KR100454161B1 - Manufacturing Method of far ultra rays radiation material - Google Patents

Manufacturing Method of far ultra rays radiation material Download PDF

Info

Publication number
KR100454161B1
KR100454161B1 KR10-2001-0058903A KR20010058903A KR100454161B1 KR 100454161 B1 KR100454161 B1 KR 100454161B1 KR 20010058903 A KR20010058903 A KR 20010058903A KR 100454161 B1 KR100454161 B1 KR 100454161B1
Authority
KR
South Korea
Prior art keywords
far
copper
copper slag
infrared
slag
Prior art date
Application number
KR10-2001-0058903A
Other languages
Korean (ko)
Other versions
KR20030025723A (en
Inventor
김연숙
신순자
Original Assignee
김연숙
신순자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김연숙, 신순자 filed Critical 김연숙
Priority to KR10-2001-0058903A priority Critical patent/KR100454161B1/en
Publication of KR20030025723A publication Critical patent/KR20030025723A/en
Application granted granted Critical
Publication of KR100454161B1 publication Critical patent/KR100454161B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/144Slags from the production of specific metals other than iron or of specific alloys, e.g. ferrochrome slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

본 발명은 동 제련공정에서 발생하는 폐기되는 동슬래그가 원적외선방사물질을 갖는 금속성분으로 산화철, 동(Cu)과 산화동(CuO)을 함유하고 있으므로 이를 분쇄하고 체질을 통해 적정크기의 입자를 얻은 다음, 종래의 고가의 원적외선방사물질을 대체할 수 있는 원적외선방사물질을 얻을 수 있는 것이다.In the present invention, the copper slag discarded in the copper smelting process contains iron oxide, copper (Cu) and copper oxide (CuO) as a metal component having a far-infrared radiation substance. In addition, it is possible to obtain a far-infrared radiation material that can replace the conventional expensive far-infrared radiation material.

따라서 폐기되는 자원을 재활용하여 고가의 원적외선방사물질을 제조할 수 있으며, 부수적으로 환경오염 방지에 큰 도움이 될 수 있는 매우 유용한 발명인 것이다.Therefore, it is possible to manufacture expensive far-infrared radioactive material by recycling the discarded resources, and it is a very useful invention that can be very helpful in preventing environmental pollution.

Description

동슬래그를 이용한 원적외선방사물질{Manufacturing Method of far ultra rays radiation material}Manufacturing method of far ultra rays radiation material using copper slag

본 발명은 원적외선방사물질 조성물에 관한 것으로, 특히 동(Cu) 제련시에 발생하여 폐기되는 동슬래그를 이용하여 종래의 고가의 원적외선방사에 사용되는 고가의 재료를 대신하기 위한 원적외선방사물질에 관한 것이다.The present invention relates to a far-infrared radiation composition, and more particularly to a far-infrared radiation material for replacing expensive materials used in conventional expensive far-infrared radiation by using copper slag generated and discarded during copper smelting. .

최근 들어 기능성 소재의 개발과 더불어 원적외선방사물질의 특성을 갖는 재료의 요구가 증대하고 있으며, 이를 이용한 많은 건강제품이 나오고 있다.Recently, with the development of functional materials, the demand for materials having the characteristics of far-infrared radiation materials is increasing, and many health products using the same have emerged.

특히 도장 건조기, 식품 건조기, 섬유 건조기로 튜브형, 램프형, 판형 등의 원적외선 발열 세라믹스 소자로 사용되는 건조용, 난로 등에 주로 사용. 가스를 점화한 후 열 충격에 강한 세라믹스 소자를 가열하여 원적외선을 방사하여 난방용, 사우나용 발열체가 주종으로 주로 점토질 튜브형로 사용되는 건강관리용, 열판 조리기, 석쇠, 세라믹스 탄, 구이판, 제빵기, 제과기 등의 취사조리용, 바인더에 의한 표면접착형, 염료나 안료에 의한 표면접착형의 섬유용, 식품보관용 플라스틱 용기, 비닐 백, 냉장고용 팩에 이용되는 식품선도유지용, 양말, 신발, 내의, 관절보호대 등에 사용되는 것이 그의 예이다.Especially, it is mainly used for drying, stove, etc. which are used as far-infrared heating ceramics element such as tube type, lamp type and plate type as paint dryer, food dryer and fiber dryer. After igniting the gas, it heats ceramic elements resistant to thermal shock to radiate far infrared rays, and heating, sauna heating element is mainly used for clay tube type, health care, hot plate cooker, grill, ceramic burner, roasting plate, bakery, confectioner For cooking, etc., Surface adhesive with binders, Surface adhesive with dyes or pigments, Plastic containers for food preservation, Plastic bags, Food bags for use in packs for refrigerators, Socks, Shoes, Underwear For example, it is used in a joint protector.

현재까지 알려진 주요 원적외선 방사체는 주로 세라믹계통의 화합물이다. 일반적으로 원적외선 방사 세라믹스의 종류는 크게 열을 받아 원적외선을 방사시키게 되는 가열 세라믹스와 상온에서도 원적외선을 방지하는 비 가열 세라믹스로 나눌 수 있는데, 천연으로 생성된 고령토, 점토 및 규석과 합성 알루미나 분말을 주원료로 하여 제조된 세라믹 원적외선 방사체인 Al2O3- SiO2계 (Aluminosilicate계), 천연으로 생성되는 고령토, 점토 및 활석을 주원료로 하여 제조된 세라믹 원적외선 방사체, 열팽창지수가 아주 낮아서 열 충격에 강한 특성을 갖는 MgO - Al2O3- SiO2(Codierite계), 천연으로 생성되는 지르콘 모래를 주원료로 하여 제조된 세라믹 방사체, 방사율을 높이기 위하여 검은색을 나타내는 Fe2O3나 MnO2를 각각 5∼10% 첨가하고, 성형을 쉽게 하기 위해서 가소성 높은 점토도 10∼20% 첨가하는 ZrO2- SiO2계 (Zircon계), 흑연을 주원료로 하여 제조된 세라믹 원적외선 방사체, 주로 직조된 천에 코팅되어 명상 원적외선 방사체 및 발열체의 재질로 사용되는 탄소계 (Carbon 계)가 있다.The major far infrared emitters known to date are mainly ceramic compounds. In general, the types of far-infrared radiation ceramics can be divided into heating ceramics that are largely heated to radiate far infrared rays, and non-heating ceramics that prevent far infrared rays at room temperature. Ceramic far-infrared emitter Al 2 O 3 -SiO 2 type (Aluminosilicate), ceramic far-infrared radiator manufactured mainly from naturally occurring kaolin, clay and talc, and its thermal expansion index is very low MgO-Al 2 O 3 -SiO 2 (Codierite-based), a ceramic radiator made mainly from zircon sand produced naturally, and Fe 2 O 3 or MnO 2 which is black to increase emissivity, respectively, 5 to 10 % ZrO 2 -SiO 2 (Zircon), graphite, which is added 10 ~ 20% of high plasticity to make molding easier Ceramic far-infrared radiator manufactured as the main raw material, carbon-based (Carbon-based) is coated on the mainly woven cloth and used as the material of the meditation far-infrared radiator and the heating element.

위와 같은 세라믹스 외에도 각종물질에서도 원적외선이 방사되고 있으나, 금속재료보다는 세라믹 재료가 고온 방사율이 높기 때문에 원적외선 방사체 재료로 세라믹스 재료가 적합하다고 알려져 있다.In addition to the above ceramics, far-infrared rays are emitted from various materials, but ceramic materials are known to be suitable as far-infrared radiator materials because ceramic materials have higher high-temperature emissivity than metal materials.

한편 일반적으로 이용되는 자용로공법 동제련은 광석을 이용하여 구리를 제련하고 남는 슬래그를 수쇄하여 작은 입자상을 만드는 것이 일반적인 제조방법이다. 그러나 이러한 공정에서 발생하는 동(Cu)슬래그입자는 미세하고 입자가 구형을 유지하고 있기 때문에 샌드블라스팅용 골재로 직접 이용되고 있다. 그러나 최근에 건설된 연속 동제련 슬래그는 그의 조성이 일반 자용로공법 동슬래그와 조성이 다르고 슬래그 처리과정에서 일반 동슬래그 처리과정에서 나오는 입자보다 입도분포가 상향조정되어 있어 건축자재외에는 별다른 용도가 없는 실정이다.On the other hand, commonly used copper smelting method is to smelt copper by using ore and to crush the remaining slag to make a small particulate form. However, since the copper slag particles generated in this process are fine and the particles remain spherical, they are directly used as aggregates for sand blasting. However, the recently constructed continuous copper smelting slag has a different composition from the conventional slag copper slag, and the particle size distribution of the continuous slag treatment is higher than that of the general copper slag treatment. It is true.

본 특허에서는 이런 동제련시에 발생하는 동슬래그 입자가 수쇄공정을 통해 이미 입도가 적어졌으며, 특히 마그네타이트(Fe3O4)를 포함한 산화철(FeO)가 균일하게 분포되어 있는 것에 착안하여 이를 원적외선방사물질의 원료로 사용하고자 하였다.In this patent, the copper slag particles generated during copper smelting have already been reduced in particle size through the hydrocracking process, and in particular, the iron oxide (FeO) including magnetite (Fe 3 O 4 ) is uniformly distributed, and this is far infrared radiation. It was intended to be used as a raw material for the material.

특히 동슬래그는 〈표1〉과 같이 자용로공법 및 연속제련공법의 2종류의 공법에 의해 생산되나 자용로공법으로 생산되는 슬래그는 하기의 〈표2〉와 같이 입도분포가 하향 조정되어 있어 현재까지 샌드브라스팅용골재로만 사용이 되어왔다. 그러나 최근 도입된 연속동제련슬래그는 〈표2〉에서와 같이 입도가 보다 상향 조정이 되어 있으나그 종류 슬래그 모두다 입상화 되어 있어 본 발명자는 이에 착안하여 동제련 슬래그를 직접 또는 가공하여 원적외선방사물질로 사용하고자 하였다.In particular, copper slag is produced by two types of process, namely self-furnace method and continuous smelting method as shown in <Table 1>, but the particle size distribution of slag produced by self-furnace method is adjusted downward as shown in <Table 2>. It has been used only for sand blasting aggregates. However, the recently introduced continuous copper smelting slag has been further increased in particle size as shown in <Table 2>, but all kinds of slag are granulated, so the present inventors pay attention to this and direct or process the copper smelting slag. It was intended to be used as.

〈표 1〉 동슬래그의 화학성분<Table 1> Chemical Composition of Copper Slag

〈표 2〉 동슬래그의 입도분포<Table 2> Particle Size Distribution of Copper Slag

〈표3〉 동슬래그의 물리적 특성<Table 3> Physical Characteristics of Copper Slag

본 발명은 종래의 무기제 및 금속 원적외선방수물질이 매우 고가이므로 범용하기 곤란한 것이므로, 이를 대체하기 위한 재료를 찾던 중, 동제련 과정에서 발생하는 동슬래그가 금속성분으로 마그네타이트(Fe3O4)를 함유하고 있으므로, 이를 원적외선방사물질원료로 사용하고자 직접 또는 이를 분쇄하고 체질을 통해 적정크기의 입자를 얻은 다음, 조건에 따라 환원처리 함으로써 종래 원적외선 방사물질재료의 원적외선방사물질제를 대체할 수 있는 원적외선 방사물질을 얻을 수 있는 것이다.In the present invention, since the conventional inorganic and metal far-infrared waterproofing materials are very expensive, it is difficult to use them universally, and while searching for a material for replacing them, copper slag generated during the smelting process is made of magnetite (Fe 3 O 4 ) as a metal component. In order to use it as a raw material for far-infrared radioactive material, it can be used as a raw material for far-infrared radioactive material, or it can be pulverized to obtain particles of proper size through sieving and then reduced according to the conditions. You can get radioactive material.

따라서 종래 거의 모두 폐기되던 동슬래그를 활용하여 저렴한 가격의 원적외선방사물질을 제조할 수 있으며, 부수적으로 폐 자원의 재활용으로 큰 도움이 되는 것이다.Therefore, it is possible to manufacture low-cost far-infrared radioactive material using copper slag, which has been almost all discarded conventionally, and is a great help by recycling waste resources.

도 1은 동슬래그를 이용한 원적외선방사물질의 제조공정1 is a manufacturing process of a far infrared ray radioactive material using copper slag

표 1은 동슬래그의 화학성분Table 1 shows chemical composition of copper slag

표 2는 동슬래그의 입도분포Table 2 shows the particle size distribution of copper slag.

표 3은 동슬래그의 물리적 특성Table 3 shows the physical properties of copper slag

표 4는 실시예의 물성Table 4 shows the physical properties of the examples.

본 발명의 구성은 상세히 설명하면 다음과 같다.The configuration of the present invention will be described in detail as follows.

본 발명은 동제련 과정중에 발생하여 폐기되는 동슬래그를 이용하여 종래 원적외선방사물질의 대체제를 제조하기 위한 방법에 관한 것으로, 상기 동슬래그의 입도분포는 상기한 표2와 같다. 수쇄되어 입자상으로 발생되는 슬래그를 원적외선재료로 직접 사용하거나 분쇄, 체질을 통해 분말 또는 각종 입도로 사용되거나 제품의 균일화를 위해 환원처리를 하는 것으로 구성된다.The present invention relates to a method for producing a substitute for a conventional far-infrared radioactive material using copper slag generated and discarded during the copper smelting process, the particle size distribution of the copper slag is shown in Table 2 above. The slag generated in the form of crushed particles is directly used as a far-infrared ray material, or used in powder or various particle sizes through pulverization and sieving, or it is composed of reduction treatment for uniformity of products.

상기 동슬래그의 화학적 조성은 구리(Cu)0.7∼1.1%, 아연(Zn)0.1∼11.0%, 전철분(T-Fe)36.0∼48.0%, 산화칼슘(CaO)0.7∼5.0%, 산화마그네슘(MgO)0.7∼1.2%, 이산화규소(SiO2)27.0∼34.0%, 산화알루미늄(Al2O3)2.5∼5.5%, 산화철(Fe3O4)3∼10%로 이루어져 있으므로 이를 직접 원적외선방사물질로 이용하거나, 원적외선방사물질에 적당한 입도의 원적외선방사물질재료를 얻기 위해서 상기 동슬래그를 햄머밀이나 볼밀에 의해 분쇄하는 분쇄공정과, 상기 분쇄된 동슬래그를 진동밀에 의해 더욱 미분화하는 미분화공정과, 상기 미분화공정에서 얻어진 분말을 체질하여 입도를 조절한 다음 400 ∼ 600℃의 반응로에 넣고 환원제 가스 및 탄소 등의 고체 환원제를 취입하여 환원시키는 환원공정에 의해 원적외선방사물질을 제조하는 방법으로 이루어진다.The chemical composition of the copper slag is copper (Cu) 0.7 to 1.1%, zinc (Zn) 0.1 to 11.0%, iron powder (T-Fe) 36.0 to 48.0%, calcium oxide (CaO) 0.7 to 5.0%, magnesium oxide ( MgO) 0.7 to 1.2%, silicon dioxide (SiO 2 ) 27.0 to 34.0%, aluminum oxide (Al 2 O 3 ) 2.5 to 5.5%, iron oxide (Fe 3 O 4 ) 3-10%, so it is a direct infrared radiation substance A grinding step of grinding the copper slag by a hammer mill or a ball mill in order to obtain a far-infrared radiation material having a particle size suitable for the far-infrared radiation material, and an undifferentiation step of further micronizing the ground copper slag by a vibration mill; In addition, the powder obtained in the micronization process is sieved to control the particle size, and then put into a reactor at 400 to 600 ° C. .

발생상태 그대로의 동슬래그는 직접 원적외선방사물질로 사용되거나 체질하여 모르타르나 콘크리트의 세골재재료로 첨가하는 것이 바람직하고, 미세입도를 갖는 동슬래그는 미분 원적외선방사물질로 첨가하는 것이 바람직하다. 상기 입도는 원적외선재료와 사용목적에 따라 약간씩 차이가 있을 수 있다.Copper slag as it is generated is preferably used as a direct infrared radiation material or sieved to add it to the fine aggregate material of mortar or concrete, and copper slag having a fine particle size is preferably added as a differential far infrared radiation material. The particle size may vary slightly depending on the purpose of the far infrared ray material and the purpose of use.

본 발명에 의해 제조된 원적외선재료를 실시예에 의해 상세히 설명하면 다음과 같은 바, 실시 예에 의해 한정되는 것은 아니다.If the far-infrared material produced by the present invention will be described in detail by the following examples, it is not limited by the examples.

[실시예 1]Example 1

동슬래그를 구성하고 있는 대부분의 산화물인 SiO2, Al2O3, Fe2O3등은 천연적으로 높은 원적외선 방사특성을 지니고 있는 물질이다. 따라서, 이들 물질의 복합체라 할 수 있는 동슬래그도 이와 같은 특성을 보일 것이라 판단하여 이에 대한 원적외선 방사특성을 조사해 보았다.Most of the oxides constituting the copper slag, SiO 2 , Al 2 O 3 , Fe 2 O 3 is a material having a high far-infrared radiation in nature. Therefore, it was determined that copper slag, which is a composite of these materials, would have the same characteristics, and investigated the far-infrared radiation characteristics.

동슬래그의 원적외선 방사율 측정은 한국 건자재 시험 연구원 (KICM) '원적외선 응용 평가센타' 에서 실시하였으며, 측정온도 40℃, 측정 파장은 3∼20㎛의 조건에서 측정하였다. 방사율(emissivity)은 FT-Spectrometer를 이용한 Black Body대비 측정결과로 주어진다.Far-infrared emissivity of copper slag was measured by the Korea Institute of Construction Materials (KICM) 'Infrared Infrared Evaluation Center'. The measurement temperature was measured at 40 ℃ and the wavelength of 3 ~ 20㎛. Emissivity is given as a result of measuring the black body using the FT-Spectrometer.

동슬래그의 원적외선 방사율은 약 0.9로, 현재 시중에 원적외선 방사체로 시판되고 있는 C사의 제품인 방사율 0.92, 방사에너지 3.70×102(W/㎡·㎛·40℃)인 SiO2- Al2O3계 방사체와 유사 할 정도로 매우 우수한 특성을 보여주고 있다.The far-infrared emissivity of copper slag is about 0.9, and the SiO 2 -Al 2 O 3 system with emissivity of 0.92, radiation energy of 3.70 × 10 2 (W / ㎡ · ㎛ · 40 ℃), which is a product of C company, which is currently marketed as a far infrared emitter It shows very good characteristics similar to the radiator.

[실시예 2]Example 2

상기 동제련공정에서 얻어진 동슬래그를 직접, 또는 죠클러셔에서 조쇄한 후 이를 볼밀이나 진동밀을 사용하여 1mm이하의 분말로 제조한 후, 이를 직접, 또는 400℃에서 1시간 환원시킨후 X선 회전법으로 산화철(Fe3O4와 FeO)의 존재여부를 확인한 후, 이를 혼합하여 모르타르를 제조하였다.After the copper slag obtained in the copper smelting process is crushed directly or in a jaw crusher, it is made into a powder of 1 mm or less using a ball mill or a vibration mill, and then reduced directly at 400 ° C. for 1 hour and then X-ray After checking the presence of iron oxide (Fe 3 O 4 and FeO) by the rotation method, it was mixed to prepare a mortar.

상기 모르타르와 콘크리트를 제조하기 위해 시멘트는 KS L 5100의 규격품인 보통 포틀랜드 시멘트였으며, 사용된 골재는 동슬래그였다.To prepare the mortar and concrete, the cement was ordinary Portland cement, a standard product of KS L 5100, and the aggregate used was copper slag.

공시체의 제작은 KS L 2476에 의거하였고, 배합은 시멘트와 잔골재의 중량배합비 1 : 3로, 비빔은 손비빔으로 행하였다. 이때 균일한 시공성 유지를 위해 후로우치 170±5mm로 하여 사용수량은 30%로 결정하였다.The specimen was prepared according to KS L 2476, and the mixing was carried out by weight mixing ratio of cement and fine aggregates 1: 3, and the bibimb was hand bib. At this time, in order to maintain uniform workability, the use quantity was determined to be 30% by using a 170 * 5mm float.

공시체 제작시 실험실 온도(20±2℃, RH 80±5%)에서 5일간 수중양생(20±2℃), 그 이후 소정의 기간까지 기중양생(20±2℃, RH 50±5%)하였다. 실시예의 시험은 다음과 같은 항목 및 규정에 의거하여 실시하였다.During the preparation of the specimens, the incubation (20 ± 2 ℃, RH 80 ± 5%) for 5 days at the laboratory temperature (20 ± 2 ℃, RH 80 ± 5%), and then up to a predetermined period. . The test of the Example was performed based on the following items and regulations.

공시체는 동일한 시공연도(flow치 170±5mm)를 유지하기 위한 목표로 물/시멘트(W/C)를 결정하였으며, 공시체들의 중량감소율 측정시험을 탈형(재령 2일) 후부터 재령 7일까지는 매일 측정하고, 그 이후 7일 간격을 재령 28일까지 측정하였으며, 공시체들의 밀도를 측정하였다.The specimens were determined for water / cement (W / C) to maintain the same construction year (flow value: 170 ± 5mm), and the weight loss test of the specimens was measured every day from demolding (age 2) to 7 days of age. After that, the 7-day interval was measured until 28 days of age, and the density of the specimens was measured.

재령 28일 공시체들의 흡수율을 측정하였고, 원적외선방사 모르타르의 강도(압축 및 휨)시험은 재령 28일 공시체에 대해 실시하였으며, 결과는 표 4에 나타내었다.Absorption rates of 28-day specimens were measured, and the strength (compression and deflection) test of far-infrared radiation mortar was conducted on 28-day specimens, and the results are shown in Table 4.

〈실시예3〉<Example 3>

동슬래그 자체에 대한 원적외선 방사특성 조사를 바탕으로, 동슬래그를 이용한 모르타르를 제조하여 모르타르에 대한 원적외선 방사특성도 조사해 보았다.Based on the investigation of the far-infrared radiation characteristics of the copper slag itself, the far-infrared radiation characteristics of the mortar were also investigated by preparing mortar using the copper slag.

동슬래그 모르타르 원적외선 방사율 측정은 측정온도 40℃, 측정 파장은 3∼20㎛에서 실시하였다. 방사율(emissivity) 은 FT-Spectrometer를 이용한 흑체(Black Body)대비 측정결과로 주어진다. 동슬래그 모르타르 역시 방사율 0.916의 우수한 방사율을 보여주고 있다.Copper slag mortar far-infrared emissivity was measured at a measurement temperature of 40 ° C. and a measurement wavelength of 3 to 20 μm. Emissivity is given as a result of measuring the black body using the FT-Spectrometer. Copper slag mortar also shows excellent emissivity of 0.916.

원적외선 모르타르의 재령 28일 압축강도 특성은 모두 일반 시멘트 모르타르에 비해 낮은 수준이었으며, 322kg/㎠로 가장 낮은 수준을 보였다. 그러나 항균 모르타르의 재령 28일 휨강도는 일반 시멘트 모르타르에 비해 훨씬 우수하게 나타났다.The 28-day compressive strength characteristics of far-infrared mortar were lower than those of general cement mortar, and the lowest was 322kg / ㎠. However, the 28-day flexural strength of antibacterial mortar was much better than that of general cement mortar.

〈표 4〉 실시예의 물성<Table 4> Physical Properties of Examples

상기 표에서 알 수 있는 바와 같이 각 실시예에 의한 공시체의 물시멘트비(W/C), 중량감소율, 밀도, 흡수율, 재령 28일 압축강도, 재령 28일 휨 강도 등을 비교한 결과, 본 발명 동슬래그를 사용하여 제조한 원적외선 방사물질이 원적외선 방사물질을 사용하지 않은 재료에 비해 물성이 결코 뒤떨어지지 않는 것임을 알 수 있었다.As can be seen from the above table, the water cement ratio (W / C), the weight reduction rate, the density, the water absorption rate, the 28-day compressive strength, the 28-day bending strength, and the like of the specimens according to the examples were compared. It can be seen that the far-infrared radiant produced by using slag is inferior in physical properties to the material not using the far-infrared radiant.

이처럼 본 발명은 지금까지 별다른 용도가 없이 폐기 매립되어 왔던 동슬래그로 매우 고가인 종래의 원적외선 방사물을 대체함으로써 저렴한 원적외선 방사물질재료를 제조할 수 있으며, 또한 환경오염물질인 동슬래그를 재활용하여 고부가가치화 함으로써 국가 경제에 이바지함은 물론 공해방지에 매우 유익한 효과를 갖는 것이다.As such, the present invention can manufacture inexpensive far-infrared radiant material by replacing the conventional far-infrared radiant which is very expensive with copper slag which has been discarded without any use until now, and recycles copper slag which is environmental pollutant By valuation, it contributes to the national economy and has a very beneficial effect on pollution prevention.

Claims (4)

동제련과정에서 발생하는 화학적 조성이 중량퍼센트로 구리(Cu)0.7∼1.1%, 산화철(Fe3O4)3∼10%, 전철분(T-Fe)36.0∼48.0%, 산화칼슘(CaO)0.7∼5.0%, 산화마그네슘(MgO)0.7∼1.2%, 이산화규소(SiO2)27.0∼34.0%, 산화알루미늄(Al2O3)2.5∼5.5%로 이루어진 동슬래그The chemical composition of copper smelting process is about 0.7% to 1.1% of copper (Cu), 3 to 10% of iron oxide (Fe 3 O 4 ), 36.0 to 48.0% of iron (T-Fe), and calcium oxide (CaO). Copper slag consisting of 0.7 to 5.0%, magnesium oxide (MgO) 0.7 to 1.2%, silicon dioxide (SiO 2 ) 27.0 to 34.0%, and aluminum oxide (Al 2 O 3 ) 2.5 to 5.5% 상기항의 동슬래그를 400 ∼ 600℃의 반응로에 직접 넣고 가스나 고체환원제를 취입하여 환원시키는 환원공정에 의해 제조되어짐을 특징으로 하는 동슬래그를 이용한 원적외선방사물질 제조방법.A method for producing far-infrared radioactive material using copper slag, wherein the copper slag of the above clause is directly put into a reactor at 400 to 600 ° C., and is produced by a reduction step of blowing a gas or a solid reducing agent. 상기 1항의 동슬래그를 햄머밀이나 볼밀에 의해 분쇄하는 분쇄공정과, 상기분쇄된 동슬래그를 진동밀에 의해 더욱 미분화하는 미분화공정과, 상기 미분화공정에서 얻어진 분말을 체질하여 입도를 조절한 다음, 400 ∼ 600℃의 반응로에 넣고 환원제를 취입하여 환원시키는 환원공정에 의해 제조되어짐을 특징으로 하는 동슬래그를 이용한 원적외선방사물질 제조방법.A grinding step of pulverizing the copper slag of claim 1 by a hammer mill or a ball mill, a micronization step of further micronizing the pulverized copper slag by a vibration mill, and sieving the powder obtained in the micronization step to adjust particle size, A method for producing far-infrared radioactive material using copper slag, which is manufactured by a reduction process in which a reducing agent is blown into a reactor at 400-600 ° C. and reduced. 삭제delete
KR10-2001-0058903A 2001-09-20 2001-09-20 Manufacturing Method of far ultra rays radiation material KR100454161B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0058903A KR100454161B1 (en) 2001-09-20 2001-09-20 Manufacturing Method of far ultra rays radiation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0058903A KR100454161B1 (en) 2001-09-20 2001-09-20 Manufacturing Method of far ultra rays radiation material

Publications (2)

Publication Number Publication Date
KR20030025723A KR20030025723A (en) 2003-03-29
KR100454161B1 true KR100454161B1 (en) 2004-10-26

Family

ID=27725202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0058903A KR100454161B1 (en) 2001-09-20 2001-09-20 Manufacturing Method of far ultra rays radiation material

Country Status (1)

Country Link
KR (1) KR100454161B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454160B1 (en) * 2001-09-20 2004-10-26 김연숙 Manufacturing method of sliding prevention material using Cu-slag
KR20030080270A (en) * 2002-04-04 2003-10-17 엘지니꼬동제련 주식회사 concrete in contained copper slag
CN116574419B (en) * 2023-04-24 2024-06-07 武汉科技大学 Infrared radiation coating based on copper slag powder, preparation method thereof and hierarchical pore infrared radiation coating

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410438A (en) * 1977-06-24 1979-01-26 Hitachi Heating Appliance Co Ltd Remote infrared ray emissive material
JPH0218352A (en) * 1988-07-06 1990-01-22 Iwao Jiki Kogyo Kk Far infrared-ray radiator
JPH046143A (en) * 1990-04-24 1992-01-10 Rinkou Seitetsu Kk Far infrared ray radiating ceramics and production thereof
JPH10226565A (en) * 1997-02-17 1998-08-25 Tetsuken Kogyo Kk Far infrared ray radiating material
KR20010044868A (en) * 1999-11-01 2001-06-05 박종섭 Method of manufacturing a capacitor in a semiconductor device
KR100308583B1 (en) * 1999-08-27 2001-09-24 반봉찬 A manufacturing method of anti-pollution materials using Cu slag
KR20020062060A (en) * 2001-01-19 2002-07-25 김성열 A Method for Manufactuting Artificial Marble Using Slag

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410438A (en) * 1977-06-24 1979-01-26 Hitachi Heating Appliance Co Ltd Remote infrared ray emissive material
JPH0218352A (en) * 1988-07-06 1990-01-22 Iwao Jiki Kogyo Kk Far infrared-ray radiator
JPH046143A (en) * 1990-04-24 1992-01-10 Rinkou Seitetsu Kk Far infrared ray radiating ceramics and production thereof
JPH10226565A (en) * 1997-02-17 1998-08-25 Tetsuken Kogyo Kk Far infrared ray radiating material
KR100308583B1 (en) * 1999-08-27 2001-09-24 반봉찬 A manufacturing method of anti-pollution materials using Cu slag
KR20010044868A (en) * 1999-11-01 2001-06-05 박종섭 Method of manufacturing a capacitor in a semiconductor device
KR20020062060A (en) * 2001-01-19 2002-07-25 김성열 A Method for Manufactuting Artificial Marble Using Slag

Also Published As

Publication number Publication date
KR20030025723A (en) 2003-03-29

Similar Documents

Publication Publication Date Title
Adesanya et al. Development of corn cob ash blended cement
Dana et al. Effect of substitution of fly ash for quartz in triaxial kaolin–quartz–feldspar system
FI81336B (en) FOERFARANDE FOER FRAMSTAELLNING AV ETT KERAMISKT PULVER, KERAMISKT PULVER OCH DAERAV FRAMSTAELLT PRODUKT.
Martín-Márquez et al. Mullite development on firing in porcelain stoneware bodies
Dana et al. Synergistic effect of fly ash and blast furnace slag on the mechanical strength of traditional porcelain tiles
Bernardo et al. Optimisation of sintered glass–ceramics from an industrial waste glass
Catauro et al. Mechanical and thermal properties of fly ash-filled geopolymers
Bernardo et al. Sintered esseneite–wollastonite–plagioclase glass–ceramics from vitrified waste
GB2200904A (en) Process for producing low water-absorption artificial lightweight aggregate
JPH1149559A (en) Production of nodule/pellet of chaff and nodule/pellet of the chaff
KR100454161B1 (en) Manufacturing Method of far ultra rays radiation material
CN109665530B (en) A method of ultra-fine cristobalite powder is prepared with quartz sand
CN109020575A (en) A kind of silica fire resistant mud of useless silica brick production
Karamanov et al. Sintered material from alkaline basaltic tuffs
KR100296885B1 (en) Far infrared emitting ceramics and manufacture thereof
CN100362059C (en) Infrared radiation coating for tobacco flue-curing house and its preparation method
Borisade et al. Investigation of physical, mechanical and in-vitro bioactivity of bioactive glass-ceramics fabricated from waste soda-lime-silica glass doped P2O5 by microwave irradiation sintering
KR100425796B1 (en) Manufacture Method of Stone Textured Clay by Addition Jeju Scoria
Dana et al. Some studies on ceramic body compositions for wall and floor tiles
US3026212A (en) Refractory product and method of manufacture
Maryoto et al. Rice husk as an alternative energy for cement production and its effect on the chemical properties of cement
JPH06115998A (en) Production of hydraulic composition
CN108164149A (en) A kind of glass ceramics for adulterating graphene oxide and preparation method thereof
CN113135722B (en) Self-flowing heat-resistant concrete using reclaimed materials
JPH08253353A (en) Production of light-weight aggregate using incinerated ash of sewage sludge

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080414

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee