JPH0218352A - Far infrared-ray radiator - Google Patents

Far infrared-ray radiator

Info

Publication number
JPH0218352A
JPH0218352A JP63169527A JP16952788A JPH0218352A JP H0218352 A JPH0218352 A JP H0218352A JP 63169527 A JP63169527 A JP 63169527A JP 16952788 A JP16952788 A JP 16952788A JP H0218352 A JPH0218352 A JP H0218352A
Authority
JP
Japan
Prior art keywords
slag
clay
series
cordierite
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63169527A
Other languages
Japanese (ja)
Inventor
Toshihiko Kamitaki
上滝 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwao Jiki Kogyo Co Ltd
Original Assignee
Iwao Jiki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwao Jiki Kogyo Co Ltd filed Critical Iwao Jiki Kogyo Co Ltd
Priority to JP63169527A priority Critical patent/JPH0218352A/en
Publication of JPH0218352A publication Critical patent/JPH0218352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve the resistance to thermal shock of a far infrared-ray radiator and to reduce production cost by blending clay and slag with lithium- series or cordierite-series ceramic, then molding and calcining the compound. CONSTITUTION:Clay and slag such as blast furnace slag or converter slag are blended with powder consisting of lithium-series or cordierite-series ceramic utilized as a main component and thereafter this compound is molded and calcined by setting sintering temp. Lithium-series or cordierite-series ceramic is low in thermal exansion coefficient and the value is extremely low at about 3X10<-6>/ deg.C even when clay and slag are added. Moldability is improved because clay component is added. Thereby the obtained far infrared-ray radiator is small in thermal expansion coefficient and therefore its resistance to thermal shock is improved. Since the price of a raw material is inexpensive, production cost is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、遠赤外線放射体に係り、特に遠赤外線放射率
が高く、しかも熱膨張率が小さい、ち密に焼結可能な低
コストの遠赤外線放射体に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a far-infrared radiator, and in particular, a low-cost far-infrared radiator that can be sintered densely and has a high far-infrared emissivity and a low coefficient of thermal expansion. It relates to infrared radiators.

(従来の技術) 遠赤外線放射体としてはアルミナ、シリカ、ジルコン、
β−スボジュメン或はコーデェライトなどのセラミック
スが使われているが、この内アルミナ或はシリカは熱膨
張率が大であったり、加熱冷却中に結晶の相転位が生じ
たりして耐熱衝撃性に劣るものであった。またジルコン
についてはち密に焼結するには、1400℃以上で焼成
せねばならず、また可塑性を増すため粘土を加えると、
この粘土の中の余剰のシリカ分がクリストバライトに成
り、これが耐熱衝撃性を阻害していた。そこで、遠赤外
線放射体としてはリチュム系セラミックあるいはコーデ
ェライト系セラミックスが一般に用いられている。
(Prior art) Far-infrared radiators include alumina, silica, zircon,
Ceramics such as β-subodumene or cordierite are used, but among these, alumina and silica have a large coefficient of thermal expansion, and crystal phase transitions occur during heating and cooling, resulting in poor thermal shock resistance. It was inferior. Furthermore, in order to sinter zircon densely, it must be fired at a temperature of 1,400°C or higher, and if clay is added to increase its plasticity,
Excess silica in this clay turned into cristobalite, which inhibited thermal shock resistance. Therefore, lithium-based ceramics or cordierite-based ceramics are generally used as far-infrared radiators.

(発明が解決しようとする課題) ところが、これらのリチュム系セラミックス或はコーデ
ェライト系セラミックスは、焼結範囲が一定温度域に限
られており、ち密に焼結することがむずかしく工業的に
製造するのは不都合な点が多かった。
(Problem to be Solved by the Invention) However, the sintering range of these lithium ceramics or cordierite ceramics is limited to a certain temperature range, and it is difficult to sinter them densely, making it difficult to industrially manufacture them. There were many inconveniences.

また、リチュム系あるいはコーディエライト系のセラミ
ックスは、それ自体での遠赤外線放射特性(波長3μm
以上での放射率)は十分でなく、これらのセラミックス
に他の原料を配合していた。
In addition, lithium-based or cordierite-based ceramics themselves have far-infrared radiation characteristics (wavelength: 3 μm).
The above emissivity) was not sufficient, and other raw materials were mixed into these ceramics.

本発明はこれらの従来の問題点を解消する事を目的とし
ている。
The present invention aims to solve these conventional problems.

(課題を解決するための手段) この目的を達成するため、本発明者は、リチュム系ある
いはコーディエライト系セラミックを主体とし、これに
粘土及び鉱滓を配合すれば、遠赤外線放射体となること
を見出だし1本発明を成すに至った。
(Means for Solving the Problems) In order to achieve this object, the present inventor proposed that by using lithium-based or cordierite-based ceramic as the main material and adding clay and slag to it, it becomes a far-infrared radiator. The present invention has been completed based on this finding.

本発明においてリチュム系セラミックとは、ペタライト
、スポージュメン、ユークリプタイトのセラミックであ
る。また1本発明において、リチュム系或はコープイエ
ライ1−系セラミックは、原料を配合成形し、焼成中に
反応してリチュム系あるいはコーディエライト系セラミ
ックになるもの、あるいは、既にリチュム系あるいはコ
ーディエライト系セラミックと成った粉体を原料として
用いる。また、粘土としては、木節粘土、蛙目粘土を使
い、鉱滓としては、高炉より出る高炉スラグあるいは、
転炉スラブを使う。
In the present invention, lithium ceramics include petalite, spodumene, and eucryptite ceramics. In addition, in the present invention, the lithium-based or copierite-based ceramic is one that is formed by blending raw materials and reacting during firing to become a lithium-based or cordierite-based ceramic, or is already a lithium-based or cordierite-based ceramic. The powder that has become a ceramic is used as a raw material. In addition, Kibushi clay and Frogme clay are used as clay, and blast furnace slag from blast furnace or mine slag is used as clay.
Use converter slab.

なお、本発明に使用する粘土の配合量は20〜70重景
%、鉱滓の配合量は1〜30重景%であることが望まし
い、これは、粘土を70重景%以上入れると熱膨張率が
大きくなり、しかも焼結しない、また20重1i!、%
I以下では耐火度が低くしかも成形性に劣る。また、鉱
滓゛を30重量%以上入れると耐火度が低くなり、1重
量%以下では放射特性が向上しないためである。
It should be noted that the amount of clay used in the present invention is preferably 20 to 70%, and the amount of slag is 1 to 30%, because if the clay is added to 70% or more, thermal expansion The ratio is large, and it does not sinter, and it is 20 times 1i! ,%
Below I, the fire resistance is low and the moldability is poor. Further, if slag is added in an amount of 30% by weight or more, the refractoriness will be lowered, and if it is added in an amount of 1% by weight or less, the radiation characteristics will not improve.

(作用) 本発明による遠赤外線放射体はリチュt1系あるいはフ
ープイエライト系セラミックに粘土を加えており、可塑
性が増大し、リチュム系あるいはコープイエライ]−系
セラミックの成形性を高める。また、鉱滓中にはCa 
Oを多量に含んでおり、このCaOが鉱化剤の役「1を
果たし、粘土と鉱滓を適量加えることにより、焼結温度
を自【[口こコンI−ロールできる。
(Function) The far-infrared radiator according to the present invention has clay added to the Litsch t1-based ceramic or the Hoop Yellite-based ceramic, thereby increasing the plasticity and improving the formability of the Lithum-based or Coop Yellite-based ceramic. In addition, Ca is contained in the slag.
It contains a large amount of O, and this CaO plays the role of a mineralizer, and by adding appropriate amounts of clay and slag, the sintering temperature can be adjusted automatically.

しかも、との鉱滓中には鉄分を含有し、これが遠赤外線
放射体の放射特性を高める。
Moreover, the slag contains iron, which enhances the radiation characteristics of the far-infrared radiator.

(効果) 本発明はリチュ11系あるいはコープイエライ1−系を
主体とし、これに粘土及び鉱滓を加えている。このため
、以下のような効果がある。
(Effects) The present invention is mainly based on Ritu 11 series or Koop Ellai 1- series, to which clay and slag are added. This has the following effects.

■リチュム系或はコープイエライ1〜系の低熱膨張のセ
ラミックを主体としているため、他の粘土及び鉱滓を加
えても熱膨張係数はせいぜい3X106/℃程度に止ま
り、低熱膨張で熱衝撃性に優れる。
(2) Since it is mainly made of low thermal expansion ceramics such as lithium type or Cope Yellai 1~ type, even if other clays and slags are added, the thermal expansion coefficient remains at most about 3 x 106/°C, and it has low thermal expansion and excellent thermal shock resistance.

■また1本発明の遠赤外線放射体は粘土を加えているた
め、その成形性にすぐれる。
(1) Furthermore, since the far-infrared radiator of the present invention contains clay, it has excellent moldability.

■さらに、本発明の遠赤外線放射体には鉱滓を加えてお
り、この鉱滓にはCaO成分が多く含まれており、前記
の粘土との配合量を適当に選ぶことにより、焼結温度を
自由にコントロールでき、工業的な製造に好都合である
■Furthermore, slag is added to the far-infrared radiator of the present invention, and this slag contains a large amount of CaO, and the sintering temperature can be adjusted by appropriately selecting the amount of CaO contained in the slag. can be controlled, making it convenient for industrial production.

■また、鉱滓中には金属酸化物が含まれているため、リ
チュム系或はコーディエライト系セラミックの遠赤外線
の放射率を更に高くする。
(2) Also, since the slag contains metal oxides, it further increases the far-infrared emissivity of lithium-based or cordierite-based ceramics.

■さらに1本発明に使用する鉱滓は、高炉等の廃棄物と
して発生するものであり、本発明の遠赤外線放射体は高
純度の金属酸化物を使用した場合と比較して低コストで
製作できる。
■Furthermore, the slag used in the present invention is generated as waste from blast furnaces, etc., and the far-infrared radiator of the present invention can be manufactured at a lower cost than when using high-purity metal oxides. .

■また1本発明の遠赤外線放射体はち密に焼結され1強
度が大きく、しかも使用中に汚れることがない等の効果
がある。
(1) The far-infrared radiator of the present invention is densely sintered, has high strength, and does not get dirty during use.

(実施例) 次に1本発明の実施例を述べる。(Example) Next, an embodiment of the present invention will be described.

実施例1 ペタライト    45重量% 蛙「1粘土     45重景% エスメント    10重景% (新11本製鉄(株)高炉水砕登録商標)の300gに
水を60%加え、ボットミルで4時間混合粉砕し、出来
たがC料を300kg/aJでプレス成形し、1280
℃で焼成した。出来た遠赤外線放射体の特性は以下の通
り、 吸水率    0.96% 嵩比重    2.16 曲げ強度   228 kg/aJ 熱膨張係数  2.0OxlO−’/’C500℃での
放射率・・・第1図のaにて示す。
Example 1 60% water was added to 300 g of Petalite 45% by weight, Frog 1 clay 45% Seikyo, Esment 10% Seikyo (registered trademark of Shin 11 Steel Corporation Blast Furnace Hydrogen), and mixed and pulverized in a bot mill for 4 hours. , Press molded C material at 300 kg/aJ, 1280
Calcined at ℃. The properties of the far-infrared radiator produced are as follows: Water absorption: 0.96% Bulk specific gravity: 2.16 Bending strength: 228 kg/aJ Coefficient of thermal expansion: 2.0OxlO-'/'Emissivity at 500℃... It is shown at a in Figure 1.

実施例2 ペタライトを50重景%、カオリン45重景%、エスメ
ント5重量%の配合原料を実施例1と同様にして製造し
たその特性は、吸水率0.98%、嵩比重2.26、曲
げ強度220 kg/aJ、熱膨張係数1 、 OOX
 10−’/”C1放射率は第1図のbに示す。
Example 2 A mixed raw material containing 50% petalite, 45% kaolin, and 5% by weight of Esment was produced in the same manner as in Example 1. Its properties were: water absorption 0.98%, bulk specific gravity 2.26, Bending strength 220 kg/aJ, coefficient of thermal expansion 1, OOX
The 10-'/''C1 emissivity is shown in FIG. 1b.

実施例3 タルク37重量部に、蛙目粘土43重量部、ハイシライ
ト20重量部、ニスメン810重量部、黒色顔料10重
量部を配合し、実施例1と同様に製造した。吸水率は1
.29%、嵩比重2.32、曲げ強度419)tg/a
!、熱膨張係数3.09XlO−’/”C,放射率は第
1図のCに示した。
Example 3 A product was produced in the same manner as in Example 1 by blending 43 parts by weight of frog's eye clay, 20 parts by weight of Hysilite, 810 parts by weight of Nismen, and 10 parts by weight of black pigment into 37 parts by weight of talc. Water absorption rate is 1
.. 29%, bulk specific gravity 2.32, bending strength 419) tg/a
! , a thermal expansion coefficient of 3.09XlO-'/''C, and an emissivity shown in C of FIG.

比較例1 ペタライトと粘土を実施例1と同様に成形し、1280
℃で焼成した。出来た放射体の特性は以下の通り。
Comparative Example 1 Petalite and clay were molded in the same manner as in Example 1, and 1280
Calcined at ℃. The characteristics of the resulting radiator are as follows.

吸水率    0.53% 嵩比重    2.20 曲げ強度   251 kg/aJ 熱膨張係数  0.91X10−’/’C遠赤外線放射
体の放射特性は、第1図のdに示した。
Water absorption: 0.53% Bulk specific gravity: 2.20 Bending strength: 251 kg/aJ Coefficient of thermal expansion: 0.91X10-'/'C The radiation characteristics of the far-infrared radiator are shown in d of FIG.

比較例2 タルク、カオリンとハイシライトを配合、成形。Comparative example 2 Blended and molded with talc, kaolin and Hisilite.

焼成しコーディエライトの遠赤外線放射体を作った。出
来たコーディエライトの特性は次の通り、吸水率16.
7’%、嵩比重2.16、曲げ強度191kg/cd、
熱膨張係数2.57 X 10−@/’C1放射特性を
第1図のeに示した。
A far-infrared radiator of fired cordierite was created. The properties of the resulting cordierite are as follows: water absorption rate: 16.
7'%, bulk specific gravity 2.16, bending strength 191 kg/cd,
Thermal expansion coefficient 2.57 x 10-@/'C1 radiation characteristics are shown in e of FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は500℃での遠赤外線放射体の放射特性を示す
グラフである。
FIG. 1 is a graph showing the radiation characteristics of a far-infrared radiator at 500°C.

Claims (1)

【特許請求の範囲】[Claims] リチュム系あるいはコーデェライト系セラミックを主体
とし、これに粘土及び鉱滓を配合し、成形焼成したこと
を特徴とする遠赤外線放射体
A far-infrared radiator characterized by being mainly made of lithium-based or cordierite-based ceramics, mixed with clay and slag, and molded and fired.
JP63169527A 1988-07-06 1988-07-06 Far infrared-ray radiator Pending JPH0218352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63169527A JPH0218352A (en) 1988-07-06 1988-07-06 Far infrared-ray radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63169527A JPH0218352A (en) 1988-07-06 1988-07-06 Far infrared-ray radiator

Publications (1)

Publication Number Publication Date
JPH0218352A true JPH0218352A (en) 1990-01-22

Family

ID=15888155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63169527A Pending JPH0218352A (en) 1988-07-06 1988-07-06 Far infrared-ray radiator

Country Status (1)

Country Link
JP (1) JPH0218352A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454161B1 (en) * 2001-09-20 2004-10-26 김연숙 Manufacturing Method of far ultra rays radiation material
WO2012014262A1 (en) * 2010-07-30 2012-02-02 Empire Technology Development Llc Fabrication of cordierite article using waste steel slags

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454161B1 (en) * 2001-09-20 2004-10-26 김연숙 Manufacturing Method of far ultra rays radiation material
WO2012014262A1 (en) * 2010-07-30 2012-02-02 Empire Technology Development Llc Fabrication of cordierite article using waste steel slags
EP2598461A1 (en) * 2010-07-30 2013-06-05 Empire Technology Development LLC Fabrication of cordierite article using waste steel slags
JP2013531609A (en) * 2010-07-30 2013-08-08 エンパイア テクノロジー ディベロップメント エルエルシー Production of cordierite articles using waste steel slag
EP2598461A4 (en) * 2010-07-30 2014-04-09 Empire Technology Dev Llc Fabrication of cordierite article using waste steel slags

Similar Documents

Publication Publication Date Title
CN101384520A (en) Fire-resistant ordinary ceramic batch, and fire-resistant product therefrom
US3030228A (en) Refractory furnace linings and process for producing same
CN108484139A (en) A kind of preparation method of magchrome refractory
JPH1149559A (en) Production of nodule/pellet of chaff and nodule/pellet of the chaff
CN104446547A (en) Furnace lining material used for medium-frequency induction furnace as well as preparation method and use method of furnace lining material
JPH0218352A (en) Far infrared-ray radiator
CN104402470B (en) A kind of combined high temperature refractory materials and manufacture method thereof
JP6758147B2 (en) How to make cordierite-containing alumina-silica brick
JP3034808B2 (en) Thermal shock resistant ceramics and manufacturing method thereof
CN1055672C (en) Method for prodn. of quartz cordierite kiln ware
CN113716945A (en) Low-thermal-conductivity lightweight silica brick and preparation method thereof
TW200427651A (en) Batch composition for producing a refractory ceramic moulded body, moulded body formed therefrom and use thereof
JP4700560B2 (en) Manufacturing method for hot repair silica brick
JPS6272556A (en) Manufacture of fine polycrystal mgal2o4 spinel
JPS6112871B2 (en)
US3282579A (en) Refractory lining
JPS60239355A (en) Chromium oxide refractories
JPS6246973A (en) Castable refractories
JPH04139057A (en) Wear resistant refractory
JPS6272554A (en) Manufacture of fine polycrystal al2o3 sintered body
JPS5833185B2 (en) Basic refractories
JPH03279261A (en) Production of spherical refractory raw material made of aluminum titanate
JPS59141461A (en) Manufacture of spinel sintered body
JPS5842147B2 (en) ZrO↓Production method of dual quality sintered body
JPS6119582B2 (en)