KR100415671B1 - A TENSILE STRENGTH 80kg/㎟ GRADE HOT ROLLED STEEL SHEET WITH SUPERIOR FATIGUE PROPERTY AND A METHOD FOR MANUFACTURING IT - Google Patents

A TENSILE STRENGTH 80kg/㎟ GRADE HOT ROLLED STEEL SHEET WITH SUPERIOR FATIGUE PROPERTY AND A METHOD FOR MANUFACTURING IT Download PDF

Info

Publication number
KR100415671B1
KR100415671B1 KR10-1999-0063055A KR19990063055A KR100415671B1 KR 100415671 B1 KR100415671 B1 KR 100415671B1 KR 19990063055 A KR19990063055 A KR 19990063055A KR 100415671 B1 KR100415671 B1 KR 100415671B1
Authority
KR
South Korea
Prior art keywords
tensile strength
steel sheet
rolled steel
hot rolled
strength
Prior art date
Application number
KR10-1999-0063055A
Other languages
Korean (ko)
Other versions
KR20010060649A (en
Inventor
박기종
김진철
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0063055A priority Critical patent/KR100415671B1/en
Publication of KR20010060649A publication Critical patent/KR20010060649A/en
Application granted granted Critical
Publication of KR100415671B1 publication Critical patent/KR100415671B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 고강도 열연강판 및 그 제조방법에 관한 것으로서, 강성분 및 최종 조직을 적절히 제어함으로써, 우수한 강도 및 내구비(피로한도/인장강도)를 동시에 갖는 피로특성이 우수한 인장강도 80㎏/㎟급 열연강판 및 그의 제조방법을 제공하는데, 그 목적이 있다.The present invention relates to a high-strength hot-rolled steel sheet and a method of manufacturing the same, and by appropriately controlling the steel component and the final structure, tensile strength of 80 kg / mm2 class with excellent fatigue characteristics simultaneously with excellent strength and durability (fatigue limit / tensile strength) It is an object of the present invention to provide a hot rolled steel sheet and a method of manufacturing the same.

본 발명은 중량%로 C: 0.05~0.12%, Si: 0.01~0.3%, Mn: 1.0~2.2%, P: 0.02% 이하, S: 0.005% 이하, Al: 0.01~0.05%, Ti: 0.05~0.20%, Nb: 0.02~0.035%, Mo: 0.1~0.3%, N: 80~110ppm, 잔부 Fe 및 기타 불가피한 불순물을 함유하는 피로특성이 우수한 인장강도 80kg/㎟급 열연강판 및 그 제조방법을, 기 기술적 요지로 한다.In the present invention, C: 0.05 to 0.12%, Si: 0.01 to 0.3%, Mn: 1.0 to 2.2%, P: 0.02% or less, S: 0.005% or less, Al: 0.01 to 0.05%, Ti: 0.05 to Tensile strength 80kg / mm2 hot rolled steel sheet with excellent fatigue properties containing 0.20%, Nb: 0.02 ~ 0.035%, Mo: 0.1 ~ 0.3%, N: 80 ~ 110ppm, balance Fe and other unavoidable impurities, This is a technical point.

Description

피로특성이 우수한 인장강도 80㎏/㎟급 열연강판 및 그 제조방법{A TENSILE STRENGTH 80kg/㎟ GRADE HOT ROLLED STEEL SHEET WITH SUPERIOR FATIGUE PROPERTY AND A METHOD FOR MANUFACTURING IT}Tensile strength 80 ㎏ / ㎠ class hot rolled steel sheet with excellent fatigue characteristics and manufacturing method {A TENSILE STRENGTH 80 kg / ㎠ GRADE HOT ROLLED STEEL SHEET WITH SUPERIOR FATIGUE PROPERTY AND A METHOD FOR MANUFACTURING IT}

본 발명은 자동차 휠, 프레임 등의 구조재료에 적용되는 피로특성이 우수한 열연강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 강 성분 및 최종 조직분율을 적절히 조정함으로써, 0.6이상의 우수한 내구비(피로한도/인장강도) 와 우수한 피로특성을 갖는 인장강도 80kg/㎟급 열연강판 및 그 제조방법에 관한 것이다.The present invention relates to a hot rolled steel sheet having excellent fatigue characteristics applied to structural materials such as automobile wheels and frames, and a method for manufacturing the same. More specifically, by appropriately adjusting the steel component and the final structure fraction, an excellent durability ratio of 0.6 or more can be achieved. Degree / tensile strength) and tensile strength of 80kg / mm2 grade hot rolled steel sheet having excellent fatigue properties and a method of manufacturing the same.

자동차용 구조재로 사용되는 열연강판은 주로 인장강도 60㎏/㎟급 열연강판이 사용되고 있는데, 이와 같은 구조용 열연강판에서는 강도외에 프레임 가공에서의 굽힘특성, 운행중 구조체로서의 안정성을 유지하기 위한 피로특성이 요구되고 있다.Hot rolled steel sheet used as structural material for automobiles is mainly used for tensile strength 60㎏ / ㎠ class hot rolled steel sheet. In this structural hot rolled steel sheet, in addition to strength, bending characteristics in frame processing and fatigue characteristics to maintain stability as a structure during operation are required. It is becoming.

최근에는 자동차 경량화를 달성하기 위해 자동차 구조물에 사용되는 열연강판의 인장강도를 80㎏/㎟급까지 요구하고 있는데, 이와 같이 고강도로 제조하면 두께감소로 인한 자동차 경량화가 가능하기 때문이다.Recently, the tensile strength of hot-rolled steel sheets used in automobile structures is required up to 80 kg / mm2 class in order to achieve lightweight automobiles, because such high strength manufacturing makes it possible to reduce automobile weight due to thickness reduction.

그러나, 고강도강판으로의 전환은 화학성분 및 미세조직을 제어함으로써 달성할 수 있지만, 인장강도의 증가량 만큼 피로특성은 개선되지 않기 때문에 강도의 증가와 함께 피로특성을 향상시키는 것이 필요하다.However, the conversion to a high strength steel sheet can be achieved by controlling the chemical composition and the microstructure, but since the fatigue properties are not improved as much as the increase in tensile strength, it is necessary to improve the fatigue properties with the increase of the strength.

한편, 자동차용 휠은 프레스성형 및 림(rim)과 디스크(disk)의 용접공정으로 제조되고 있는데, 이들 공정에서 소재의 피로특성에 영향을 줄 수 있는 요인들은 성형시 조직내부의 개재물 및 석출물에 의한 미세균열형성, 성형 또는 용접시 잔류응력등의 발생으로 요약될 수 있다. 이중 조직내부의 개재물 및 석출물에 의한 미세균열형성은 강도별, 미세조직(microstructure)에 따라 다르게 나타날 수 있기 때문에, 이들의 영향은 소재의 피로특성에 영향을 미치게 된다.On the other hand, automotive wheels are manufactured by press molding and welding of rims and disks. In these processes, factors that can affect the fatigue properties of materials are included in the inclusions and precipitates inside the tissue during molding. This can be summarized as the occurrence of microcracks, residual stresses during molding or welding. Since the microcracks formed by inclusions and precipitates in the double tissue may be different depending on the strength and the microstructure, their influence on the fatigue properties of the material.

일반적으로, 열연강판의 피로한도는 균열이 발생하는 한계응력이 아니고 발생된 균열이 기지조직을 조금씩 전파한 후 멈추는 한계응력으로 결정되기 때문에, 개재물 및 석출물이 피로한도에 미치는 영향을 고려하는 것은 중요한 것이다.In general, it is important to consider the effect of inclusions and precipitates on fatigue limit because the fatigue limit of hot-rolled steel sheet is determined not by the limit stress at which cracks occur but rather by the limit stress at which cracks propagate little by little after propagating the matrix structure. will be.

개재물 및 석출물이 파괴의 기점이 되는 경우 최초에 개재물과 기지조직의 계면에 균열이 형성되던지, 또는 개재물자체가 파괴된 후 균열이 되어 이것이 기지조직내를 전파확대하는 과정을 거치게 된다. 이 경우도 피로한도는 이들의 균열이 기지조직중을 조금씩전파한 후 정지된 상태라고 할 수 있다.When the inclusions and precipitates are the starting point of destruction, cracks are initially formed at the interface between the inclusions and the matrix structure, or after the inclusions are destroyed, they become cracks, which are then expanded and propagated in the matrix structure. Also in this case, the fatigue limit can be said to be a state where these cracks are stopped after propagating little by little in the matrix structure.

따라서, 개재물 자유표면에 존재하는 경우의 관점에서 기지조직의 비커스경도 HV, 개재물, 미소결함의 최대 주응력방향으로의 투영면적의 평방근 √(area), 응력비 R을 이용한 피로한도의 예측식이 하기 수학식 1과 같이 발표되어 있다.Therefore, the equation of the fatigue limit using the square root √ (area) of the projected area in the maximum principal stress direction of the Vickers hardness HV, inclusions, and microdefects of the matrix structure and the stress ratio R in terms of being present on the free surface of the inclusions is given by the following equation. It is announced as 1.

σw(㎏/㎟)= 1.43(HV+120)/√(area)1/6·[(1-R)/2]α σ w (kg / mm 2) = 1.43 (HV + 120) / √ (area) 1/6 [(1-R) / 2] α

(σw(피로한도):MPa, HV:kgf/mm2, √(area):㎛, R(응력비)=σmin/σmax, α=0.026+HV*10-4)(σw (fatigue limit): MPa, HV: kgf / mm2, √ (area): μm, R (stress ratio) = σmin / σmax, α = 0.026 + HV * 10-4)

상기의 수학식 1에 나타난 것을 분석해 보면, 개재물이 표면상에 존재할 때가 피로특성이 가장 나쁘다는 것을 예측할 수 있고 제품표면상태는 곧 피로특성과 직접적인 상관성을 가지고 있음을 알 수 있게 한다.Analyzing what is shown in Equation 1, it can be predicted that the fatigue properties are the worst when the inclusions on the surface and the product surface state has a direct correlation with the fatigue properties.

또한, 석출물의 크기 및 분포의 관점에서 피로한도의 예측은 주로 하기 수학식 2에 의해 정리되고 있다.In addition, the prediction of the fatigue limit from the viewpoint of the size and distribution of the precipitate is mainly summarized by the following equation (2).

σw (㎏/㎟)= A + Bσss+ Cσppt+ Dσpert+ Eσgr+ Fσdis σw (kg / ㎡) = A + Bσ ss + Cσ ppt + Dσ pert + Eσ gr + Fσ dis

(A~F: 재료상수, σss:고용강화량, σppt:석출강화량, σpert:퍼얼라이트(pearlite) 강화량, σgr: 입도강화량, σdis:전위강화량)(A ~ F: material constant, σ ss : employment hardening, σ ppt : precipitation hardening, σ pert : pearlite hardening, σ gr : particle hardening, s dis : dislocation hardening)

여기서 중요하게 취급되는 항목은 석출강화량의 항목인데 이는 석출물들이반복하중시에 형성되는 전위의 집적(pile-up)을 분산시키는 작용을 하기 때문이다.An important item here is the amount of precipitation intensification, because the precipitates disperse the pile-up of dislocations formed during repeated loading.

이상과 같이 고강도강의 피로한도는 일정강도의 증가에 관계없이 피로특성이 향상되지 않음에 따라 이를 해석하기 위한 수단으로서 개재물 및 석출물의 영향을 검토하고 있음을 알 수 있다.As described above, it can be seen that the fatigue limit of the high-strength steel does not improve the fatigue property regardless of the increase in the constant strength, so that the influence of inclusions and precipitates is examined as a means for analyzing the fatigue limit.

따라서 인장강도 80㎏/㎟급 이상의 고강도강에서 피로특성을 향상 시키기 위해서는 개재물의 저감과 함께 석출물의 크기 및 분포를 조정할 필요가 있는데, 여러가지 화학성분중 강중 탄질화물로 대부분 석출하는 질소(N)의 효과를 면밀히 검토할 필요가 있다.Therefore, it is necessary to adjust the size and distribution of precipitates and reduce the inclusions in order to improve the fatigue properties in high strength steel with tensile strength of 80㎏ / ㎠ or more. It is necessary to examine the effects closely.

최근에 개발되는 인장강도 780MPa급의 피로특성이 우수한 고강도 열연강판의 제조방법에 있어서는 미세조직(micorstructure)제어를 통해 피로특성을 향상시키고 있으나 벤딩내구비(피로한도/인장강도) 수준은 0.6 이하로서 개선이 필요한 상태이다. 그 예로는, 일본특허 공개공보 (평)9-87798, 일본특허공개공보(평)7-166236호가 대표적이다.Recently, in the manufacturing method of high strength hot rolled steel sheet with excellent fatigue characteristics of tensile strength of 780 MPa, the fatigue characteristics have been improved by controlling the microstructure, but the bending durability (fatigue limit / tensile strength) level is 0.6 or less. There is a need for improvement. As examples, Japanese Patent Laid-Open No. 9-87798 and Japanese Patent Laid-Open No. 7-166236 are representative.

상기 일본특허공개공보(평)9-87798호에 개시된 잔류오스테나이트강(TRIP강)은 석출강화강에 비해 강도-연신율 밸란스 특성이 우수하나 내구비(피로한도/인장강도) 값은 0.6이하로서 석출강화강에 비하여 다소 낮은 것으로 알려져 있다.Residual austenitic steel (TRIP steel) disclosed in Japanese Patent Application Laid-Open No. 9-87798 has better strength-elongation balance characteristics than precipitation-reinforced steel, but has a durability ratio (fatigue limit / tensile strength) of 0.6 or less. It is known to be somewhat lower than precipitation hardened steel.

또한, 상기 일본특허 공개공보(평)7-166236호에서는 내구비 수준이 0.54수준인 페라이트+베이나이트+마르텐사이트의 3상강이 제안되어 있다.In addition, Japanese Patent Laid-Open No. 7-166236 proposes a three-phase steel of ferrite + bainite + martensite having an endurance level of 0.54.

그러나, 상기한 삼상강(Tri-phase강) 또는 잔류오스테나이트강(TRIP강)은 강도×연신율 발란스 측면에서는 대단히 우수하나 열간압연후 페라이트의 조기석출을 위하여 0.5∼2.5wt% 범위의 Si이 첨가되고, 이로 인한 표면 산화스케일 결함 발생 가능성이 높다. 또한, 연질상의 페라이트 및 제2상간의 경도 차이가 크기 때문에 연신플랜지성이 기존의 페라이트-퍼얼라이트 조직강에 대비하여 낮은 단점이 있을 뿐만 아니라 피로특성 또한 내구비 수준이 0.6이하로서 피로특성의 개선이 필요하다.However, the three-phase steel (Tri-phase steel) or residual austenite steel (TRIP steel) is very excellent in terms of strength × elongation balance, but Si is added in the range of 0.5 to 2.5wt% for early deposition of ferrite after hot rolling. This is likely to cause surface oxide scale defects. In addition, due to the large hardness difference between the ferrite and the second phase of the soft phase, the stretch flange has a lower disadvantage than that of the conventional ferrite-perlite tissue steel, and the fatigue characteristic is also lower than the endurance level of 0.6. This is necessary.

이에, 본 발명자들은 상기한 문제점들을 해결하기 위하여 연구 및 실험을 행하고, 그 결과를 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 강성분 및 최종 조직을 적절히 제어함으로써, 우수한 강도 및 내구비(피로한도/인장강도)를 동시에 갖는 피로특성이 우수한 인장강도 80㎏/㎟급 열연강판 및 그의 제조방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors conducted research and experiments to solve the above problems, and proposed the present invention based on the results. The present invention provides excellent strength and durability by appropriately controlling the steel component and the final structure. It is an object of the present invention to provide a tensile strength of 80 kg / mm 2 hot rolled steel sheet having excellent fatigue properties and a method of manufacturing the same.

본 발명은 중량%로 C: 0.05~0.12%, Si: 0.1~0.3%, Mn: 1.0~2.2%, P: 0.02% 이하, S: 0.005% 이하, Al: 0.01~0.05%, Ti: 0.05~0.20%, Nb: 0.02~0.035%, Mo: 0.1~0.3%, N: 80~110ppm, 잔부 Fe 및 기타 불가피한 불순물을 함유하는 피로특성이 우수한 인장강도 80kg/㎟급 고강도 열연강판에 관한 것이다.In the present invention, C: 0.05 to 0.12%, Si: 0.1 to 0.3%, Mn: 1.0 to 2.2%, P: 0.02% or less, S: 0.005% or less, Al: 0.01 to 0.05%, Ti: 0.05 to The present invention relates to a tensile strength 80kg / mm2 high strength hot rolled steel sheet having excellent fatigue properties containing 0.20%, Nb: 0.02 to 0.035%, Mo: 0.1 to 0.3%, N: 80 to 110 ppm, residual Fe and other unavoidable impurities.

또한, 본 발명은 중량%로 C: 0.05~0.12%, Si: 0.1~0.3%, Mn: 1.0~2.2%, P:0.02% 이하, S: 0.005% 이하, Al: 0.01~0.05%, Ti: 0.05~0.20%, Nb: 0.02~0.035%, Mo: 0.1~0.3%, N: 80~110ppm, 잔부 Fe 및 기타 불가피한 불순물을 함유하는 강슬라브를 재가열후 오스테나이트역에서 마무리열간압연하고, 냉각한 후 600~630℃의 온도범위에서 권취하는 것을 특징으로 하는 피로특성이 우수한 인장강도 80kg/㎟급 고강도 열연강판의 제조방법에 관한 것이다.In the present invention, C: 0.05 to 0.12%, Si: 0.1 to 0.3%, Mn: 1.0 to 2.2%, P: 0.02% or less, S: 0.005% or less, Al: 0.01 to 0.05%, Ti: Steel slab containing 0.05 ~ 0.20%, Nb: 0.02 ~ 0.035%, Mo: 0.1 ~ 0.3%, N: 80 ~ 110ppm, balance Fe and other unavoidable impurities, after reheating, hot-rolled and finished in austenite zone It relates to a method of manufacturing a high strength hot rolled steel sheet with a tensile strength excellent in fatigue characteristics characterized in that it is wound in the temperature range of 600 ~ 630 ℃ after.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에서는 인장강도 80㎏/㎟급의 자동차 구조용 열연강판의 제조에 있어 종래의 인장강도 80㎏/㎟급 열연강판에 비하여 우수한강도 및 우수한 피로특성을 얻기 위하여 탄소, 망간, 티타늄, 니오비움, 몰리브덴의 함량을 적절히 조절하고, 특히 피로특성성의 향상을 위하여 적정량의 질소를 첨가하여 페라이트 단상에 탄질화물이 석출되도록 열간압연조건을 제어하는데, 그 특징이 있는 것이다.In the present invention, in the manufacture of hot-rolled steel sheet for automotive structural of 80kg / ㎜ class tensile strength, carbon, manganese, titanium, niobium, The hot rolling condition is controlled to properly control the content of molybdenum and, in particular, to add carbon in an appropriate amount of nitrogen in order to precipitate the carbonitride on the ferrite single phase to improve fatigue characteristics.

이하, 강성분 제어사유 및 제조조건에 대하여 설명한다.Hereinafter, the reason for controlling the steel component and the manufacturing conditions will be described.

상기 탄소(C)는 열연강판의 강도를 얻는데 기본적인 원소로서, 본 발명강에서는 페라이트 단상화 및 입계 세멘타이트의 저감을 위하여 티타늄 및 니오비움 탄화물의 석출에 필요한 최소량으로 제어하기 위하여, 그 함량은 0.05~0.12% 로 제한하는 것이 바람직하다.The carbon (C) is a basic element to obtain the strength of the hot-rolled steel sheet, in the present invention steel in order to control the minimum amount necessary for the precipitation of titanium and niobium carbide in order to reduce the ferrite single phase and grain boundary cementite, the content is 0.05 It is desirable to limit to 0.12%.

상기 망간(Mn)은 몰리브덴(Mo)과 유사한 원소로서, Ar3온도를 감소시키고 오스테나이트중에 석출되는 티타늄-니오비움-질소-탄소의 석출을 지연시키는 작용을 하여 강중에 고용도를 증가시키는 고용강화에 유효한 원소이다. 그러나, 그 함량이 1.0% 미만인 경우에는 기대되는 강도가 얻어지지 않으며, 2.2%를 초과하면 강도는 얻어지나 연신율이 급격히 감소된다. 즉, 망간 함유량이 증가하면 Ar3온도의 감소로 인하여 소입성이 증가되어 침상페라이트가 생성될 가능성이 높아지고, 티타늄 탄화물의 석출을 억제하여 석출강화 효과를 감소시키는 것이다. 따라서, 그 함량은 1.0~2.2%로 설정하는 것이 바람직하다.The manganese (Mn) is an element similar to molybdenum (Mo), and decreases the Ar 3 temperature and delays the precipitation of titanium-niobium-nitrogen-carbon precipitated in austenite to increase the solubility in steel. It is an effective element for strengthening. However, if the content is less than 1.0%, the expected strength is not obtained. If it exceeds 2.2%, the strength is obtained but the elongation is drastically reduced. That is, when the manganese content is increased, the hardenability increases due to the decrease in Ar 3 temperature, and thus the possibility of acicular ferrite is increased, and the precipitation strengthening effect is reduced by inhibiting the precipitation of titanium carbide. Therefore, the content is preferably set to 1.0 to 2.2%.

상기 실리콘(Si)은 조대한 페라이트를 조장시키는 원소로 작용하며 오스테나이트중의 니오비움-질소-탄소 석출을 조장시키는 작용을 한다. 따라서, 실리콘첨가로 기대되는 효과는 망간(Mn)의 작용과 상반되며 오스테나이트중의 니오비움-질소-탄소의 석출을 조장시키는 관점과 조대한 페라이트를 조장시키는 관점을 볼 때 강도의 변화가 매우 크게 되는 특징을 가지고 있다. 그러나, 조대한 페라이트를 조장시키는 관점에서는 강도의 감소로 이어져 피로특성에는 크게 기여하지 못하게 된다. 또한, 실리콘은 열간압연강판 표면에 산화스케일 결함을 유발시키기 때문에 적정강도와 양호한 표면성상을 얻기 위하여, 그 첨가량을 0.1~0.3%로 설정하는 것이 바람직하다.The silicon (Si) acts as an element for promoting coarse ferrite and promotes niobium-nitrogen-carbon precipitation in austenite. Therefore, the expected effect of silicon addition is opposite to that of manganese (Mn), and the change in strength is very significant in view of promoting deposition of niobium-nitrogen-carbon in austenite and coarse ferrite. Has a feature that grows. However, in terms of encouraging coarse ferrite, it leads to a decrease in strength and does not contribute significantly to fatigue characteristics. In addition, since silicon causes an oxide scale defect on the surface of the hot rolled steel sheet, it is preferable to set the addition amount at 0.1 to 0.3% in order to obtain proper strength and good surface properties.

상기 니오븀(Nb)은 강도를 확보하기 위한 가장 중요한 원소로, 오스테나이트의 미세화 및 등축페라이트의 형성을 억제하기 때문에 강도의 상승을 유도하게 되며, 피로특성 또한 개선시킨다. 이는, 니오븀이 코일권취시에 니오비움-탄소-질소 형태의 석출물들을 미세하게 형성시키는 원소이기 때문이다. 그러나, 그 첨가량이 과다하면 연속주조 슬라브의 제조과정에서 주편크랙을 생성시킬 가능성이 높아지기 때문에, 0.020~0.035% 로 설정하는 것이 바람직하다.The niobium (Nb) is the most important element for securing strength, and induces an increase in strength because it suppresses the formation of austenite and formation of equiaxed ferrite, and also improves fatigue characteristics. This is because niobium is an element that finely forms precipitates in the form of niobium-carbon-nitrogen upon coil winding. However, if the addition amount is excessive, the possibility of generating slag cracks in the manufacturing process of the continuous casting slab increases, so it is preferable to set it at 0.020 to 0.035%.

상기 티타늄(Ti)은 강중 페라이트 조직내 티타늄-니오비움 탄화물 혹은 티타늄-니오비움-몰리브덴 복합탄화물로 석출하여 페라이트 기지의 강화에 기여하는 원소이다. 티타늄 함량이 적으면 석출강화효과를 충분히 기대할 수 없으며, 반대로 티타늄량이 0.1%를 초과하면 석출강화 효과가 포화되기 때문에, 티타늄의 첨가량은 0.050~0.20% 범위로 제한하는 것이 바람직하다.The titanium (Ti) is an element that precipitates as titanium-niobium carbide or titanium-niobium-molybdenum composite carbide in the ferrite structure in steel and contributes to strengthening of the ferrite matrix. When the titanium content is small, the precipitation strengthening effect cannot be sufficiently expected. On the contrary, when the titanium content exceeds 0.1%, the precipitation strengthening effect is saturated, and therefore, the amount of titanium added is preferably limited to the range of 0.050 to 0.20%.

상기 몰리브덴(Mo)은 Mn과 함께 Ar3변태점을 감소시켜 강의 소입성을 증가시키는 원소로서, 티타늄 및 니오비움과 더불어 석출강화에 기여하는 원소이다. 본 발명에서는 인장강도 80㎏/㎟급 열연강판의 강도수준과 용접성을 고려하여 0.10~0.30% 범위로 첨가하는 것이 바람직한데, 그 이유는 그 첨가량이 0.3%을 초과하면 몰리브덴에 의한 소입성 증가의 역기능 즉, 용접부 균열의 발생가능성이 높아지기 때문이다.The molybdenum (Mo) is an element that increases the hardenability of the steel by reducing the Ar 3 transformation point together with Mn, and contributes to precipitation strengthening together with titanium and niobium. In the present invention, it is preferable to add the tensile strength in the range of 0.10 to 0.30% in consideration of the strength level and weldability of 80 kg / mm2 grade hot rolled steel sheet, because when the addition amount exceeds 0.3%, the increase in the hardenability by molybdenum This is because the likelihood of dysfunction, that is, the occurrence of weld cracking, increases.

상기 알루미늄(Al)은 탈산제로서 첨가되며 특히 열연강판의 연성을 높이는 작용을 하지만, 다량 첨가하면 열간압연시에 AlN의 석출을 촉진하고 고용 N량을 감소시키기 때문에, 0.010~0.050%로 첨가하는 것이 바람직하다. 한편, 통상 탈산제로서의 작용은 0.05%이하의 함유량에서 충분하다.The aluminum (Al) is added as a deoxidizer, and in particular, increases the ductility of the hot rolled steel sheet, but when added in large amounts, it promotes precipitation of AlN and decreases the amount of solid solution N during hot rolling. desirable. On the other hand, the function as a deoxidizer is usually sufficient at a content of 0.05% or less.

상기 질소(N)는 본 발명에서 가장 중요한 원소로서, 강중의 티타늄-질소와 티타늄-니오비움 원소와 탄화물의 석출물을 형성하여 반복하중시 전위 (dislocation)의 집적(pile up)을 유도하여 응력분산을 일으키는 원소로 작용하기 때문에 피로특성을 크게 개선시키는 원소이다.The nitrogen (N) is the most important element in the present invention, by forming a precipitate of titanium-nitrogen and titanium-niobium element and carbide in the steel to induce the dispersion (dislocation) during repeated loading stress distribution It is an element that greatly improves fatigue characteristics because it acts as an element that causes.

질소는 열연강판중에 AlN으로 석출하여 열연강판의 연성을 높이나 자동차용 열연강판에서 가장 중요한 피로특성을 높이기 위해서는 Al의 첨가양과 같이 조정하는 것이 바람직하다.Nitrogen is precipitated with AlN in the hot rolled steel sheet to increase the ductility of the hot rolled steel sheet, but in order to increase the fatigue property which is most important in the automotive hot rolled steel sheet, it is preferable to adjust the amount with the addition of Al.

즉, 반복하중시의 피로특성을 향상시키기 위해서는 탄질화물과 같은 석출물이 가장 중요한 인자로 작용하기 때문에, AlN으로 석출되고 남은 잉여 질소(N)의 작용은 매우 중요한데, 그 작용은 반복하중시 재료내부에서 증식되는 전위(dislocation)의 국부적 집적(pile-up)을 방해하여 응력을 분산시키는 것이다.In other words, in order to improve the fatigue characteristics under repeated loads, the precipitate such as carbonitrides acts as the most important factor, so the action of excess nitrogen (N) remaining after precipitation with AlN is very important. It is to disperse the stress by disturbing the local pile-up of dislocations that multiply at.

이와 같은 질소는 티타늄-질소, 티타늄-니오비움형태로 석출되며 벤딩피로테스트에 근거하여, 그 함량을 80~110ppm으로 설정하는 것이 바람직하다. 그 이유는, 그 함량이 110ppm보다 많으면 티타늄-질소석출물과 티타늄-니오비움 탄화물로 석출되고 남은 강중의 질소는 반복하중시 급격한 가공경화를 일으켜 피로특성을 감소시키기 때문이다. 즉, 강중의 질소의 작용은 기본적으로 탄질화물을 형성하여 전위의 이동을 억제하는 작용을 하기 때문에 재결정립 성장 억제 및 반복하중시 전위의 분산을 유도하는 작용을 하게되나, 질소의 양이 110ppm을 초과하게 되면 탄질화물로 석출되고 남은 고용질소의 양이 증가하게 되어 강중에 고용되는 것이다. 이렇게 강중에 고용된 질소들은 강의 강도증가에 기여하게 되나 기존에 생성된 탄질화물과의 상호작용에 의해 가공경화를 유발하게 되어 반복하중시 내부균열 형성을 조장하게 한다.Such nitrogen is precipitated in the form of titanium-nitrogen, titanium-niobium, and based on the bending fatigue test, the content is preferably set to 80 to 110 ppm. The reason is that if the content is more than 110 ppm, the precipitated titanium-nitrogen precipitate and titanium-niobium carbide and the remaining nitrogen in the steel cause rapid work hardening under repeated loads, thereby reducing the fatigue characteristics. In other words, the action of nitrogen in the steel basically forms carbonitrides to inhibit dislocation movement, thereby inhibiting recrystallization growth and inducing dispersal of dislocation upon repeated loading, but the amount of nitrogen is 110 ppm. If exceeded, it will be precipitated as carbonitrides and the amount of remaining dissolved nitrogen will increase, so it is employed in the river. Nitrogen dissolved in the steel contributes to the increase in strength of the steel, but it causes work hardening by interaction with existing carbonitrides, which promotes internal crack formation during repeated loading.

상기와 같이 조성된 강 슬라브를 이용하여 Ar3이상인 840℃ 이상에서 마무리압연하고 권취하는데, 권취온도는 600~630℃로 제한하는 것이 바람직하다. 즉, 이 온도범위에서 권취하면, 석출강화원소가 미세한 탄화물로 석출되면서 강도상승에 기여할 수 있게 된다.Finish rolling and winding at 840 ° C. or more, which is Ar 3 or more, using the steel slab formed as described above, the winding temperature is preferably limited to 600 ~ 630 ° C. In other words, if the coil is wound in this temperature range, the precipitate strengthening element precipitates as fine carbides, thereby contributing to the increase in strength.

이와 같은 본 발명의 열연강판은, 최종조직에서 페라이트75~85%와 펄라이트25~15%인 미세조직을 갖고, 인장강도 80kg/㎟ 이상, 항복강도 70kg/㎟ 이상이고, 벤딩내구비(피로한도/인장강도)는 0.6 이상인 우수한 특성을 제공할 수 있다.The hot rolled steel sheet of the present invention has a microstructure of ferrite 75 to 85% and pearlite 25 to 15% in the final structure, and has a tensile strength of 80 kg / mm 2 or more, a yield strength of 70 kg / mm 2 or more, and a bending durability (fatigue limit). Tensile strength) can provide excellent properties of 0.6 or more.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예 1)(Example 1)

하기 표1의 화학성분으로 제조된 강 슬라브를 열간압연한 후, 620℃에서 권취하고 냉각하여 최종 판두께 3.0mm의 열연강판을 제조하였다.The steel slab prepared by the chemical components shown in Table 1 was hot rolled, and then wound and cooled at 620 ° C. to prepare a hot rolled steel sheet having a final plate thickness of 3.0 mm.

그 후, 제조된 열연강판의 기계적성질을 측정하기 위해, 압연방향에 대하여 수직인 방향으로 JIS 5호 인장시편을 제작하고, 상온에서 10mm/min의 속도로 인장하여 평가하였다.Then, in order to measure the mechanical properties of the produced hot-rolled steel sheet, a JIS No. 5 tensile test piece was prepared in a direction perpendicular to the rolling direction, and tensilely evaluated at a rate of 10 mm / min at room temperature.

피로시험시험편은 압연 직각방향의 30W×200L×t(mm) 크기의 모래시계형 시편을 사용하였으며, 시험조건은 20Hz, sine파형의 조건에서 실시하였다.Fatigue test specimens used an hourglass specimen with a size of 30 W × 200 L × t (mm) in the direction perpendicular to the rolling. The test conditions were carried out under 20 Hz and sine waveform conditions.

하중모드는 완전양진 벤딩모드로 하였으며, 피로한도 결정은 107cycle을 기준으로 하였다.The load mode was fully positive bending mode and the fatigue limit was determined based on 10 7 cycles.

강종Steel grade 화학성분(wt%)Chemical composition (wt%) CC MnMn SiSi PP SS AlAl TiTi NbNb MoMo CrCr N(ppm)N (ppm) 비교강1Comparative Steel 1 0.0730.073 1.691.69 0.050.05 0.0170.017 0.00210.0021 0.0340.034 0.0910.091 0.0300.030 0.210.21 2828 비교강2Comparative Steel 2 0.0750.075 1.701.70 0.050.05 0.0190.019 0.00200.0020 0.0330.033 0.0880.088 0.0300.030 0.190.19 3535 비교강3Comparative Steel 3 0.0710.071 1.681.68 0.050.05 0.0160.016 0.00240.0024 0.0340.034 0.0840.084 0.0300.030 0.180.18 4646 비교강4Comparative Steel 4 0.0760.076 1.711.71 0.050.05 0.0170.017 0.00220.0022 0.0320.032 0.0800.080 0.0300.030 0.200.20 5757 발명강1Inventive Steel 1 0.0730.073 1.691.69 0.050.05 0.0180.018 0.00230.0023 0.0340.034 0.0810.081 0.0300.030 0.190.19 8282 발명강2Inventive Steel 2 0.0720.072 1.691.69 0.050.05 0.0170.017 0.00200.0020 0.0340.034 0.0880.088 0.0300.030 0.200.20 110110 비교강5Comparative Steel 5 0.120.12 1.531.53 1.171.17 0.0060.006 0.0010.001 0.0330.033 1.011.01 비교강6Comparative Steel 6 0.250.25 1.501.50 0.970.97 0.0080.008 0.0030.003 0.0090.009 3838

강종Steel grade 두께(mm)Thickness (mm) 기계적 성질Mechanical properties 피로한도(MPa)Fatigue Limit (MPa) 내구비(피로한도/인장강도)Durability (fatigue limit / tensile strength) √(area)(㎛)√ (area) (μm) 항복강도(MPa)Yield strength (MPa) 인장강도(MPa)Tensile Strength (MPa) 연신율(%)Elongation (%) 비교강1Comparative Steel 1 33 632632 810810 2424 410410 0.510.51 0.0280.028 비교강2Comparative Steel 2 664664 817817 2323 420420 0.520.52 0.0260.026 비교강3Comparative Steel 3 673673 822822 2222 430430 0.520.52 0.0220.022 비교강4Comparative Steel 4 688688 835835 2222 450450 0.540.54 0.0230.023 발명강1Inventive Steel 1 767767 840840 2121 510510 0.630.63 0.0200.020 발명강2Inventive Steel 2 740740 828828 2020 510510 0.610.61 0.0190.019 비교강5Comparative Steel 5 3.53.5 570570 820820 2424 440440 0.540.54 비교강6Comparative Steel 6 33 610610 822822 3232 477477 0.580.58

상기 표2에 나타난 바와 같이, 본 발명강은 모두 내구비(피로한도/인장강도) 가 0.6이상임을 확인할 수 있다.As shown in Table 2, all of the present invention steel can be confirmed that the endurance ratio (fatigue limit / tensile strength) is 0.6 or more.

비교강(5),(6)은 각각 삼상강(Tri-phase강), 잔류오스테나이트강(TRIP강)으로, 인장강도×연신율 발란스는 15000 MPa·% 이상이나 내구비 수준은 본 발명에서 요구하는 0.6 보다 낮았다.Comparative steels (5) and (6) are three-phase steels (Tri-phase steels) and residual austenite steels (TRIP steels), respectively.The tensile strength × elongation balance is 15000 MPa ·% or more, but the endurance level is required in the present invention. Was lower than 0.6.

한편, 특징적인 것은 질소(N)를 첨가함에 따라 강도에 기여하는 20nm 이하의 티타늄-니오비움-질소-탄소의 석출물의 √(area)의 크기가 감소한 것인데, 발명강(1),(2)의 경우에는 20nm 이하의 티타늄-니오비움-질소-탄소의 석출물의 √(area)의 크기가 0.02㎛ 이하이며 벤딩내구비 또한 0.6 이상임을 알 수 있다. 즉, 강도에 기여하는 20nm 이하의 티타늄-니오비움-질소-탄소의 석출물의 작용은 반복하중시 전위의 집적(pile-up)을 분산시키는 작용을 하는 것임을 알 수 있다.On the other hand, it is characteristic that the size of √ (area) of the titanium-niobium-nitrogen-carbon precipitates of 20 nm or less, which contributes to the strength, is reduced with the addition of nitrogen (N), and the invention steels (1) and (2) In the case of 20 nm or less of the precipitate of titanium-niobium-nitrogen-carbon precipitate (area) is 0.02㎛ or less and the bending durability is also 0.6 or more. That is, it can be seen that the action of the precipitates of titanium-niobium-nitrogen-carbon having a thickness of 20 nm or less contributes to dispersing the pile-up of dislocations under repeated loads.

질소와 관련된 석출물은 상기와 같은 티타늄-니오비움-질소-탄소의 외에도 티타늄-질소의 석출물도 존재하나 그 평균 크기는 80nm 이상으로서 강도에 기여하지 못하는 석출물로 평가되었다.Nitrogen-related precipitates were also present as titanium-niobium-nitrogen-carbon as well as titanium-nitrogen precipitates, but their average size was 80 nm or more, which was evaluated as a precipitate that did not contribute to strength.

상기한 바와 같이, 본 발명은 강성분을 적절히 제어함으로써, 반복하중시의 균열형성에 우수한 저항성을 제공하여 자동차 휠용 소재 등으로서 사용이 가능한 피로특성이 우수한 인장강도 80kg/㎟급 열연강판을 제공할 수 있는 효과가 있는 것이다.As described above, the present invention provides an excellent tensile strength 80kg / mm2 hot rolled steel sheet having excellent fatigue properties that can be used as a material for automobile wheels by providing a good resistance to crack formation under repeated loads by appropriately controlling the steel components It can be effective.

Claims (5)

중량%로, C: 0.05~0.12%, Si: 0.01~0.3%, Mn: 1.0~2.2%, P: 0.02% 이하, S: 0.005% 이하, Al: 0.01~0.05%, Ti: 0.05~0.20%, Nb: 0.02~0.035%, Mo: 0.1~0.3%, N: 80~110ppm, 잔부 Fe 및 기타 불가피한 불순물을 함유하는 피로특성이 우수한 인장강도 80kg/㎟급 열연강판By weight%, C: 0.05-0.12%, Si: 0.01-0.3%, Mn: 1.0-2.2%, P: 0.02% or less, S: 0.005% or less, Al: 0.01-0.05%, Ti: 0.05-0.20% , Nb: 0.02 ~ 0.035%, Mo: 0.1 ~ 0.3%, N: 80 ~ 110ppm, Tensile strength with excellent fatigue property containing residual Fe and other unavoidable impurities 80kg / mm2 hot rolled steel sheet 제1항에 있어서, 상기 열연강판은 인장강도 80kg/㎟ 이상, 항복강도 70kg/㎟ 이상이고, 벤딩내구비(피로한도/인장강도)는 0.6 이상인 것을 특징으로 하는 피로특성이 우수한 인장강도 80kg/㎟급 열연강판According to claim 1, The hot rolled steel sheet has a tensile strength of 80kg / ㎜ or more, yield strength of 70kg / ㎜ or more, the bending durability (fatigue limit / tensile strength) is 0.6 or more tensile strength excellent tensile strength, characterized in that more than 0.6kg /. ㎜ grade hot rolled steel sheet 제1항 또는 제2항에 있어서, 상기 열연강판의 최종조직분율이 페라이트75~85%와 펄라이트25~15%인 것을 특징으로 하는 피로특성이 우수한 인장강도 80kg/㎟급 열연강판According to claim 1 or 2, wherein the final structural fraction of the hot-rolled steel sheet is 75 ~ 85% ferrite and pearlite 25 ~ 15% excellent tensile strength tensile strength 80kg / mm2 hot rolled steel sheet 중량%로 C: 0.05~0.12%, Si: 0.01~0.3%, Mn: 1.0~2.2%, P: 0.02% 이하, S: 0.005% 이하, Al: 0.01~0.05%, Ti: 0.05~0.20%, Nb: 0.02~0.035%, Mo: 0.1~0.3%, N: 80~110ppm, 잔부 Fe 및 기타 불가피한 불순물을 함유하는 강슬라브를 재가열후 오스테나이트온도역에서 마무리열간압연하고, 냉각한 후 권취하는 것을 특징으로 하는 피로특성이 우수한 인장강도 80kg/㎟급 열연강판의 제조방법By weight%, C: 0.05-0.12%, Si: 0.01-0.3%, Mn: 1.0-2.2%, P: 0.02% or less, S: 0.005% or less, Al: 0.01-0.05%, Ti: 0.05-0.20%, Steel slab containing Nb: 0.02 ~ 0.035%, Mo: 0.1 ~ 0.3%, N: 80 ~ 110ppm, Remnant Fe and other unavoidable impurities, after reheating, hot-rolled at the austenite temperature range, cooling and winding Method for manufacturing 80kg / mm2 grade hot rolled steel with excellent tensile strength 제4항에 있어서, 권취온도가 600~630℃인 것을 특징으로 하는 피로특성이 우수한 인장강도 80kg/㎟급 열연강판의 제조방법The method for producing a hot-rolled steel sheet having a tensile strength of 80 kg / mm 2 class, characterized in that the winding temperature is 600 ~ 630 ℃.
KR10-1999-0063055A 1999-12-27 1999-12-27 A TENSILE STRENGTH 80kg/㎟ GRADE HOT ROLLED STEEL SHEET WITH SUPERIOR FATIGUE PROPERTY AND A METHOD FOR MANUFACTURING IT KR100415671B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063055A KR100415671B1 (en) 1999-12-27 1999-12-27 A TENSILE STRENGTH 80kg/㎟ GRADE HOT ROLLED STEEL SHEET WITH SUPERIOR FATIGUE PROPERTY AND A METHOD FOR MANUFACTURING IT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0063055A KR100415671B1 (en) 1999-12-27 1999-12-27 A TENSILE STRENGTH 80kg/㎟ GRADE HOT ROLLED STEEL SHEET WITH SUPERIOR FATIGUE PROPERTY AND A METHOD FOR MANUFACTURING IT

Publications (2)

Publication Number Publication Date
KR20010060649A KR20010060649A (en) 2001-07-07
KR100415671B1 true KR100415671B1 (en) 2004-01-31

Family

ID=19630440

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0063055A KR100415671B1 (en) 1999-12-27 1999-12-27 A TENSILE STRENGTH 80kg/㎟ GRADE HOT ROLLED STEEL SHEET WITH SUPERIOR FATIGUE PROPERTY AND A METHOD FOR MANUFACTURING IT

Country Status (1)

Country Link
KR (1) KR100415671B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544611B1 (en) * 2001-12-22 2006-01-24 주식회사 포스코 Drawable High Strength Steel Sheet with Superior Fatigue Property and Method for Manufactuering the Steel Sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030023995A (en) * 2001-09-14 2003-03-26 현대자동차주식회사 A Steel panel having ultra-high strength and Method for preparing the same
KR100723205B1 (en) * 2005-12-06 2007-05-29 주식회사 포스코 A ultra high strength hot-rolled steels for the automotive and manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222455A (en) * 1992-02-08 1993-08-31 Sumitomo Metal Ind Ltd Production of high strength resistance welded tube for automobile use
JPH06200351A (en) * 1992-12-28 1994-07-19 Kobe Steel Ltd High strength hot rolled steel plate excellent in stretch-flange formability
JPH11140542A (en) * 1997-11-11 1999-05-25 Nkk Corp Production of high strength hot rolled steel sheet having high ductility and excellent in uniformity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222455A (en) * 1992-02-08 1993-08-31 Sumitomo Metal Ind Ltd Production of high strength resistance welded tube for automobile use
JPH06200351A (en) * 1992-12-28 1994-07-19 Kobe Steel Ltd High strength hot rolled steel plate excellent in stretch-flange formability
JPH11140542A (en) * 1997-11-11 1999-05-25 Nkk Corp Production of high strength hot rolled steel sheet having high ductility and excellent in uniformity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544611B1 (en) * 2001-12-22 2006-01-24 주식회사 포스코 Drawable High Strength Steel Sheet with Superior Fatigue Property and Method for Manufactuering the Steel Sheet

Also Published As

Publication number Publication date
KR20010060649A (en) 2001-07-07

Similar Documents

Publication Publication Date Title
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
KR20190095340A (en) Hot rolled flat steel products and manufacturing method thereof
KR101736619B1 (en) Ultra-high strength steel sheet having excellent phosphatability and bendability, and method for manufacturing the same
KR102493548B1 (en) Cold-rolled and heat-treated steel sheet and its manufacturing method
KR100340507B1 (en) Method for manufacturing high strength and high formability hot-rolled transformation induced plasticity steel containing copper
JP2021531405A (en) High-strength steel plate with excellent collision resistance and its manufacturing method
US20230058956A1 (en) Hot rolled and steel sheet and a method of manufacturing thereof
KR101299803B1 (en) Method for manufacturing low-alloy high-strength cold rolled thin steel sheet with excellent weldability
KR20190142768A (en) High strength steel sheet with excellent ductility and elongation flangeability
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
EP3964600A1 (en) Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same
KR20220073762A (en) Composite steel with high hole expandability and manufacturing method therefor
KR20100001333A (en) High strength hot rolled steel sheet having stretch flangeability and good weldability, and method for producing the same
KR20240040120A (en) Hot rolled and steel sheet and a method of manufacturing thereof
KR100415671B1 (en) A TENSILE STRENGTH 80kg/㎟ GRADE HOT ROLLED STEEL SHEET WITH SUPERIOR FATIGUE PROPERTY AND A METHOD FOR MANUFACTURING IT
KR100985322B1 (en) High strength cold rolled steel sheet having superior workability
KR102468051B1 (en) Ultra high strength steel sheet having excellent ductility and method for manufacturing thereof
KR100415672B1 (en) A TENSILE STRENGTH OF 780MPa GRADE HOT ROLLED STEEL SHEET FOR STRUCTURAL USE AND A METHOD FOR MANUFACTURING IT
US20230265537A1 (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
KR101988760B1 (en) Ultra-high strength steel sheet having excellent formability, and method for manufacturing thereof
KR100723205B1 (en) A ultra high strength hot-rolled steels for the automotive and manufacturing method
KR101886171B1 (en) Process for making a high strength steel plate with high yield ratio
KR20100035835A (en) High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same
KR20090011619A (en) Method of manufacturing high-strength steel sheet
KR100946051B1 (en) Method for manufacturing the good weldability and high strength thick plate steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140106

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150107

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160106

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170104

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180109

Year of fee payment: 15