.15%, N: 0.003% 이하, B: 0.0001~0.002%, Mo: 0.01~0.05%, 나머지 Fe 및 기타 불가피한 불순물을 포함하여 이루어진다. The present invention for achieving the above object by weight, C: 0.10 ~ 0.15%, Si: 0.7 ~ 1.7%, Mn: 4.0 ~ 7.0%, P: 0.03% or less, S: 0.005% or less, Al: 0.05 0.15% or less, N: 0.003% or less, B: 0.0001 to 0.002%, Mo: 0.01 to 0.05%, and remaining Fe and other unavoidable impurities.

또한, 본 발명은 중량%로, C: 0.10~0.15%, Si: 0.7~1.7%, Mn: 4.0~7.0%, P: 0.03% 이하, S: 0.005% 이하, Al: 0.05~0.15%, N: 0.003% 이하, B: 0.0001~0.002%, Mo: 0.01~0.05%, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 1200~1250℃에서 60~180분 동안 재가열하는 단계;In addition, the present invention is in weight%, C: 0.10 to 0.15%, Si: 0.7 to 1.7%, Mn: 4.0 to 7.0%, P: 0.03% or less, S: 0.005% or less, Al: 0.05 to 0.15%, N : 0.003% or less, B: 0.0001 to 0.002%, Mo: 0.01 to 0.05%, reheating the steel slab composed of remaining Fe and other unavoidable impurities at 1200 to 1250 ° C. for 60 to 180 minutes;

상기 재가열한 슬라브를 Ar3~Ar3+100℃에서 마무리 열간압연하고, 560~680℃에서 권취하는 단계; 및Hot-rolling the reheated slab at Ar 3 to Ar 3 + 100 ° C. and winding at 560 to 680 ° C .; And

상기 권취한 열연판을 15~75%의 압하율로 냉간압연하고, 620~650℃에서 1~12시간 동안 상소둔한 다음 공냉하는 단계;를 포함하여 이루어진다. And cold rolling the wound hot rolled sheet at a reduction ratio of 15 to 75%, and annealing for 1 to 12 hours at 620 to 650 ° C., followed by air cooling.

이하, 본 발명에 대하여 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 실리콘과 탄소에 의한 도금성과 용접성 열화를 방지하고 120kgf/mm2 이상의 강도와 우수한 가공성을 가지는 강을 제조하는데 특징이 있는 것이다. 또한, 본 발명에서는 Mn을 4~7중량% 첨가하고 있는데, 이 경우 열연판의 조직이 마르텐사이트로 변화되어 냉간압연에서의 부하가 증가하는 문제점이 있다. 또한, 소둔 후 미세조직이 마르텐사이트 래스경계에서 형성된 잔류 오스테나이트와 마르텐사이트의 층상조직이 되고, 전체적으로 조직이 조대하기 때문에 높은 잔류 오스테나이트 분율에도 불구하고 연신율이 열연강판에 비하여 감소하는 경향이 있다. 따라서, Mn의 다량 첨가에 따른 문제를 본 발명에서 제시하고 있는 냉간압하량, 소둔시간 및 냉각조건을 최적화하여 해결하는데 특징이 있다.The present invention is characterized in preventing the plating and weldability deterioration due to silicon and carbon, and producing steel having strength and excellent workability of 120 kgf / mm 2 or more. In addition, in the present invention, 4 to 7% by weight of Mn is added. In this case, there is a problem in that the structure of the hot rolled sheet is changed to martensite and the load in cold rolling increases. In addition, after annealing, the microstructure becomes a layered structure of the retained austenite and martensite formed in the martensite las boundary, and since the overall structure is coarse, the elongation tends to decrease in comparison with the hot rolled steel sheet despite the high residual austenite fraction. . Therefore, there is a feature to solve the problem of adding a large amount of Mn by optimizing the cold reduction amount, annealing time and cooling conditions proposed in the present invention.

C: 0.10~0.15중량% C: 0.10 to 0.15 wt%

강 중 탄소[C]는 철강재료에서 가장 중요한 성분으로, 강도는 물론 인성, 내식성 등의 모든 물리적, 화학적 특성과 밀접한 관계를 갖는 강의 특성에 가장 큰 영향을 미치는 성분이다. 본 발명과 같은 변태유기소성강의 경우 특히 탄소의 양이 0.10중량% 미만이면 잔류 오스테나이트 안정도가 낮고 분율이 감소하므로 강도와 연성이 크게 감소하며, 0.15중량%를 초과하면 용접성 저하 및 제2상 분율의 급격한 증가로 인하여 가공성이 격감하는 등의 문제점이 있으므로, 그 함량은 0.10~0.15중량%로 제한하는 것이 바람직하다. Carbon [C] in steel is the most important component in steel materials, and it has the greatest influence on the properties of steel that is closely related to all physical and chemical properties such as strength, toughness and corrosion resistance. In the case of the metamorphic organic-plastic steels such as the present invention, especially when the amount of carbon is less than 0.10% by weight, the residual austenite stability is low and the fraction is reduced, thereby greatly reducing the strength and ductility, and when exceeding 0.15% by weight, the weldability decreases and the second phase fraction Since there is a problem such as deterioration of workability due to the sharp increase of the content, it is preferable to limit the content to 0.10 ~ 0.15% by weight.

Si: 0.7~1.7중량%Si: 0.7-1.7 wt%

상기 Si는 페라이트에 고용되는 페라이트 안정화 원소로 강도에 기여하며, 탈산제로 첨가되는 경우가 일반적이다. 변태유기소성강의 경우 Si는 페라이트 내의 탄소의 활동도를 증가시킴으로써 오스테나이트 내의 탄소량을 증가시켜 오스테나이트의 안정도를 향상시키는 역할을 하는 중요한 원소이다. 상기 Si의 함량이 0.7중량% 미만이면 잔류 오스테나이트의 분율이 감소하여 강도가 저하되며, 1.7중량%를 초과하면 열연 스캐일을 유발시킬 뿐만 아니라 용접성도 열화되는 문제점이 있으므로, 그 함량은 0.7~1.7중량%로 제한하는 것이 바람직하다.The Si contributes to strength as a ferrite stabilizing element which is dissolved in ferrite, and is generally added as a deoxidizer. In the case of metamorphic organic plastic steel, Si is an important element that increases the amount of carbon in austenite by increasing the activity of carbon in ferrite, thereby improving the austenite stability. If the content of Si is less than 0.7% by weight, the fraction of retained austenite is reduced and the strength is lowered. If the content of Si is more than 1.7% by weight, not only the hot roll scale is caused, but also the weldability is deteriorated. It is preferable to limit the weight percentage.

또한, 본 발명에 있어서, 상기 Si은 냉각속도가 적당하게 제어되는 경우 베이나이트 변태를 억제하여 잔류 오스테나이트의 형성에 기여하는 성분이기도 하다. In addition, in this invention, said Si is a component which contributes to formation of residual austenite by suppressing bainite transformation when cooling rate is moderately controlled.

Mn: 4~7중량% Mn: 4-7% by weight

상기 Mn은 에시큘러(acicular;침상) 페라이트 및 베이나이트와 같은 저온 변태상 형성을 용이하게 하는, 즉 경화능을 크게 하여 강도를 증가시키는 원소로 오스테나이트 안정화 원소이다. 본 발명에서와 같이 탄소와 실리콘이 0.10~0.15중량%와 0.7-1.7중량% 범위로 첨가되면서 120kgf/mm2 이상의 강도를 가지기 위해서는 4중량% 이상 첨가되어야 하며, 7중량%를 초과하여 첨가되면 용접성이 저하되고, 개재물 형성에 의해 수소유기 취성을 야기할 뿐만 아니라 열간압연시 판재 중앙에 편석대를 형성하므로, 그 함량은 4~7중량%로 제한하는 것이 바람직하다.The Mn is an austenite stabilizing element that facilitates formation of low-temperature transformation phases such as acicular ferrite and bainite, that is, increases hardening ability and increases strength. As in the present invention, carbon and silicon are added in the range of 0.10 to 0.15% by weight and 0.7-1.7% by weight, and in order to have a strength of 120kgf / mm 2 or more, more than 4% by weight should be added, and if it is added in excess of 7% by weight, weldability This decreases, and not only causes hydrogen organic brittleness by forming inclusions, but also forms a segregation zone in the center of the sheet during hot rolling, so that the content thereof is preferably limited to 4 to 7% by weight.

P: 0.03중량% 이하P: 0.03 wt% or less

상기 P가 0.03중량%를 초과하여 첨가되면 취성이 증가하고 용접성이 저하되므로, 그 함량은 0.03중량% 이하로 제한하는 것이 바람직하다. If the P is added in excess of 0.03% by weight, brittleness increases and weldability is lowered, so the content thereof is preferably limited to 0.03% by weight or less.

S: 0.005중량% 이하S: 0.005 wt% or less

상기 S이 0.005중량%를 초과하여 함유되면 열연판에 조대한 TiS와 MnS가 생성되어 가공성과 인성을 저하시키므로, 그 함량은 0.005중량% 이하로 제한하는 것이 바람직하다. When the S content exceeds 0.005% by weight, coarse TiS and MnS are formed in the hot rolled sheet, thereby decreasing workability and toughness. Therefore, the content is preferably limited to 0.005% by weight or less.

Al: 0.05~0.15중량%Al: 0.05 ~ 0.15 wt%

상기 Al은 탈산작용을 위해 첨가되며, 강 중의 N과 결합하여 AlN을 형성함으로써 고온에서 오스테나이트의 결정립을 미세하게 하는데 유효한 성분이다. 상기 Al의 첨가량이 0.05중량% 미만이면 첨가에 따른 상기 효과를 얻을 수 없고, 0.15중량%를 초과하면 조대한 석출상 형성에 의한 인성저하 및 제조원가 상승의 원인이 되므로, 그 함량은 0.05~0.15중량%로 제한하는 것이 바람직하다. The Al is added for deoxidation and is an effective component for making fine grains of austenite at a high temperature by combining with N in steel to form AlN. If the amount of Al added is less than 0.05% by weight, the effect of the addition cannot be obtained. If the amount of Al is exceeded, the content of 0.05 to 0.15% is caused because the toughness of the coarse precipitate is formed and the production cost is increased. It is desirable to limit to%.

N: 0.003중량% 이하N: 0.003 wt% or less

상기 N가 0.003중량%를 초과하여 첨가되면 조대한 질화물을 형성하여 인성을 저하시키므로, 그 함량은 0.003중량% 이하로 제한하는 것이 바람직하다. When N is added in excess of 0.003% by weight, coarse nitrides are formed to reduce toughness, so the content thereof is preferably limited to 0.003% by weight or less.

B: 0.0001-0.002중량%B: 0.0001-0.002 wt%

상기 B는 강 중에 소량 첨가되어도 강의 경화능을 크게 하는 성분으로, 에시큘러 페라이트 및 베이나이트와 같은 저온 변태상 형성을 용이하게 한다. 0.0001중량% 이상 첨가되면 고온에서 오스테나이트 입계에 편석되어 페라이트 형성을 억제함으로써 강의 경화능에 기여하며, 0.002중량%를 초과하여 첨가되면 용접성을 열화시키고 재결정온도를 과다하게 상승시켜 드로잉성을 저하시키므로, 그 함량은 0.0001~0.002중량%로 제한하는 것이 바람직하다. B is a component that increases the hardenability of the steel even when a small amount is added to the steel, and facilitates the formation of low-temperature transformation phases such as ecicular ferrite and bainite. If it is added more than 0.0001% by weight, it segregates at the austenite grain boundary at high temperature, thereby suppressing ferrite formation, contributing to the hardenability of the steel, and when it is added more than 0.002% by weight, the weldability is degraded and the recrystallization temperature is excessively increased, which lowers the drawing ability. The content is preferably limited to 0.0001 to 0.002% by weight.

Mo: 0.01~0.05중량%Mo: 0.01 ~ 0.05% by weight

상기 Mo는 강의 경화능 향상을 통해 강도를 증가시키고자 첨가되며, 상기 Mo의 함량이 0.01중량% 미만이면 강도의 증가량이 적으며, 0.05중량%를 초과하면 경질상의 분율을 크게 하여 연신율을 감소시키고, 용접성이 저하될 뿐만 아니라 제조원가도 상승시키므로, 그 함량은 0.01~0.05중량%로 제한하는 것이 바람직하다. The Mo is added to increase the strength through improving the hardenability of the steel, the amount of increase is less when the Mo content is less than 0.01% by weight, and when the content exceeds 0.05% by weight of the hard phase to increase the elongation to decrease In addition, the weldability not only decreases, but also increases the manufacturing cost, so that the content is preferably limited to 0.01 to 0.05% by weight.

상기한 성분 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다. In addition to the above components, the remainder is composed of Fe and other unavoidable impurities.

상기와 같은 조성을 갖는 슬라브는 제강공정을 통해 용강을 얻은 다음에 주조 또는 연속주조공정을 통해 제조된다. 이 슬라브를 재가열공정, 열간압연공정, 권취공정, 냉간압연공정, 소둔공정을 통해 목표로 하는 기계적 성질을 갖는 냉연강판으로 제조하게 되는데, 이하 각 공정별 제조조건을 구체적으로 설명한다. The slabs having the composition as described above are obtained by casting or continuous casting after obtaining molten steel through a steelmaking process. The slab is manufactured from a cold rolled steel sheet having a target mechanical property through a reheating process, a hot rolling process, a winding process, a cold rolling process, and an annealing process. Hereinafter, manufacturing conditions for each process will be described in detail.

재가열공정Reheating process

상기와 같이 조성되는 슬라브를 1200~1250℃에서 60~180분 동안 재가열한다. 상기 재가열 온도가 1200℃ 미만이면 연속주조시 형성된 조대한 탄화물들이 재용해되기가 어렵고, 1250℃를 초과하면 가열로 온도 유지에 필요한 원가가 크게 증가하므로, 상기 재가열 온도는 1200~1250℃로 제한하는 것이 바람직하다. 상기 재가열 시간이 60분 미만이면 온도가 1200℃ 미만인 경우와 마찬가지로 연속주조시 형성된 조대한 탄화물들이 재용해되기 어렵고, 180분을 초과하면 생산성이 저하되므로, 상기 재가열 시간은 60~180분으로 제한하는 것이 바람직하다. The slab, which is formed as described above, is reheated at 1200 to 1250 ° C. for 60 to 180 minutes. If the reheating temperature is less than 1200 ℃ coarse carbides formed during continuous casting is difficult to re-dissolve, if it exceeds 1250 ℃ the cost required to maintain the furnace temperature is greatly increased, the reheating temperature is limited to 1200 ~ 1250 ℃ It is preferable. When the reheating time is less than 60 minutes, the coarse carbides formed during continuous casting are hardly re-dissolved as in the case where the temperature is less than 1200 ° C., and when the reheating time is longer than 180 minutes, the productivity is lowered, so the reheating time is limited to 60 to 180 minutes. It is preferable.

열간압연공정 Hot rolling process

이후, 가열된 슬라브를 Ar3~Ar3+100℃에서 마무리 열간압연한다. 상기 마무리 열간압연 온도과 Ar3 미만이면 열간압연 중에 형성된 페라이트 내에 많은 전위가 도입되고 이러한 페라이트가 냉각 혹은 권취중에 성장하여 표면 조대립을 형성하여 저온에서 압연하는 경우 압연롤의 부하를 증가시키게 되고, Ar3+100℃를 초과하면 작업상 어려움을 초래하므로, 상기 마무리 열간압연 온도는 Ar3~Ar3+100℃으로 제한하는 것이 바람직하다.Thereafter, the heated slabs are finished hot rolled at Ar 3 to Ar 3 + 100 ° C. If the finishing hot rolling temperature and Ar 3 is less than a lot of dislocations are introduced into the ferrite formed during hot rolling, and these ferrites grow during cooling or winding to form surface coarse grains and increase the load of the rolling rolls when rolling at low temperatures. If it exceeds 3 + 100 ℃ temperature operation difficulties the finish, so causing the hot rolling it is preferably limited to the Ar 3 ~ Ar 3 + 100 ℃ .

권취공정Winding process

이후, 상기 열간압연한 압연판을 560~680℃에서 권취한다. 상기 권취온도가 560℃ 미만이면 생산성이 저하될 뿐만 아니라 강 중 탄소의 석출이 지연되어 드로잉성이 저하되며, 680 ℃를 초과하면 탄화물이 너무 조대하게 형성되어 소둔시 재고용되기 어렵고 내부에 불균일조직을 유발하여 가공성을 크게 열화시키므로, 상기 귄취온도는 560~680℃로 제한하는 것이 바람직하다. Then, the hot rolled rolled sheet is wound at 560 ~ 680 ℃. If the coiling temperature is less than 560 ℃, not only the productivity is lowered, but also the delay of the precipitation of carbon in the steel, the drawing property is lowered, if it exceeds 680 ℃ carbides are formed too coarse to be difficult to re-use when annealing and there is a non-uniform structure inside Induces a great deterioration of workability, so the odor temperature is preferably limited to 560 ~ 680 ℃.

냉간압연공정Cold rolling process

상기 권취한 열연판을 15~75%의 압하율로 냉간압연한다. 상기 냉간 압하율은 열연조건과 더불어 미세조직에 크게 영향을 미치는 변수로, 15% 미만이면 조직이 균일하지 못해 가공성이 낮으며, 75%를 초과하면 작업 공정에 부하가 발생하므로, 상기 냉간 압하율은 15~75%로 제한하는 것이 바람직하다. The wound hot rolled sheet is cold rolled at a reduction ratio of 15 to 75%. The cold reduction rate is a variable that greatly affects the microstructure in addition to the hot rolling conditions. If the cold reduction rate is less than 15%, the workability is low because the tissue is not uniform. If the cold reduction rate exceeds 75%, the cold reduction rate is increased. Is preferably limited to 15-75%.

본 발명에 있어서, 미세조직에 대한 냉간 압하율의 영향을 살펴보면, 냉간 압하율이 증가할수록 열간 압연에서 형성된 래스 형태가 분해되어 과립상(granular) 형태로 바뀌게 되며, 따라서 소둔-냉각 후에 형성되는 2차상의 모폴로지(morphology; 크기, 모양과 분포)도 바뀌게 된다. 이때 형성되는 2차상인 잔류 오스테나이트의 모폴로지도 변하여 기계적 특성이 달라진다. 경질상에 둘러쌓인 잔류 오스테나이트의 경우 충분한 변형이 가해지더라도 마르텐사이트로 변태되지 못하여 연성에 기여하지 못하지만 과립상(granular)의 잔류 오스테나이트는 분율이 증가하면 연성과 가공성에 크게 기여를 하게 된다. In the present invention, looking at the effect of cold reduction rate on the microstructure, as the cold reduction rate increases, the lattice form formed in the hot rolling is decomposed and converted into granular form, thus forming 2 after annealing-cooling. Next-generation morphology (size, shape and distribution) will also change. At this time, the morphology of the retained austenite, the secondary phase formed, is also changed, and the mechanical properties are changed. In the case of residual austenite enclosed in the hard phase, even if sufficient deformation is applied, it cannot be converted into martensite and thus does not contribute to ductility.

소둔공정Annealing Process

상기 냉연판을 620~650℃에서 1~12시간 동안 상소둔한다. 상기 소둔온도가 620℃ 미만이면 충분한 재고용이 어려워 열연시의 조대한 조직이 계속 유지되므로 가공성이 저하되며, 650℃를 초과하면 미세조직이 조대하게 되어 강도가 감소하게 되므로, 상기 소둔온도는 620~650℃로 제한하는 것이 바람직하다. 상기 소둔시간은 강도와 연신율에 큰 영향을 미치며, 120kgf/mm2급의 강도를 가지면서 연신율 확보를 위해서는 냉간압연된 판재가 충분히 재결정되어야하므로 최소 1시간 이상 유지하여야 하며, 12시간을 초과하면 생산성저하와 고온 유지에 필요한 에너지 소모량이 증가하여 제조원가가 상승되므로, 상기 소둔시간은 1~12시간으로 제한하는 것이 바람직하다.The cold rolled sheet is subjected to annealing for 1 to 12 hours at 620 to 650 ° C. If the annealing temperature is less than 620 ℃, it is difficult to restock enough to maintain the coarse structure at the time of hot rolling, so the workability is lowered, and if it exceeds 650 ℃ fine structure becomes coarse to decrease the strength, the annealing temperature is 620 ~ It is preferable to limit to 650 ° C. The annealing time greatly affects the strength and elongation, and the cold-rolled sheet must be sufficiently recrystallized to secure the elongation while having a strength of 120kgf / mm 2 , so that the annealing time should be maintained for at least 1 hour. Since the energy consumption required for lowering and maintaining the high temperature increases and the manufacturing cost is increased, the annealing time is preferably limited to 1 to 12 hours.

이후 냉각은 상소둔 조건을 고려하여 강도 증가에 따른 연신율 감소를 방지하기 위하여 공냉으로 실시하는 것이 바람직하다. Since cooling is preferably carried out by air cooling to prevent elongation decrease due to the increase in strength in consideration of the annealing conditions.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기 표 1의 조성을 갖는 슬라브를 하기 표 2의 조건으로 재가열, 마무리 열간압연, 권취, 냉간압연 및 소둔하였으며, 이후 공냉하였다. The slabs having the composition of Table 1 were reheated, finished hot rolled, wound, cold rolled and annealed under the conditions of Table 2 below, followed by air cooling.

강종Steel grade CC MnMn SiSi PP SS AlAl NN MoMo BB 비교강AComparative Steel A 0.150.15 6.56.5 0.50.5 0.020.02 0.0020.002 0.110.11 0.00170.0017 0.050.05 0.00150.0015 발명강AInventive Steel A 0.150.15 6.56.5 1.01.0 0.020.02 0.0020.002 0.100.10 0.00200.0020 0.050.05 0.00130.0013 발명강BInventive Steel B 0.150.15 6.56.5 1.51.5 0.020.02 0.0020.002 0.130.13 0.00190.0019 0.050.05 0.00150.0015 비교강BComparative Steel B 0.10.1 44 0.50.5 0.020.02 0.0020.002 0.110.11 0.00170.0017 0.050.05 0.00150.0015 비교강CComparative Steel C 0.150.15 44 0.50.5 0.020.02 0.0020.002 0.110.11 0.00170.0017 0.050.05 0.00150.0015 비교강DComparative Steel D 0.20.2 44 0.50.5 0.020.02 0.0020.002 0.110.11 0.00170.0017 0.050.05 0.00150.0015

구분division 강종Steel grade 재가열온도(℃)Reheating Temperature (℃) 재가열시간(분)Reheat time (minutes) 마무리열간압연온도(℃)Finishing Hot Rolling Temperature (℃) 권취온도(℃)Winding temperature (℃) 냉간압하율(%)Cold rolling reduction (%) 소둔온도(℃)Annealing Temperature (℃) 소둔시간(시간)Annealing time (hours) 비교예1Comparative Example 1 비교강A Comparative Steel A 12001200 6060 900900 620620 1515 645645 1212 비교예2Comparative Example 2 12001200 6060 900900 620620 3030 645645 1212 비교예3Comparative Example 3 12001200 6060 900900 620620 4545 645645 1One 비교예4Comparative Example 4 12001200 6060 900900 620620 6060 645645 1One 발명예1Inventive Example 1 발명강A Inventive Steel A 12001200 6060 900900 620620 3030 645645 1212 발명예2Inventive Example 2 12001200 6060 900900 620620 4545 645645 1212 발명예3Inventive Example 3 12001200 6060 900900 620620 6060 645645 1212 발명예4Inventive Example 4 12001200 6060 900900 620620 7575 645645 1212 발명예5Inventive Example 5 발명강B Inventive Steel B 12001200 6060 900900 620620 1515 645645 1212 발명예6Inventive Example 6 12001200 6060 900900 620620 3030 645645 1212 발명예7Inventive Example 7 12001200 6060 900900 620620 4545 645645 1212 발명예8Inventive Example 8 12001200 6060 900900 620620 6060 645645 1212 발명예9Inventive Example 9 12001200 6060 900900 620620 7575 645645 1212 비교예5Comparative Example 5 비교강BComparative Steel B 12001200 6060 900900 620620 4545 620620 1212 비교예6Comparative Example 6 12001200 6060 900900 620620 4545 645645 1212 비교예7Comparative Example 7 비교강CComparative Steel C 12001200 6060 900900 620620 4545 620620 1212 비교예8Comparative Example 8 12001200 6060 900900 620620 4545 645645 1212 비교예9Comparative Example 9 비교강DComparative Steel D 12001200 6060 900900 620620 4545 620620 1212 비교예10Comparative Example 10 12001200 6060 900900 620620 4545 645645 1212

상기와 같이 제조된 시편을 이용하여 강도와 연신율 및 가공성을 나타내는 항복비를 구하였으며, 그 결과는 하기 표 3과 같다. Yield ratios representing strength, elongation and processability were calculated using the specimens prepared as described above, and the results are shown in Table 3 below.

구분division 항복강도(kgf/㎟)Yield strength (kgf / ㎡) 인장강도(kgf/㎟)Tensile strength (kgf / ㎡) 균일연신율(%)Uniform elongation (%) 전체연신율(%)% Total elongation 항복비Yield fee 비교예1Comparative Example 1 69.0169.01 113.20113.20 29.4429.44 34.7234.72 0.610.61 비교예2Comparative Example 2 68.3068.30 116.92116.92 21.9821.98 31.6931.69 0.580.58 비교예3Comparative Example 3 82.7582.75 107.68107.68 26.7926.79 32.4032.40 0.770.77 비교예4Comparative Example 4 83.1683.16 109.11109.11 23.0723.07 30.0830.08 0.760.76 발명예1Inventive Example 1 65.4065.40 124.92124.92 14.4914.49 24.2024.20 0.520.52 발명예2Inventive Example 2 65.9065.90 126.87126.87 16.3016.30 19.3019.30 0.520.52 발명예3Inventive Example 3 66.0066.00 129.33129.33 13.6613.66 18.0018.00 0.510.51 발명예4Inventive Example 4 64.5064.50 130.35130.35 9.629.62 15.0015.00 0.490.49 발명예5Inventive Example 5 64.2064.20 129.50129.50 15.3215.32 20.6020.60 0.500.50 발명예6Inventive Example 6 64.1064.10 131.00131.00 8.698.69 18.4018.40 0.490.49 발명예7Inventive Example 7 63.8063.80 135.20135.20 12.9012.90 15.9015.90 0.470.47 발명예8Inventive Example 8 63.9063.90 138.40138.40 10.2610.26 14.6014.60 0.460.46 발명예9Inventive Example 9 62.4062.40 138.70138.70 8.128.12 13.5013.50 0.450.45 비교예5Comparative Example 5 80.5080.50 93.6093.60 33.2033.20 40.0040.00 0.860.86 비교예6Comparative Example 6 80.5080.50 93.6093.60 33.2033.20 40.0040.00 0.860.86 비교예7Comparative Example 7 43.0043.00 57.8057.80 21.2021.20 35.2035.20 0.740.74 비교예8Comparative Example 8 38.6038.60 57.7057.70 24.0024.00 37.4037.40 0.670.67 비교예9Comparative Example 9 42.3042.30 60.4060.40 18.4018.40 34.5034.50 0.700.70 비교예10Comparative Example 10 39.5039.50 59.9059.90 22.5022.50 37.2037.20 0.660.66

판재의 가공성은 재료의 항복비와 밀접한 관계를 갖게 되는데, 항복비가 낮을수록 가공성은 향상된다.The workability of the plate is closely related to the yield ratio of the material. The lower the yield ratio, the better the workability.

상기 표 3에서 알 수 있는 바와 같이, 본 발명에 따른 발명예1~9는 120kgf/mm2 이상의 인장강도를 가질 뿐만 아니라 0.6 이하의 항복비를 가져 가공성도 매우 우수함을 알 수 있다. 그러나, 본 발명의 범위를 벗어난 비교예1~10은 120kgf/mm2 미만의 인장강도를 갖거나 0.6 이상의 항복비를 갖는 것을 알 수 있다.As can be seen in Table 3, Inventive Examples 1 to 9 according to the present invention can be seen that not only has a tensile strength of 120kgf / mm 2 or more, but also has a yield ratio of 0.6 or less, very excellent workability. However, it can be seen that Comparative Examples 1 to 10 outside the scope of the present invention have a tensile strength of less than 120 kgf / mm 2 or a yield ratio of 0.6 or more.

도 1은 본 발명에 따라 제조된 발명강A, B와 비교강A의 냉간압하율에 따른 인장강도 및 항복강도를 나타낸 그래프이다. 도 1에서 알 수 있는 바와 같이, 본 발명에 따른 발명강A, B는 120kgf/mm2 이상의 인장강도를 가지며, 비교강A는 그렇지 못함을 알 수 있다.1 is a graph showing the tensile strength and yield strength according to the cold reduction rate of the inventive steels A, B and comparative steel A prepared according to the present invention. As can be seen in Figure 1, the invention steels A, B according to the present invention has a tensile strength of 120kgf / mm 2 or more, it can be seen that the comparative steel A does not.

또한, 발명강의 경우 냉간압하율이 증가하고 Si함량이 증가할수록 인장강도와 항복강도가 증가하게 되는데, 이는 냉간압하율이 증가할수록 조직이 미세해지고, Si함량이 증가할수록 오스테나이트의 안정도가 증가하여 가공경화율이 커지기 때문이다. In addition, in the case of the invention steel, as the cold reduction rate increases and the Si content increases, the tensile strength and the yield strength increase, which means that the structure becomes finer as the cold reduction rate increases, and the stability of the austenite increases as the Si content increases. This is because the work hardening rate increases.

도 2는 본 발명에 따라 제조된 발명강A, B와 비교강A의 냉간압하율에 따른 전체연신율 및 항복비를 나타낸 그래프이다. 도 2에서 알 수 있는 바와 같이, 본 발명에 따른 발명강A, B는 0.6 이하의 항복비를 가져 가공성이 매우 우수하나, 비교강A는 그렇지 못함을 알 수 있다. 2 is a graph showing the total elongation and yield ratio according to the cold reduction rate of the inventive steels A, B and comparative steel A prepared according to the present invention. As can be seen in Figure 2, the invention steels A, B according to the present invention has a yield ratio of 0.6 or less, but very excellent workability, it can be seen that comparative steel A does not.

상술한 바와 같이, 본 발명에 따르면 120kgf/mm2 이상의 높은 인장강도와 0.6 이하의 낮은 항복비를 갖는 가공성이 뛰어난 고강도 강을 제조할 수 있어, 이를 이용하여 자동차 구조용 부품을 제조할 경우 높은 강도의 부품을 용이하게 제조할 수 있는 효과가 있다.As described above, according to the present invention, a high-strength steel having excellent workability having a high tensile strength of 120 kgf / mm 2 and a low yield ratio of 0.6 or less can be manufactured. There is an effect that can be easily manufactured parts.

도 1은 본 발명에 따라 제조된 발명강 및 비교강의 냉간압하율에 따른 인장강도 및 항복강도를 나타내는 그래프이다.1 is a graph showing the tensile strength and the yield strength according to the cold reduction rate of the inventive steel and comparative steel produced according to the present invention.

도 2는 본 발명에 따라 제조된 발명강 및 비교강의 냉간압하율에 따른 전체 연신율 및 항복비를 나타내는 그래프이다. 2 is a graph showing the total elongation and yield ratio according to the cold reduction rate of the inventive steel and comparative steel produced according to the present invention.

Claims (2)

중량%로, C: 0.10~0.15%, Si: 0.7~1.7%, Mn: 4.0~7.0%, P: 0.03% 이하, S: 0.005% 이하, Al: 0.05~0.15%, N: 0.003% 이하, B: 0.0001~0.002%, Mo: 0.01~0.05%, 나머지 Fe 및 기타 불가피한 불순물을 포함하여 이루어지는 가공성이 우수한 120kgf/mm2급 초고강도 강.By weight%, C: 0.10 to 0.15%, Si: 0.7 to 1.7%, Mn: 4.0 to 7.0%, P: 0.03% or less, S: 0.005% or less, Al: 0.05 to 0.15%, N: 0.003% or less, B: 0.0001 ~ 0.002%, Mo: 0.01 ~ 0.05%, 120kgf / mm grade 2 super high strength steel with excellent workability including remaining Fe and other unavoidable impurities. 중량%로, C: 0.10~0.15%, Si: 0.7~1.7%, Mn: 4.0~7.0%, P: 0.03% 이하, S: 0.005% 이하, Al: 0.05~0.15%, N: 0.003% 이하, B: 0.0001~0.002%, Mo: 0.01~0.05%, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강 슬라브를 1200~1250℃에서 60~180분 동안 재가열하는 단계;By weight%, C: 0.10 to 0.15%, Si: 0.7 to 1.7%, Mn: 4.0 to 7.0%, P: 0.03% or less, S: 0.005% or less, Al: 0.05 to 0.15%, N: 0.003% or less, B: 0.0001 to 0.002%, Mo: 0.01 to 0.05%, reheating the steel slab composed of the remaining Fe and other unavoidable impurities at 1200 to 1250 ° C. for 60 to 180 minutes; 상기 재가열한 슬라브를 Ar3~Ar3+100℃에서 마무리 열간압연하고, 560~680℃에서 권취하는 단계; 및Hot-rolling the reheated slab at Ar 3 to Ar 3 + 100 ° C. and winding at 560 to 680 ° C .; And 상기 권취한 열연판을 15~75%의 압하율로 냉간압연하고, 620~650℃에서 1~12시간 동안 상소둔한 다음 공냉하는 단계;를 포함하여 이루어지는 가공성이 우수한 120kgf/mm2급 초고강도 강의 제조방법.Cold rolled hot rolled sheet at a reduction ratio of 15 to 75%, and annealing for 1 to 12 hours at 620 to 650 ° C., followed by air cooling; 120 kgf / mm grade 2 high strength steel having excellent processability, including Manufacturing method.
KR1020030068654A 2003-10-02 2003-10-02 Ultra high strength steel of 120kgf/? grade having excellent formability KR101008104B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030068654A KR101008104B1 (en) 2003-10-02 2003-10-02 Ultra high strength steel of 120kgf/? grade having excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030068654A KR101008104B1 (en) 2003-10-02 2003-10-02 Ultra high strength steel of 120kgf/? grade having excellent formability

Publications (2)

Publication Number Publication Date
KR20050032721A true KR20050032721A (en) 2005-04-08
KR101008104B1 KR101008104B1 (en) 2011-01-13

Family

ID=37237103

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030068654A KR101008104B1 (en) 2003-10-02 2003-10-02 Ultra high strength steel of 120kgf/? grade having excellent formability

Country Status (1)

Country Link
KR (1) KR101008104B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142362A1 (en) * 2008-05-20 2009-11-26 Posco High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same
US9194030B2 (en) 2008-05-19 2015-11-24 Posco High strength thin steel sheet for the superior press formability and surface quality and galvanized steel sheet and method for manufacturing the same
JP2019523827A (en) * 2016-06-21 2019-08-29 ポスコPosco Ultra high strength and high ductility steel sheet with excellent yield strength and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209039A (en) * 1996-02-08 1997-08-12 Nisshin Steel Co Ltd Production of high strength cold rolled steel sheet excellent in deep drawability
JP3498504B2 (en) 1996-10-23 2004-02-16 住友金属工業株式会社 High ductility type high tensile cold rolled steel sheet and galvanized steel sheet
CA2278841C (en) 1997-01-29 2007-05-01 Nippon Steel Corporation High strength steels having excellent formability and high impact energy absorption properties, and a method for producing the same
JP4608739B2 (en) 2000-06-14 2011-01-12 Jfeスチール株式会社 Manufacturing method of steel pipe for automobile door reinforcement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9194030B2 (en) 2008-05-19 2015-11-24 Posco High strength thin steel sheet for the superior press formability and surface quality and galvanized steel sheet and method for manufacturing the same
US9598753B2 (en) 2008-05-19 2017-03-21 Posco High strength thin steel sheet for the superior press formability and surface quality and galvanized steel sheet and method for manufacturing the same
WO2009142362A1 (en) * 2008-05-20 2009-11-26 Posco High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same
KR101027250B1 (en) * 2008-05-20 2011-04-06 주식회사 포스코 High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same
US9109273B2 (en) 2008-05-20 2015-08-18 Posco High strength steel sheet and hot dip galvanized steel sheet having high ductility and excellent delayed fracture resistance and method for manufacturing the same
JP2019523827A (en) * 2016-06-21 2019-08-29 ポスコPosco Ultra high strength and high ductility steel sheet with excellent yield strength and method for producing the same
US10752968B2 (en) 2016-06-21 2020-08-25 Posco Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor

Also Published As

Publication number Publication date
KR101008104B1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
KR100711361B1 (en) High strength hot rolled steel sheet containing high Mn with excellent formability, and method for manufacturing the same
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
KR20090070150A (en) Hot rolled steel sheet having superior hot press forming property and high tensile strength, formed article using the steel sheet and method for manufacturing the steel sheet and the formed article
CN108913991A (en) With good 980MPa grades of cold rolling Multiphase Steels of reaming performance and preparation method thereof
KR20150075306A (en) Ultra-high strength hot-rolled steel sheet with excellent in bending workability, and method for producing the same
KR20220073762A (en) Composite steel with high hole expandability and manufacturing method therefor
KR100985322B1 (en) High strength cold rolled steel sheet having superior workability
KR101109953B1 (en) High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same
KR101008104B1 (en) Ultra high strength steel of 120kgf/? grade having excellent formability
KR20100047015A (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
KR100957965B1 (en) High Strength Hot Rolled Steel Sheet for Hot Forming with Reduced Cracking in Cooling and Coiling and Manufacturing Method Thereof
KR20150075321A (en) Ultra high strength cold rolled steel sheet having excellent shape property and method for manufacturing the same
KR101988760B1 (en) Ultra-high strength steel sheet having excellent formability, and method for manufacturing thereof
KR101543836B1 (en) High strength hot rolled steel sheet having excellent impact resistance and formability and method for manufacturing the same
KR101153696B1 (en) Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof
KR101353551B1 (en) High carbon hot/cold rolled steel coil and manufactureing method thereof
KR101035767B1 (en) Hot-rolled steel sheet with good formability, and method for producing the same
KR100270395B1 (en) The manufacturing method forlow alloy composite structure type high strength cold rolling steel sheet with excellent press workability
KR100415671B1 (en) A TENSILE STRENGTH 80kg/㎟ GRADE HOT ROLLED STEEL SHEET WITH SUPERIOR FATIGUE PROPERTY AND A METHOD FOR MANUFACTURING IT
KR20110076431A (en) Hot rolled high strength steel sheet having excellent workability and method for manufacturing the same
KR100555582B1 (en) TRIP Steel Sheet Having more than 980MPa High Strength And 25% Elongation Ratio ,And Manufacturing Method Thereof
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
KR100723188B1 (en) Hot-rolled steel sheet having superior strength and formability and method for manufacturing the steel sheet
KR101091282B1 (en) Method for manufacturing 780MPa grade hot rolled steel sheet having excellent weldability
KR101696097B1 (en) Non heat treated wire rod having excellent high strength and impact toughness and method for manafacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140107

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150107

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160106

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170104

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180105

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200106

Year of fee payment: 10