KR100711359B1 - Bake-hardening thin steel sheet having excellent anisotropy and the method for manufacturing the same - Google Patents

Bake-hardening thin steel sheet having excellent anisotropy and the method for manufacturing the same Download PDF

Info

Publication number
KR100711359B1
KR100711359B1 KR1020050122912A KR20050122912A KR100711359B1 KR 100711359 B1 KR100711359 B1 KR 100711359B1 KR 1020050122912 A KR1020050122912 A KR 1020050122912A KR 20050122912 A KR20050122912 A KR 20050122912A KR 100711359 B1 KR100711359 B1 KR 100711359B1
Authority
KR
South Korea
Prior art keywords
steel
steel sheet
less
content
plane anisotropy
Prior art date
Application number
KR1020050122912A
Other languages
Korean (ko)
Inventor
한상호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020050122912A priority Critical patent/KR100711359B1/en
Application granted granted Critical
Publication of KR100711359B1 publication Critical patent/KR100711359B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

자동차 외판용으로 주로 사용되고, 면내이방성이 우수한 소부경화형 고강도 박강판과 그 제조방법이 제공된다.Mainly used for automotive exterior plates, there is provided a hardening type high strength steel sheet having excellent in-plane anisotropy and a method of manufacturing the same.

이 박강판은 중량%로, C: 0.0015~0.0025%, Mn: 0.03~0.2%, P: 0.06~0.1%, S: 0.003~0.015%, Sol.Al: 0.01~0.08%, N: 0.006~0.01%, Cu: 0.005~0.2%, Sb: 0.02~ 0.1%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Mn, Cu 및 S이 6.7≤(Mn/1.7S)+(Cu/1.96S)≤14.6의 관계를 만족하고, 그리고 20nm 이하의 크기를 갖는 MnS, CuS, (Mn,Cu)S 석출물들이 75% 이상 포함된다. This thin steel sheet is in weight%, C: 0.0015 to 0.0025%, Mn: 0.03 to 0.2%, P: 0.06 to 0.1%, S: 0.003 to 0.015%, Sol.Al: 0.01 to 0.08%, N: 0.006 to 0.01 %, Cu: 0.005-0.2%, Sb: 0.02-0.1%, remaining Fe and other inevitable impurities, wherein Mn, Cu and S are 6.7≤ (Mn / 1.7S) + (Cu / 1.96S) ≤14.6 75% or more of MnS, CuS, and (Mn, Cu) S precipitates having a size of 20 nm or less are satisfied.

본 발명에 따르면, 인장강도 390MPa 이상 및 면내이방성(△r) 0.15 이하를 갖는 소부경화형 박강판을 제공할 수 있다.According to the present invention, it is possible to provide a hardened hardened steel sheet having a tensile strength of 390 MPa or more and an in-plane anisotropy (Δr) of 0.15 or less.

면내이방성, 소부경화성, 박강판, 고강도, MnS, 변형유기 동적변태, 열간압연 In-plane anisotropy, hardening hardening, sheet steel, high strength, MnS, strain organic dynamic transformation, hot rolling

Description

면내이방성이 우수한 소부경화형 박강판 및 그 제조방법{Bake-hardening thin steel sheet having excellent anisotropy and the method for manufacturing the same}Bake-hardening thin steel sheet having excellent anisotropy and the method for manufacturing the same

국내 특허출원번호 2005-0088518호Domestic patent application number 2005-0088518

국내 특허출원번호 2005-0088517호Domestic patent application number 2005-0088517

국내 특허출원번호 2004-0111706호Domestic patent application number 2004-0111706

본 발명은 자동차 외판용으로 주로 사용되는 박강판에 관한 것이다. 보다 상세하게는 390MPa 이상의 인장강도를 확보하고, 우수한 면내이방성을 갖는 소부경화형 박강판 및 그 제조방법에 관한 것이다.The present invention relates to a steel sheet which is mainly used for automobile shell plates. More specifically, the present invention relates to a hardened hardened steel sheet and a method of manufacturing the same, which secure a tensile strength of 390 MPa or more and have excellent in-plane anisotropy.

자동차 외판 소재로 주로 사용되는 강판은 우수한 내덴트성을 요구한다. 이러한 내덴트성을 확보하기 위하여 주로 소부경화형 강판이 사용된다. 소부경화형 강판은 강판중에 적정량의 고용탄소를 잔존시키고 도장소부시의 열을 이용하여 고용탄소가 프레스 성형시에 생성된 전위를 고착하도록 하여 항복점을 높인 강이다. Steel sheets, which are mainly used as automotive exterior materials, require excellent dent resistance. In order to secure such dent resistance, a hardening hardened steel sheet is mainly used. The hardened hardened steel sheet is a steel having a high yield point by retaining an appropriate amount of solid solution carbon in the steel sheet and using the heat of the coating element bush to fix the potential generated during press forming.

소부경화형 냉연강판에는 상소둔재인 Al-Killed강과 IF강(Interstitial Free Steel)이 있다. There are Al-Killed steel and IF steel (Interstitial Free Steel).

상소둔재인 Al-Killed강의 경우에는 적은 양의 고용탄소가 잔존하고 있어 내시효특성을 확보하면서 소부처리후 10~20Mpa 정도의 소부경화능을 가진다. 상소둔재의 경우 소부처리후 상승하는 항복강도가 낮고 생산성이 낮다는 단점이 있다. In the case of Al-Killed steel, which is an ordinary annealing material, a small amount of solid carbon remains, and it has a hardening hardening capacity of about 10 to 20 Mpa after the quenching treatment while securing aging characteristics. The upper annealing material has the disadvantages of low yield strength and low productivity after baking.

IF강의 경우에는 Ti, Nb을 첨가하여 강중에 고용된 탄소 또는 질소를 완전히 석출하여 성형성을 향상시킨 강종으로, 이 IF강에 소부경화특성을 부여한 것이 소부경화형 IF강이다. 소부경화형 IF강은 Ti 또는 Nb의 첨가량과 탄소의 첨가량을 제어하여 적당한 양의 탄소를 강중에 잔존하게 하여 소부경화특성을 부여한 것이다. In the case of IF steel, Ti and Nb are added to completely precipitate the carbon or nitrogen dissolved in the steel to improve moldability. The hardening hardening characteristic is given to the IF steel by hardening. The baking hardening type IF steel controls the adding amount of Ti or Nb and the adding amount of carbon so that an appropriate amount of carbon remains in the steel to give the baking hardening characteristic.

소부경화형 IF강의 경우 적당한 양의 탄소를 고용하기 위해서는 첨가되는 탄소의 양뿐만 아니라, 첨가되는 Ti 또는 Nb의 양은 물론, Ti, Nb과 반응하여 석출물을 생성하는 황, 질소의 양도 매우 좁은 범위에서 제어해야 하므로 안정적인 품질확보가 어려우며, 생산비용도 많이 드는 문제점이 있다. In the case of small hardening IF steel, in order to employ an appropriate amount of carbon, not only the amount of carbon added, but also the amount of Ti or Nb added, as well as the amount of sulfur and nitrogen that react with Ti and Nb to form precipitates are controlled in a very narrow range. Since it is difficult to secure stable quality, there is a problem that also takes a lot of production costs.

이를 개선하기 위한 종래기술로는 국내 특허 출원번호 2005-88518호 및 2005-88517호가 있다. 상기 종래기술들은 약 25ppm이하의 극저탄소강에 Al함량을 약 0.08~0.12%첨가하여 AlN석출물에 의한 결정립 미세화 효과(ASTM No. 9이상)에 의해 내2차가공취성이 크게 개선된 강을 제조하고 있다. Conventional techniques for improving this are domestic patent applications No. 2005-88518 and 2005-88517. The prior arts add about 0.08 to 0.12% of Al content to ultra-low carbon steels of about 25 ppm or less to produce steels having greatly improved secondary processing brittleness by grain refining effect (more than ASTM No. 9) by AlN precipitates. Doing.

그러나, 강중 미석출 잔존 고용 탄소에 의해 가공성이 열위해져 r-값기준 1.5~1.6 수준으로 면내이방성이 불리하여 자동차 부품 성형시 가공성 측면에서 크게 개선되지 못하는 문제점이 있다. However, inferior in workability due to unprecipitated remaining solid solution carbon in the steel, the in-plane anisotropy is disadvantageous at the level of 1.5 to 1.6 based on the r-value, and thus there is a problem in that the processability is not greatly improved in forming the automobile parts.

한편 국내 특허 출원번호 2004-111706호에서는 소부경화강을 제조하기 위하여 탄, 질화물(Ti, Nb등) 형성원소를 전혀 첨가하지 않고 약 0.1%의 Cu를 첨가하여 강도를 확보하고 또한 N함량을 약 70ppm이상 첨가함으로써 AlN석출에 의한 강도 보상 효과를 확보한 소부경화강의 제조방법을 제시하고 있다. Meanwhile, in Korean Patent Application No. 2004-111706, in order to manufacture hardened hardened steel, 0.1% Cu is added without adding carbon and nitride (Ti, Nb, etc.) forming elements at all to secure strength, and N content is weakened. It is proposed a method of producing hardened hardened steel that has a strength compensation effect by AlN precipitation by adding more than 70ppm.

그러나, 상기 종래기술은 잔류 고용 C에 의해 가공성, 특히 면내이방성이 0.3 이상을 나타내어 근본적으로 가공성에 대한 문제 해결에 매우 미흡한 결점을 갖고 있다. However, the above-mentioned prior art exhibits a workability, in particular, an in-plane anisotropy of 0.3 or more due to the residual solid solution C, and thus has a disadvantage inherent in solving the problem of workability.

본 발명은 상기한 종래의 문제점을 개선하기 위한 것으로, 석출물의 크기 및 함량, 그리고 열간압연 공정을 적절히 제어함으로써, 인장강도 390MPa 이상의 고강도를 가지면서 면내이방성이 우수한 소부경화형 박강판 및 제조방법을 제공하는데, 그 목적이 있다.The present invention is to improve the above-mentioned conventional problems, by appropriately controlling the size and content of the precipitates, and hot rolling process, to provide a small-hardened type steel sheet and a manufacturing method having a high strength of 390MPa or more and excellent in-plane anisotropy There is a purpose.

상기 목적을 달성하기 위한 본 발명은, 중량%로, C: 0.0015~0.0025%, Mn: 0.03~0.2%, P: 0.06~0.1%, S: 0.003~0.015%, Sol.Al: 0.01~0.08%, N: 0.006~0.01%, Cu: 0.005~0.2%, Sb: 0.02~0.1%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Mn, Cu 및 S이 6.7≤(Mn/1.7S)+(Cu/1.96S)≤14.6의 관계를 만족하고, 그리고 20nm 이하의 크기를 갖는 MnS, CuS, (Mn,Cu)S 석출물들을 75% 이상 포함하는 면내이방성이 우수한 소부경화형 박강판에 관한 것이다.The present invention for achieving the above object, in weight%, C: 0.0015 ~ 0.0025%, Mn: 0.03 ~ 0.2%, P: 0.06 ~ 0.1%, S: 0.003 ~ 0.015%, Sol.Al: 0.01 ~ 0.08% , N: 0.006% to 0.01%, Cu: 0.005% to 0.2%, Sb: 0.02% to 0.1%, remaining Fe and other unavoidable impurities, wherein Mn, Cu, and S are 6.7≤ (Mn / 1.7S) + (Cu /1.96S) ≤ 14.6 and relates to a small hardening type steel sheet having excellent in-plane anisotropy containing 75% or more of MnS, CuS, (Mn, Cu) S precipitates having a size of 20nm or less.

또한, 본 발명은 중량%로, C: 0.0015~0.0025%, Mn: 0.03~0.2%, P: 0.06~ 0.1%, S: 0.003~0.015%, Sol.Al: 0.01~0.08%, N: 0.006~0.01%, Cu: 0.005~0.2%, Sb: 0.02~0.1%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Mn, Cu 및 S이 6.7≤(Mn/1.7S)+(Cu/1.96S)≤14.6의 관계를 만족하는 강 슬라브를 재가열하고, 마무리압연하기 전 오스테나이트 조직의 평균 결정립 크기가 50㎛ 이하가 되도록 제어한 후, Ae3~Ar3의 온도범위에서 60% 이상의 총압하율로 마무리압연을 행하여 열연 페라이트 결정립 크기가 5㎛ 이하로 유지되도록 한 다음 680~720℃의 온도에서 권취하고, 75% 이상의 압하율로 냉간압연한 후 780~830℃에서 연속소둔하는 면내이방성이 우수한 소부경화형 박강판의 제조방법에 관한 것이다.In addition, the present invention is a weight%, C: 0.0015 ~ 0.0025%, Mn: 0.03 ~ 0.2%, P: 0.06 ~ 0.1%, S: 0.003 ~ 0.015%, Sol.Al: 0.01 ~ 0.08%, N: 0.006 ~ 0.01%, Cu: 0.005-0.2%, Sb: 0.02-0.1%, and is composed of the remaining Fe and other unavoidable impurities, wherein Mn, Cu and S are 6.7≤ (Mn / 1.7S) + (Cu / 1.96S) ≤ After reheating the steel slab that satisfies the relationship of 14.6, and controlling the average grain size of the austenitic structure to be 50 µm or less before finishing rolling, finish with a total reduction ratio of 60% or more in the temperature range of Ae 3 to Ar 3 . Hot rolled ferrite grain size is maintained at 5㎛ or less by rolling and then wound at a temperature of 680 ~ 720 ℃, cold rolled at 75% or more reduction rate, and then annealing hardening type with excellent in-plane anisotropy which is continuously annealed at 780 ~ 830 ℃. It relates to a method for producing a thin steel sheet.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명자는 Ti, Nb를 첨가하지 않은 소부경화형 강판의 면내이방성을 개선하기 위한 방법을 연구하던 중에, 열간압연공정을 적절히 제어하여 열간압연시 변형유기 동적변태(Strain Induced Dynamic Transformation, SIDT)를 이용함으로써 미세조직의 동적재결정이 일어나고 동시에 미세한 조직이 형성되어 우수한 면내이방성을 확보할 수 있다는 것을 규명하게 되었으며, 그 결과에 기초하여 본 발명을 완성하게 되었다. The inventors of the present invention studied the method for improving the in-plane anisotropy of the hardened steel sheet without Ti and Nb, and used the Strain Induced Dynamic Transformation (SIDT) during hot rolling by appropriately controlling the hot rolling process. As a result, dynamic recrystallization of the microstructures occurred, and at the same time, the microstructures were formed to ensure excellent in-plane anisotropy, and the present invention was completed based on the results.

또한, 본 발명은 MnS, CuS, (Mn,Cu)S 석출물들의 크기 및 함량을 제어함으로써, 고강도를 확보할 수 있다는데 특징이 있는 것이다. 먼저 본 발명의 강성분의 조성범위를 설명한다.In addition, the present invention is characterized by ensuring the high strength by controlling the size and content of MnS, CuS, (Mn, Cu) S precipitates. First, the composition range of the steel component of the present invention will be described.

C: 0.0015~0.0025%가 바람직하다. C: 0.0015 to 0.0025% is preferable.

상기 C는 30~50MPa의 소부경화성을 확보하기 위하여 첨가한다. 그 함량이 0.0015% 미만의 경우 본 발명에서 목표로 하는 소부경화성을 확보하지 못하는 반면, 0.0025%를 초과하면 소부경화성은 증가하지만 내시효성이 열악해져 가공시 표면 주름이 발생될 가능성이 높아지므로, 상기 C의 함량은 0.0015~0.0025%로 제한 하는 것이 바람직하다.The C is added to ensure the baking hardening of 30 ~ 50MPa. If the content is less than 0.0015% does not secure the baking hardening target of the present invention, if the content exceeds 0.0025% baking hardening increases but the aging resistance is poor, the possibility of surface wrinkles during processing increases. The content of C is preferably limited to 0.0015 ~ 0.0025%.

Mn: 0.03~0.2%가 바람직하다. Mn: 0.03-0.2% is preferable.

상기 Mn은 강 중 고용S을 MnS로 석출하여 고용S에 의한 적열취성(Hot Shortness)을 방지하는 원소로 알려져 있다. 본 발명에서는 Mn과 S의 함량을 제어하여 매우 미세한 MnS가 석출될 수 있도록 Mn의 함량을 0.03~0.2%로 관리함으로써 강도 및 면내 이방성을 크게 개선하고 있다. 그 함량이 0.03% 미만인 경우 상기의 효과를 확보하기 어려운 반면, 0.2%를 초과하게 되면 조대한 MnS 석출물이 형성되어 내시효성이 열악해질 가능성이 높으므로, 상기 Mn의 함량은 0.03~0.2%로 제한하는 것이 바람직하다.Mn is known as an element that precipitates solid solution S in steel as MnS to prevent hot shortness due to solid solution S. In the present invention, the strength and in-plane anisotropy are greatly improved by controlling the content of Mn and S to manage Mn content of 0.03 to 0.2% so that very fine MnS can be precipitated. If the content is less than 0.03%, it is difficult to secure the above effects, while if the content exceeds 0.2%, coarse MnS precipitates are formed, and the aging resistance is likely to be poor, so the Mn content is limited to 0.03 to 0.2%. It is desirable to.

P: 0.06~0.1%가 바람직하다. P: 0.06 to 0.1% is preferable.

상기 P은 Mn과 함께 강도상승을 위해 첨가하는 대표적인 고용강화원소로서, P의 첨가량이 증가함에 따라 강도 상승효과는 높아지는 반면 과잉의 P첨가는 IF강에서 2차가공취성의 문제가 발생할 가능성이 높아지므로 적정량의 P첨가가 중요하다. 본 발명에서는 미세한 석출물을 이용한 강도 확보기술을 이용함으로써 강중 P함량을 다소 낮출 수 있다. 그 함량이 0.06% 미만인 경우 본 발명에서 목표로 하는 강도를 확보하지 못하는 반면, 0.1%를 초과하면 2차가공취성 발생 가능성이 높아지므로, 상기 P의 함량은 0.06~0.1%로 제한하는 것이 바람직하다.The P is a representative solid solution element added to increase the strength with Mn. As the amount of P is increased, the strength synergistic effect is increased, while excessive P addition is likely to cause a problem of secondary brittleness in the IF steel. Therefore, it is important to add an appropriate amount of P. In the present invention, it is possible to lower the P content in the steel somewhat by using a technique for securing strength using fine precipitates. If the content is less than 0.06%, the strength targeted by the present invention cannot be secured, whereas if the content exceeds 0.1%, the possibility of secondary processing brittleness increases, so the content of P is preferably limited to 0.06 to 0.1%. .

S: 0.003~0.015%가 바람직하다. S: 0.003-0.015% is preferable.

상기 S의 함량이 0.003% 미만인 경우 MnS, CuS, (Mn,Cu)S 석출물의 함량이 적을 뿐만 아니라 석출물이 매우 조대해져 강도 및 내시효성을 저해할 가능성이 높다. 반면, 0.015%를 초과하게 되면 고용S의 함량이 많아져 연성 및 성형성을 크게 저해하며, 적열취성이 발생할 우려가 있으므로, 상기 S의 함량은 0.003~0.015%로 제한하는 것이 바람직하다.When the content of S is less than 0.003%, the content of MnS, CuS, and (Mn, Cu) S precipitates is not only low, but the precipitates are very coarse, which is likely to inhibit strength and aging resistance. On the other hand, if the content exceeds 0.015%, the content of solid solution S increases and greatly inhibits the ductility and formability, and there is a fear that red brittleness may occur, it is preferable to limit the content of S to 0.003 ~ 0.015%.

Sol.Al: 0.01~0.08%가 바람직하다. Sol. Al: 0.01 to 0.08% is preferred.

상기 Sol.Al은 강중 용존 산소량을 충분히 낮은 상태로 유지하면서 첨가된 N와 AlN을 석출하여 강도 향상에 크게 기여한다. 이러한 효과로부터 본 발명에서는 고용강화원소 (P, Mn 등)의 함량을 낮추어 2차가공취성 및 도금표면 특성개선에 크게 기여할 수 있다. 상기 Sol.Al의 함량이 0.01% 미만인 경우 효과적인 AlN석출물을 형성할 수 없으며, 0.08%를 초과하는 경우 AlN석출물이 조대해져 강도기여 효과가 감소하므로, 상기 Sol.Al의 함량은 0.01~0.08%로 제한하는 것이 바람직하다.The Sol.Al significantly contributes to the strength improvement by depositing the added N and AlN while keeping the dissolved oxygen content in the steel sufficiently low. From this effect, in the present invention, by lowering the content of solid solution strengthening elements (P, Mn, etc.) it can greatly contribute to the improvement of secondary processing brittleness and plating surface properties. When the content of Sol.Al is less than 0.01%, an effective AlN precipitate cannot be formed. When the content of Sol.Al is greater than 0.08%, the AlN precipitate is coarsened to reduce the strength-contributing effect. Thus, the content of Sol.Al is 0.01 to 0.08%. It is desirable to limit.

N: 0.006~0.01%가 바람직하다. N: 0.006-0.01% is preferable.

상기 N는 고용상태로 존재할 경우 소부경화특성에 영향을 미치고, AlN으로 석출될 경우 강도기여 효과가 나타난다. 그 함량이 0.006% 미만인 경우 미세한 AlN 석출에 의한 강도 기여를 확보하지 못하는 반면, 0.01%를 초과하면 과잉의 고용N에 의해 내시효성이 열위될 수 있다. 따라서, 상기 N의 함량은 0.006~0.01%로 제한하 는 것이 바람직하다.When N is in a solid solution state, it affects the baking hardening characteristics, and when precipitated with AlN, a strength-contributing effect is exhibited. If the content is less than 0.006%, the strength contribution due to the fine AlN precipitation cannot be secured, whereas if the content is more than 0.01%, the aging resistance may be inferior due to the excessive solid solution N. Therefore, the content of N is preferably limited to 0.006 ~ 0.01%.

Cu: 0.005~0.2%가 바람직하다. Cu: 0.005-0.2% is preferable.

상기 Cu는 강판의 강도를 증가시키며, 그 함량이 0.005% 미만인 경우 본 발명에서 목표로 하는 강도를 확보하기 어려운 반면, 0.2%를 초과하는 경우 오히려 Cu계 석출물이 조대화되어 강도 향상 측면에서 크게 유리하지 못하고 제조 원가 비용도 증가한다. 따라서, 상기 Cu의 함량은 0.005~0.2%로 제한하는 것이 바람직하 다.The Cu increases the strength of the steel sheet, and if the content is less than 0.005%, it is difficult to secure the target strength in the present invention, whereas if it exceeds 0.2%, Cu-based precipitates are coarsened, which is greatly advantageous in terms of strength improvement. In addition, manufacturing cost increases. Therefore, the content of Cu is preferably limited to 0.005 ~ 0.2%.

Sb: 0.02~0.1%가 바람직하다. Sb: 0.02-0.1% is preferable.

상기 Sb는 소둔시 Si, Mn산화물이 강판 표면으로 용출되는 것을 방해함으로써 도금특성을 향상시킨다. 즉, 열간압연 후 상기 Sb은 주로 결정립계에 편석하여 결정립계를 통해 Mn, Si산화물의 이동 통로를 차단하여 표면 결함을 저하시킴으로써 우수한 도금특성을 확보하는 것이다. The Sb improves the plating characteristics by preventing the Si and Mn oxides from eluting to the surface of the steel sheet during annealing. That is, after hot rolling, the Sb mainly segregates at the grain boundary and blocks the movement path of Mn and Si oxide through the grain boundary to lower surface defects, thereby securing excellent plating characteristics.

그 함량이 0.02% 미만인 경우 Mn, Si산화물의 통로 억제 효과가 거의 없는 반면, 0.1%를 초과하는 경우 과잉의 Sb가 고용상태로 존재하여 강의 연신 특성을 저해하므로 상기 Sb의 함량은 0.02~0.1%로 제한하는 것이 바람직하다.If the content is less than 0.02%, there is little effect of inhibiting the passage of Mn and Si oxides, whereas if the content is more than 0.1%, excess Sb exists in solid solution and inhibits the stretching property of the steel, so the content of Sb is 0.02 ~ 0.1%. It is preferable to limit to.

본 발명은 상기한 성분 이외에 나머지는 Fe 및 기타 불가피한 불순물로 조성된다.The present invention is composed of Fe and other unavoidable impurities in addition to the above components.

본 발명에서는 상기 Mn, Cu 및 S이 6.7≤(Mn/1.7S)+(Cu/1.96S)≤14.6의 관계를 만족한다.In the present invention, Mn, Cu, and S satisfy a relationship of 6.7≤ (Mn / 1.7S) + (Cu / 1.96S) ≤14.6.

상기 관계식 값이 6.7 미만인 경우 석출 효과가 거의 없어 본 발명에서 목표로 하는 강도를 확보하기 어려운 반면, 14.6을 초과하는 경우 조대한 석출물이 다량 형성되어 강도 향상을 저해하므로 상기 관계식은 6.7~14.6으로 제한하는 것이 바람직하다.When the relational value is less than 6.7, there is little precipitation effect, so it is difficult to secure the target strength in the present invention, whereas when the relational value exceeds 14.6, a large amount of coarse precipitates are formed to inhibit the strength improvement, so the relational expression is limited to 6.7 to 14.6. It is desirable to.

또한, 본 발명의 강판에는 20nm 이하의 크기를 갖는 MnS, CuS, (Mn,Cu)S 석출물들을 75% 이상 포함한다. In addition, the steel sheet of the present invention contains 75% or more of MnS, CuS, (Mn, Cu) S precipitates having a size of 20nm or less.

석출물의 크기가 20nm를 초과하는 경우 강도 확보에 크게 기여하지 못하며, 석출물의 양이 75% 미만인 경우에도 본 발명에서 목표로 하는 강도를 확보하지 못한다. 따라서, 20nm 이하의 크기를 갖는 상기 석출물들을 75% 이상으로 제한하는 것이 바람직하다.If the size of the precipitate exceeds 20nm, it does not contribute significantly to securing the strength, even if the amount of the precipitate is less than 75% does not secure the strength targeted in the present invention. Therefore, it is desirable to limit the precipitates having a size of 20 nm or less to 75% or more.

또한, 본 발명에서는 소부경화형 강판의 면내이방성을 개선하기 위하여 열간압연시 변형유기 동적변태(Strain Induced Dynamic Transformation, SIDT)를 이용하고 있는데, 이하 SIDT에 대해서 설명한다. In addition, the present invention uses a strain induced dynamic transformation (SIDT) during hot rolling to improve the in-plane anisotropy of the hardened hardened steel sheet, which will be described below.

SIDT란 Ae3~Ar3의 온도범위에서 강을 가공하여 조직에 변형을 부여하면 오스 테나이트상이 변형에 의해 쉽게 페라이트로 변태됨을 의미한다. 본 발명에서는 SIDT를 열간압연공정에 이용하여 마무리압연을 마치는 순간 이미 일부 페라이트가 형성되고 그 후 냉각과정에서 페라이트 변태가 촉진되어 매우 미세한 결정립을 형성하고 있는 것이다. SIDT means that when the steel is processed in the temperature range of Ae 3 ~ Ar 3 to give a deformation to the structure, the austenite phase is easily transformed to ferrite by deformation. In the present invention, a part of the ferrite is already formed at the moment of finishing the finish rolling by using SIDT in the hot rolling process, and then the ferrite transformation is promoted in the cooling process to form very fine grains.

이하, 상기와 같이 조성되는 강을 갖는 박강판의 제조방법에 대하여 상세하게 설명한다.Hereinafter, the manufacturing method of the thin steel plate which has the steel comprised as mentioned above is demonstrated in detail.

먼저, 상기와 같이 조성되는 강 슬라브를 재가열한 후, 마무리압연하기 전 오스테나이트 조직의 평균 결정립 크기가 50㎛ 이하가 되도록 제어한다. 50㎛를 초과하는 경우 동적변태가 효과적으로 일어나지 않을 가능성이 높으므로 오스테나이트 조직의 강재를 열간가공시켜 변형유기 동적변태현상을 효과적으로 이용하기 위하여 마무리 압연 전 오스테나이트 조직의 평균 결정립의 크기를 50㎛ 이하로 제한하는 것이 바람직하다. First, after reheating the steel slab formed as described above, it is controlled so that the average grain size of the austenite structure is 50 µm or less before finishing rolling. If it exceeds 50㎛, it is highly likely that the dynamic transformation does not occur effectively. Therefore, in order to effectively use strain organic dynamic transformation by hot working steel of austenitic structure, the average grain size of the austenitic structure before finishing rolling should be below 50㎛. It is preferable to limit to.

이후, Ae3~Ar3의 온도범위에서 60% 이상의 총압하율로 마무리압연을 행하여 열연 페라이트 결정립 크기가 5㎛ 이하로 유지되도록 한다. 이러한 미세하게 생성된 조직은 냉간압연-소둔과정 후에도 결정립이 미세하게 유지되어 강의 가공성에 유리한 {111} 집합조직을 발달시키고 또한 방향별 소성이방성 중 r45값을 증가시켜 결국 면내이방성이 우수한 소부경화강을 제조할 수 있는 것이다. Then, finish rolling is performed at a total reduction ratio of 60% or more in the temperature range of Ae 3 to Ar 3 to maintain the hot-rolled ferrite grain size at 5 μm or less. The finely formed structure maintains fine grains even after cold rolling and annealing to develop {111} texture structure which is advantageous for the workability of steel, and also increases r45 value of plastic anisotropy in each direction. It can be prepared.

마무리압연온도가 Ar3미만의 경우에는 강의 조직이 2상역(페라이트 + 오스테나이트) 구간으로 조대한 페라이트가 미변태되고, 잔류되어 최종적으로 조대한 결정립을 가질 수 있으며, Ae3를 초과하면 오스테나이트 단상역으로 온도가 증가함에 따라 조대한 오스테나이트가 조대한 페라이트로 변태될 가능성이 높으므로 상기 마무리압연온도는 Ae3~Ar3로 제한하는 것이 바람직하다. If the finish rolling temperature is lower than Ar 3 is when the river tissue 2 sangyeok (ferrite + austenite) is ferrite coarse the interval is the non-transformed, the residue may have a final grain coarse, the excess of the Ae 3 Austenite As the temperature increases in the single phase region, coarse austenite is likely to be transformed into coarse ferrite, so the finish rolling temperature is preferably limited to Ae 3 to Ar 3 .

상기 총압하율이 60% 미만인 경우 냉각 중 페라이트 입성장이 급격히 일어날 가능성이 높아지므로, 상기 총압하율을 60% 이상으로 제한하는 것이 바람직하다. When the total reduction ratio is less than 60%, the possibility of the rapid growth of ferrite grain growth during cooling increases, so it is preferable to limit the total reduction ratio to 60% or more.

이어, 상기 열연판을 680~720℃의 온도에서 권취하고, 75% 이상의 압하율로 냉간압연한 후 780~830℃에서 연속소둔한다. 상기 권취온도가 680℃ 미만인 경우 효과적으로 Cu석출물이 형성되지 못하여 고용C 함량이 증가하는 반면, 720℃를 초과하는 경우 석출물이 너무 조대하게 성장하여 강도 향상 기여가 거의 없다. 따라서 상기 권취온도는 680~720℃로 제한하는 것이 바람직하다.Subsequently, the hot rolled sheet is wound at a temperature of 680-720 ° C., cold rolled at a reduction ratio of 75% or more, and then continuously annealed at 780-830 ° C. When the coiling temperature is less than 680 ° C, Cu precipitates are not effectively formed, and the solid solution C content is increased, whereas when the coiling temperature exceeds 720 ° C, the precipitates grow too coarse and there is little contribution to improving strength. Therefore, the winding temperature is preferably limited to 680 ~ 720 ℃.

또한, 냉간압하율이 증가할수록 가공성 평가지수인 r-value가 증가하지만 현장 작업시 롤(Roll) 부하를 고려하여 최저 압하량을 75%으로 제한하는 것이 바람직 하다.In addition, as the cold rolling rate increases, the r-value, which is a workability evaluation index, increases, but it is desirable to limit the minimum rolling reduction to 75% in consideration of the roll load in the field work.

또한, 상기 연속소둔온도가 780℃ 미만인 경우 연신 특성이 우수한 고강도강을 확보하기 어려운 반면, 830℃를 초과하는 경우 고온소둔으로 인하여 조업상 스트립의 통판성 등의 문제가 발생할 위험성이 매우 높아 도금특성을 열위시키므로, 상기 연속소둔온도는 780~830℃로 제한하는 것이 바람직하다.In addition, when the continuous annealing temperature is less than 780 ℃, it is difficult to secure a high strength steel with excellent stretching characteristics, while if the continuous annealing temperature is higher than 830 ℃ due to high temperature annealing, there is a very high risk of problems such as stripping of strips in operation plating properties Since it is inferior to, the continuous annealing temperature is preferably limited to 780 ~ 830 ℃.

또한, 본 발명에서는 연속소둔한 본 발명의 강을 통상의 방법으로 합금화 처리할 수 있다.In the present invention, the steel of the present invention continuously annealed can be alloyed by a conventional method.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기 표1과 같이 조성되는 강 슬라브를 1200℃에서 재가열하여 하기 표2와 같은 제조조건으로 60% 이상의 압하율로 마무리 압연하고 냉간압연한 후, 700℃에서 권취한 다음, 연속소둔하였다.The steel slab formed as shown in Table 1 was reheated at 1200 ° C., finished rolled at a reduction ratio of 60% or more under the manufacturing conditions as shown in Table 2, cold rolled, rolled up at 700 ° C., and then continuously annealed.

얻어진 소둔판은 기계적 특성을 조사하기 위해 ASTM 규격(ASTM E-8 standard)에 의한 표준시편으로 가공하였다. 시편은 인장시험기(INSTRON사, Model 6025)를 이용하여 인장강도, 연신율, 소성이방성 지수(rm값) 및 면내이방성지수(△r값)을 측정하였다.The obtained annealing plate was processed into a standard specimen according to the ASTM E-8 standard to investigate the mechanical properties. The specimen was measured for tensile strength, elongation, plastic anisotropy index (rm value) and in-plane anisotropy index (Δr value) using a tensile tester (INSTRON, Model 6025).

여기서 rm=(r0+2r45+r90)/4, △r=(r0-2r45+r90)/2이다. 내2차가공취성(DBTT)의 평가는 가공비 1.9의 조건으로 성형한 컵을 옆으로 거취시켜 놓고 추를 낙하시켜 연성-취성천이온도(DBTT, Ductile-Brittle Transition Temperature)를 측정하는 방식으로 평가하였다.Where r m = (r 0 + 2r 45 + r 90 ) / 4 and Δr = (r 0 −2r 45 + r 90 ) / 2. The evaluation of the secondary workability brittleness (DBTT) was evaluated by measuring the Ductile-Brittle Transition Temperature (DBTT) by dropping the weight and dropping the weight of the cup formed under the condition of processing ratio 1.9. .

표2는 본 발명강과 비교강의 기계적 성질, 내2차가공취성을 나타낸 것이다.Table 2 shows the mechanical properties and secondary work resistance of the inventive steel and the comparative steel.

시료 번호Sample number 화학성분(중량%)Chemical composition (% by weight) CC MnMn PP SS AlAl NN CuCu SbSb 발명강1Inventive Steel 1 0.00170.0017 0.070.07 0.070.07 0.0060.006 0.050.05 0.0070.007 0.110.11 0.030.03 발명강2Inventive Steel 2 0.00180.0018 0.110.11 0.0750.075 0.0080.008 0.0450.045 0.00710.0071 0.110.11 0.030.03 발명강3Invention Steel 3 0.00200.0020 0.150.15 0.0720.072 0.00820.0082 0.040.04 0.00740.0074 0.100.10 0.030.03 발명강4Inventive Steel 4 0.00230.0023 0.180.18 0.0680.068 0.00850.0085 0.0450.045 0.00680.0068 0.090.09 0.030.03 발명강5Inventive Steel 5 0.00180.0018 0.150.15 0.0710.071 0.0120.012 0.050.05 0.00650.0065 0.110.11 0.030.03

구분division 비고Remarks 조업조건Operating conditions 기계적성질Mechanical property 마무리 압연 (℃)Finish rolling (℃) 냉간 압하율 (%)Cold rolling reduction (%) 소둔 온도 (℃)Annealing Temperature (℃) 열연 결정립 크기 (㎛)Hot Rolled Grain Size (㎛) 인장 강도 (MPa)Tensile strength (MPa) 연신율 (%)Elongation (%) R-valueR-value △r 면내 이방성△ r in-plane anisotropy DBTT (℃)DBTT (℃) 석출물 분포 (≤20nm)Precipitate distribution (≤20nm) 발명강1Inventive Steel 1 발명재1Invention 1 878878 7676 805805 3.53.5 401401 37.537.5 1.781.78 0.110.11 -50-50 78%78% 발명강1Inventive Steel 1 발명재2Invention 2 869869 7777 803803 3.23.2 398398 38.138.1 1.751.75 0.100.10 -50-50 77%77% 발명강2Inventive Steel 2 발명재3Invention 3 875875 7777 802802 3.33.3 395395 37.637.6 1.811.81 0.120.12 -50-50 81%81% 발명강3Invention Steel 3 발명재4Invention 4 869869 7676 795795 4.24.2 396396 36.836.8 1.821.82 0.080.08 -55-55 80%80% 발명강3Invention Steel 3 발명재5Invention 5 871871 7878 810810 4.54.5 402402 38.238.2 1.851.85 0.130.13 -50-50 82%82% 발명강4Inventive Steel 4 발명재6Invention 6 870870 7575 802802 3.83.8 401401 38.538.5 1.781.78 0.030.03 -50-50 79%79% 발명강5Inventive Steel 5 발명재7Invention Material7 868868 7777 806806 3.63.6 403403 38.738.7 1.831.83 0.080.08 -50-50 77%77% 발명강1 Inventive Steel 1 비교재1Comparative Material 1 922922 7878 803803 7.87.8 396396 37.837.8 1.691.69 0.450.45 -20-20 55%55% 발명강2Inventive Steel 2 비교재2Comparative Material 2 924924 7878 807807 9.69.6 395395 38.238.2 1.651.65 0.390.39 -30-30 45%45%

상기 표1 및 2에서 나타난 바와 같이 본 발명의 성분범위를 만족하는 발명강 (1~5)을 이용하여 본 발명의 제조방법에 따라 제조된 발명재(1~7)의 경우, 75% 이상의 20nm 이하의 미세 석출물을 형성하여 인장강도 390MPa 이상의 고강도강를 확보하였다. 또한, 4.5㎛ 이하의 미세한 열연 결정립이 확보된 발명재(1~7)은 소성이방성 지수인 R-value값이 1.75 이상 및 면내이방성지수인 △r값이 0.12 이하로 우수한 면내이방성을 확보하였다. As shown in Tables 1 and 2, in the case of the inventive materials (1-7) manufactured according to the production method of the present invention using the inventive steels (1-5) satisfying the component range of the present invention, 20 nm or more, 20 nm The following fine precipitates were formed to secure high strength steel with a tensile strength of 390 MPa or more. In addition, the inventive materials (1 to 7) having fine hot-rolled grains of 4.5 µm or less secured excellent in-plane anisotropy with R-value of plastic anisotropy index of 1.75 or more and Δr value of in-plane anisotropy index of 0.12 or less.

그러나, 본 발명의 제조조건을 만족하지 않는 비교재(1,2)의 경우, 본 발명의 마무리 압연온도를 만족하지 않아 조대한 열연 페라이트 결정립을 나타내고 미세한 석출물 분포도 낮아 열위한 R-value 및 면내이방성을 나타내었다.However, in the case of the comparative materials (1, 2) that do not satisfy the manufacturing conditions of the present invention, it does not satisfy the finish rolling temperature of the present invention, it exhibits coarse hot-rolled ferrite grains and low fine precipitate distribution R-value and in-plane anisotropy for heat Indicated.

상술한 바와 같이, 본 발명에 따르면, 석출물의 크기 및 함량, 그리고 열간압연 공정을 적절히 제어함으로써, 인장강도 390MPa 이상의 고강도를 가지면서 면내이방성이 우수한 소부경화형 박강판을 제공할 수 있는 효과가 있다.As described above, according to the present invention, by appropriately controlling the size and content of the precipitates, and the hot rolling process, there is an effect that it is possible to provide a small hardened steel sheet having excellent in-plane anisotropy while having a high strength of 390 MPa or more of tensile strength.

Claims (2)

중량%로, C: 0.0015~0.0025%, Mn: 0.03~0.2%, P: 0.06~0.1%, S: 0.003~0.015%, Sol.Al: 0.01~0.08%, N: 0.006~0.01%, Cu: 0.005~0.2%, Sb: 0.02~0.1%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Mn, Cu 및 S이 6.7≤(Mn/1.7S)+(Cu/1.96S)≤14.6의 관계를 만족하고, 그리고 20nm 이하의 크기를 갖는 MnS, CuS, (Mn,Cu)S 석출물들을 75% 이상 포함하는 면내이방성이 우수한 소부경화형 박강판.By weight%, C: 0.0015 to 0.0025%, Mn: 0.03 to 0.2%, P: 0.06 to 0.1%, S: 0.003 to 0.015%, Sol.Al: 0.01 to 0.08%, N: 0.006 to 0.01%, Cu: 0.005 to 0.2%, Sb: 0.02 to 0.1%, remaining Fe and other inevitable impurities, and Mn, Cu and S satisfy the relationship of 6.7≤ (Mn / 1.7S) + (Cu / 1.96S) ≤14.6 And, a small hardening type steel sheet having excellent in-plane anisotropy containing 75% or more of MnS, CuS, (Mn, Cu) S precipitates having a size of 20nm or less. 중량%로, C: 0.0015~0.0025%, Mn: 0.03~0.2%, P: 0.06~0.1%, S: 0.003~0.015%, Sol.Al: 0.01~0.08%, N: 0.006~0.01%, Cu: 0.005~0.2%, Sb: 0.02~0.1%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 상기 Mn, Cu 및 S이 6.7≤(Mn/1.7S)+(Cu/1.96S)≤14.6의 관계를 만족하는 강 슬라브를 재가열하고, 마무리압연하기 전 오스테나이트 조직의 평균 결정립 크기가 50㎛ 이하가 되도록 제어한 후, Ae3~Ar3의 온도범위에서 60% 이상의 총압하율로 마무리압연을 행하여 열연 페라이트 결정립 크기가 5㎛ 이하로 유지되도록 한 다음 680~720℃의 온도에서 권취하고, 75% 이상의 압하율로 냉간압연한 후 780~830℃에서 연속소둔하는 면내이방성이 우수한 소부경화형 박강판의 제조방법.By weight%, C: 0.0015 to 0.0025%, Mn: 0.03 to 0.2%, P: 0.06 to 0.1%, S: 0.003 to 0.015%, Sol.Al: 0.01 to 0.08%, N: 0.006 to 0.01%, Cu: 0.005 to 0.2%, Sb: 0.02 to 0.1%, remaining Fe and other inevitable impurities, and Mn, Cu and S satisfy the relationship of 6.7≤ (Mn / 1.7S) + (Cu / 1.96S) ≤14.6 After reheating the steel slab, and controlling the average grain size of the austenitic structure to be 50 µm or less before finishing rolling, performing hot rolling at a total reduction ratio of 60% or more in the temperature range of Ae 3 to Ar 3 Method for producing a small hardened type steel sheet having excellent in-plane anisotropy which is maintained at a grain size of 5 μm or less, then wound at a temperature of 680-720 ° C., cold-rolled at a reduction ratio of 75% or more, and continuously annealed at 780-830 ° C. .
KR1020050122912A 2005-12-14 2005-12-14 Bake-hardening thin steel sheet having excellent anisotropy and the method for manufacturing the same KR100711359B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050122912A KR100711359B1 (en) 2005-12-14 2005-12-14 Bake-hardening thin steel sheet having excellent anisotropy and the method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050122912A KR100711359B1 (en) 2005-12-14 2005-12-14 Bake-hardening thin steel sheet having excellent anisotropy and the method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR100711359B1 true KR100711359B1 (en) 2007-04-27

Family

ID=38182273

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050122912A KR100711359B1 (en) 2005-12-14 2005-12-14 Bake-hardening thin steel sheet having excellent anisotropy and the method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR100711359B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233470A (en) * 1990-02-09 1991-10-17 Toshiba Corp Image forming device
JPH0578783A (en) * 1991-09-12 1993-03-30 Nippon Steel Corp High strength cold rolled steel sheet having satisfactory formability
KR940014345A (en) * 1992-12-17 1994-07-18 가와무라 요시부미 Biphenyl derivatives, methods for their preparation and their use as therapeutic agents for hypertension and heart disease
JP2004002975A (en) * 2002-04-08 2004-01-08 Jfe Steel Kk Highly workable, cold-rolled steel sheet for porcelain enameling and its manufacturing process
KR20050069899A (en) * 2003-12-29 2005-07-05 주식회사 포스코 Bake-hardenable cold rolled having less anisotropy and high strength, and method of manufacturing the same
KR20050071346A (en) * 2003-12-30 2005-07-07 주식회사 포스코 Bake- hardening cold rolled steel sheet having high strength, method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233470A (en) * 1990-02-09 1991-10-17 Toshiba Corp Image forming device
JPH0578783A (en) * 1991-09-12 1993-03-30 Nippon Steel Corp High strength cold rolled steel sheet having satisfactory formability
KR940014345A (en) * 1992-12-17 1994-07-18 가와무라 요시부미 Biphenyl derivatives, methods for their preparation and their use as therapeutic agents for hypertension and heart disease
JP2004002975A (en) * 2002-04-08 2004-01-08 Jfe Steel Kk Highly workable, cold-rolled steel sheet for porcelain enameling and its manufacturing process
KR20050069899A (en) * 2003-12-29 2005-07-05 주식회사 포스코 Bake-hardenable cold rolled having less anisotropy and high strength, and method of manufacturing the same
KR20050071346A (en) * 2003-12-30 2005-07-07 주식회사 포스코 Bake- hardening cold rolled steel sheet having high strength, method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
05078783

Similar Documents

Publication Publication Date Title
KR100985286B1 (en) High Manganese Steel Having High Strength and Excellent Delayed Fracture Resistance and Manufacturing Method Thereof
KR101030898B1 (en) solid carbon/nitrogen composition bake hardenable steel sheet, and method for producing the same
KR20070006393A (en) Steel sheet for deep drawing having excellent resistance to secondary work embrittlement, fatigue property and coatability, and method for manufacturing the same
KR101104976B1 (en) Bake- hardening cold rolled steel sheet having high strength, method of manufacturing the same
KR101185233B1 (en) Extremely low carbon hot-rolled steel for cold rolling with excelent acid-cleaning characteristic and compactibility and method of manufacturing the same
KR101143139B1 (en) Cold Rolled Steel Sheet and Hot-dip Zinc Plated Steel Sheet with Superior Press Formability and Bake Hardenability and Method for Manufacturing the Steel Sheets
KR100711359B1 (en) Bake-hardening thin steel sheet having excellent anisotropy and the method for manufacturing the same
KR101143086B1 (en) Manufacturing Method of High Strength Steel Sheet Having Excellent Bake-Hardenability
KR101042454B1 (en) Hot-rolled steel sheet with good deep drawing, and method for producing the same
KR101143084B1 (en) Cold rolled steel sheet having aging resistance superior workability and process for producing the same
KR101143240B1 (en) Non aging cold rolled steel sheet having superior workability and process for producing the same
KR101143107B1 (en) Non aging cold rolled steel sheet having superior workability and high strength, and process for producing the same
KR101143098B1 (en) High strength cold rolled steel sheet having aging resistance and superior workability, and process for producing the same
KR101143159B1 (en) Non aging cold rolled steel sheet having superior workability and high strength, and process for producing the same
KR101105132B1 (en) Baking hardening cold rolled steel sheet having high strength, process for producing the same
KR101143039B1 (en) High strength cold rolled steel sheet having aging resistance and superior workability, and process for producing the same
KR101115703B1 (en) Non aging cold rolled steel sheet having high strength, and process for producing the same
KR101105098B1 (en) Bake-harding cold rolled steel sheet having excellent workability and high strength, process for producing the same
KR101143251B1 (en) High strength cold rolled steel sheet having superior workability and process for producing the same
KR101115842B1 (en) Bake hardening cold rolled steel sheet having superior workability and high strength, and process for producing the same
KR20110022340A (en) Steel sheet having good surface quality, and method for producing the same
KR101149288B1 (en) Method for producing of steel sheet having good surface quality
KR101104993B1 (en) Non-aging cold rolled steel sheet and process for producing the same
KR100711362B1 (en) High strength thin steel sheet having excellent plating and elongation property and the method for manufacturing the same
KR101143161B1 (en) Cold rolled steel sheet having aging resistance and superior formability, and process for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130419

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140418

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170321

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190411

Year of fee payment: 13