JPS59141461A - Manufacture of spinel sintered body - Google Patents
Manufacture of spinel sintered bodyInfo
- Publication number
- JPS59141461A JPS59141461A JP58015933A JP1593383A JPS59141461A JP S59141461 A JPS59141461 A JP S59141461A JP 58015933 A JP58015933 A JP 58015933A JP 1593383 A JP1593383 A JP 1593383A JP S59141461 A JPS59141461 A JP S59141461A
- Authority
- JP
- Japan
- Prior art keywords
- spinel
- sintered body
- periclase
- present
- aluminum titanate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011029 spinel Substances 0.000 title claims description 30
- 229910052596 spinel Inorganic materials 0.000 title claims description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 40
- 235000012245 magnesium oxide Nutrition 0.000 claims description 20
- 239000000395 magnesium oxide Substances 0.000 claims description 20
- 229910000505 Al2TiO5 Inorganic materials 0.000 claims description 15
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 claims description 15
- 239000006104 solid solution Substances 0.000 claims description 9
- 238000005245 sintering Methods 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000009740 moulding (composite fabrication) Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 13
- 239000002245 particle Substances 0.000 description 8
- 238000004901 spalling Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 6
- 238000010304 firing Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000013003 hot bending Methods 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 102000006463 Talin Human genes 0.000 description 1
- 108010083809 Talin Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011822 basic refractory Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Magnetic Ceramics (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明はスピネル質焼結体の製造方法に関する。更に詳
しくは本発明は、一定量比のペリクレースを固溶したス
ピネルクリンカ−の粉砕物に少1i!のチタン酸アルミ
ニウムを混合、成形および焼結する該焼結体の製造方法
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a spinel sintered body. More specifically, the present invention provides pulverized spinel clinker containing a fixed amount of periclase as a solid solution. The present invention relates to a method for producing the sintered body by mixing, molding, and sintering aluminum titanate.
今El 、建設される高炉は、周知のごとく極めて大型
化し、内容積が5000rn’にも及ぶものがある。し
かも、か−る高炉の羽目の中心部における1聾業1f!
1隻は、2000〜2200℃にも」二る。このよう
な操業条件では炉底にか−る総圧力は極めて高くなる。As is well known, the blast furnaces being constructed now are extremely large, with some having an internal volume of up to 5,000 rn'. What's more, it's 1F in the center of the blast furnace!
One vessel can reach temperatures of 2,000 to 2,200 degrees Celsius. Under these operating conditions, the total pressure at the bottom of the furnace becomes extremely high.
以上のような高温、高圧の苛酷な条件下の操業は、製鉄
業以外の高熱産業においても多く見受けられるようにな
ったか、その起因は、前述の製鉄業と同様、量産のため
の大型化、高温化にある。The above-mentioned operations under harsh conditions of high temperature and high pressure have become common in high-heat industries other than the steel industry.As with the steel industry mentioned above, the reason for this is the increase in size for mass production, The temperature is rising.
ところで近年、上述のような産業事情と関連して弱塩基
性耐火物として注1コされているスピネル質高温材料が
セメントキルン用耐火煉瓦をはしめ、製鉄用、陶磁器用
、ガラス用および電気部品用として用いられるようにな
った。そしてその用途は次第により広範囲に拡大されつ
つある。By the way, in recent years, in connection with the above-mentioned industrial situation, spinel high-temperature materials, which are used as weakly basic refractories, have been used to make refractory bricks for cement kilns, and are used for iron manufacturing, ceramics, glass, and electrical parts. It came to be used as. And its applications are gradually being expanded to a wider range.
このスピネル質高温材料すなわちスピネル質耐火物は、
通常電融あるいは焼結による入エスーピネルとマグネシ
アクリンカ−との混合物であって、その熱間曲げ強度は
、l 400 ’Cで平均80kgf/cm’以下程度
にすぎない。一方1人丁スピネルの単味焼結体は、その
膨張率が小さいにも拘らず耐スポーリング性はそれほど
強くない。そこで該焼結体の耐火物への利用にあたって
は、耐スポーリング性を改善するためのその平均粒径お
よび該焼結体とマグネシアとの配合比率を調整している
。This spinel high-temperature material, or spinel refractory, is
It is a mixture of Esupinel and magnesia clinker which is usually produced by electrofusion or sintering, and its hot bending strength is only about 80 kgf/cm' or less on average at l 400'C. On the other hand, a single sintered body of spinel does not have very strong spalling resistance despite its small expansion coefficient. Therefore, when using the sintered body for refractories, the average particle size and the blending ratio of the sintered body and magnesia are adjusted to improve spalling resistance.
そしてかくして(11られた削火物についてスピネル粒
の周囲に形成せしめた間隙により、該耐火物の使用時に
負荷される熱衝撃によって生じる応力を緩和することに
よって耐スポーリング性を賦与している。従来のスピネ
ル質高温材料は以」二のような組織を有しているからそ
の常温並びに熱間の強度は余り強いものは知られていな
い。In this way, the gaps formed around the spinel grains of the refractories impart spalling resistance by alleviating stress caused by thermal shock applied during use of the refractories. Conventional spinel-like high-temperature materials have the following structures, and therefore, there are no known materials with very high strength at room temperature or hot temperatures.
本発明は、か覧る公知のスピネル質高温材料の熱間曲げ
強度および耐スポーリング性を改善し向上させるべく鋭
意研究した。その結果、ペリクレース固溶量20〜35
%都−%とじたスピネルクリンカ−の粉砕物に3〜5重
量%のチタン酸アルミニウ1、を混合した組成物を混合
、成形焼結することにより従来のスピネル材の前述の欠
点を除いたスピネル質高温材料が得られることを知って
本発明を完成した。The present invention has been made through extensive research to improve the hot bending strength and spalling resistance of known spinel-like high temperature materials. As a result, the amount of periclase solid solution was 20 to 35
A spinel that eliminates the above-mentioned drawbacks of conventional spinel materials by mixing a composition obtained by mixing 3 to 5% by weight of aluminum titanate 1 with pulverized spinel clinker, followed by molding and sintering. The present invention was completed based on the knowledge that high-quality high-temperature materials can be obtained.
以」−の記述から明らかなように、本発明の目的は、耐
スポーリング性にすぐれ、かつ、熱間強度の高いスピネ
ル質高温材料およびその製造方法を!提供するにある。As is clear from the description below, the object of the present invention is to provide a spinel-like high temperature material with excellent spalling resistance and high hot strength, and a method for producing the same! It is on offer.
他の目的は、高性能のスピネル質高温材料の製造可能な
スピネル質タリン力−の粉砕物の組成物を提供するにあ
る。Another object is to provide a composition of spinel-like talin-pulverized material that can be used to produce high-performance spinel-like high-temperature materials.
本発明は、下記の構成を有する。 すなわち、20〜3
5重量%のペリクレースを固溶したスピネルクリンカ−
の粉砕物に3〜5重量%(以ド%はすべて重量%を意味
する)のチタン酸アルミニウムを混合、成形および焼結
することを特徴とするスピネル質焼結体の製造方法であ
る。The present invention has the following configuration. That is, 20-3
Spinel clinker containing 5% by weight of periclase as a solid solution
This is a method for producing a spinel sintered body, which is characterized by mixing 3 to 5% by weight (all percentages by weight) of aluminum titanate into a pulverized product, molding, and sintering it.
本発明の構成および効果につき以下詳述する。The structure and effects of the present invention will be explained in detail below.
先ず、本発明に使用する20〜35%のペリクレースを
固溶したスピネル質クリンカーの粉砕物(以下本発明に
係るスピネル質クリンカーの粉砕物)は次のように製造
する。すなわち、平均粒径500 gm程度のアルミナ
48〜52%を平均粒径7001L+1程度のマグネシ
ア52〜48%と混合粉砕し、該粉砕物に極めて少量の
有機結合材例えば濃度0.5〜2%のメチルセルロース
の稀薄な水溶液を外削りで2〜lO%添加混合して加圧
成形するか造粒する。このものを1700〜1900
’C!で約1〜2時間焼成して得られたクリツカ−を1
1i′−1粒径約10 gmまで粉砕する。焼成および
粉砕方法は公知方法に従う。この粉砕物は1・記割合の
ペリクレースを含む。First, a pulverized spinel clinker containing 20 to 35% of periclase as a solid solution (hereinafter referred to as a pulverized spinel clinker according to the invention) used in the present invention is produced as follows. That is, 48 to 52% alumina with an average particle size of about 500 gm is mixed and pulverized with 52 to 48% magnesia with an average particle size of about 7001 L + 1, and a very small amount of organic binder, for example, at a concentration of 0.5 to 2%, is added to the pulverized product. A dilute aqueous solution of methylcellulose is added and mixed by external scraping in an amount of 2 to 10%, and then pressure molded or granulated. This thing costs 1700-1900
'C! The clicker obtained by firing for about 1 to 2 hours is
Grind to a particle size of about 10 gm. The firing and pulverizing methods follow known methods. This pulverized product contains periclase in the proportion shown in 1.
本発明に使用する他の構成原料であるチタン酸アルミニ
ウムは平均粒径40μm程度に粉砕して使J11する。Aluminum titanate, which is another constituent raw material used in the present invention, is used after being ground to an average particle size of about 40 μm.
ついで本発明に係るスピネル質クリンカー粉砕物に対し
外削で上記チタン酸アルミニウム3〜5%を混合し、前
述の場合と同様に有機結合剤の稀薄水溶液を外削で2〜
10%添加して所望の形状に成形する。」−述の混合、
添那および成形条件は公知方法に従う。た(し加圧成形
する場合、成形圧力は500 Kgf/crn’以上
が好ましい。Next, 3 to 5% of the above aluminum titanate is mixed with the crushed spinel clinker according to the present invention by external grinding, and 2 to 5% of the dilute aqueous solution of the organic binder is added by external grinding in the same manner as in the above case.
Add 10% and mold into desired shape. ” - mixture of statements,
The preparation and molding conditions follow known methods. (However, in the case of pressure molding, the molding pressure is preferably 500 Kgf/crn' or more.
この成形物を1700〜1900°Cで焼成すると本発
明の焼結体が得られる。When this molded product is fired at 1700 to 1900°C, the sintered body of the present invention is obtained.
以」−のようにして得られた焼結体中には、19〜34
%のペリクレースおよび3〜5%のチタン酸アルミニウ
ムが中間固溶層を介して均一に分散している。以上のよ
う・に膨張係数の大ざいペリクレースを含んだ本発明の
焼結体は、常温では粒界面に収縮による歪応力が発生す
るが、その応力は含有のチタン酸アルミ、ニウムにより
粒界強度以内に低下せしめられるため該焼結体を破壊す
ることはなく、°かえって歪応力による強度−L昇がみ
られる。従って、高温では、該番応力が解放されること
によって高い熱間強度が得られる。そして、該高温時に
おいてスピネル粒子間の接触部には優先的にチタン酸ア
ルミニウムが固溶して該部位の膨張率を低下させている
ため焼結体の耐スポーリング性が向上するのである。以
−■−のように本発明に係るペリクレースおよびチタン
酸アルミニウムは相乗的に本発明の焼結体の熱膨張若し
くは熱収縮を適切に緩衝して該焼結体の耐スポーリング
性および熱間強度を向上させている。以上説明したよう
に本発明の焼結体はべりクレースとチタン酸アルミニウ
ムを適量配合したことによる相剰効果によって、従来の
スピネル質材料の欠点を除去した優れた品質のスピネル
質高温材料である。以下、実施例およ□び比較例を示す
。The sintered body obtained in the following manner contained 19 to 34
% periclase and 3-5% aluminum titanate are uniformly dispersed through an intermediate solid solution layer. As described above, in the sintered body of the present invention containing periclase with a large expansion coefficient, strain stress occurs at the grain interface due to shrinkage at room temperature, but this stress is suppressed by the grain boundary strength due to the aluminum and nium titanate contained. Since the sintered body is lowered within a short time, the sintered body is not destroyed, and on the contrary, the strength -L increases due to the strain stress. Therefore, at high temperatures, high hot strength can be obtained by releasing the stress. At this high temperature, aluminum titanate preferentially dissolves in solid solution in the contact areas between spinel particles and reduces the expansion coefficient of these areas, thereby improving the spalling resistance of the sintered body. As described below, the periclase and aluminum titanate of the present invention synergistically buffer the thermal expansion or contraction of the sintered body of the present invention, thereby improving the spalling resistance and hot-temperature resistance of the sintered body. Improves strength. As explained above, the sintered body of the present invention is an excellent quality spinel high-temperature material that eliminates the drawbacks of conventional spinel materials due to the mutual effect of blending appropriate amounts of vericlase and aluminum titanate. Examples and comparative examples are shown below.
実施例
30%のペリクレースを固溶したスピネル(註A文20
351%、Mg049%を混合焼成して製造)粉末に対
し外割で平均粒径407zmのチタン酸アルミニウム4
%およびメチルロースの1%水溶液を5%添加してブリ
ケットに成形し1800°Cで1時間焼成してタリン力
−を得た。Example 30 Spinel containing periclase as a solid solution (Note A 20)
Aluminum titanate 4 with an average particle size of 407 zm when divided into powders
% and 5% of a 1% aqueous solution of methylulose were added, formed into briquettes, and baked at 1800°C for 1 hour to obtain talin strength.
このものを粉砕機で平均粒径10gmとなるまで粉砕し
、該粉砕物に外割りでメチルセルローズ1%水溶液を5
%添加した23X92X20mnの加圧成形体を工60
0°Cで1時間焼成してスピネル質焼結体を得た。This material was pulverized with a pulverizer until the average particle size was 10 gm.
A press-molded body of 23 x 92 x 20 mm with 60% added
A spinel sintered body was obtained by firing at 0°C for 1 hour.
後述の表にその物性を示す。The physical properties are shown in the table below.
比較例1
スピネル粉末およびチタン酸アルミニウムの微粉に代え
て、35%のペリクレースを固溶したスピネル(註 A
220350%、Mg050%をJJ2合焼成して製造
)粉末を用いた以外は、上記実施例と同様に製造した。Comparative Example 1 Instead of spinel powder and aluminum titanate fine powder, spinel containing 35% periclase as a solid solution (Note A) was used.
It was manufactured in the same manner as in the above example except that powder was used (manufactured by JJ2 synthesis firing of 220350% and Mg050%).
焼結体物性を後述の表に示した。The physical properties of the sintered body are shown in the table below.
比較例2゜
スピネル粉末およびチタン酸アルミニウムの微粉に代え
てペリクレースが殆んど認められないスピネル(註、は
ぼ化学量両輪的配合のA120370%、Mg030%
を混合焼成して製造)粉末を用いた以外は、上記実施例
と同様に製造した。Comparative Example 2 Spinel in which almost no periclase is observed was used instead of spinel powder and aluminum titanate fine powder (Note: A120370%, Mg030% with a combination of stoichiometric amounts)
It was manufactured in the same manner as in the above example except that powder (manufactured by mixing and firing) was used.
焼結体物性を次表に示した。The physical properties of the sintered body are shown in the table below.
焼結体物性
に2表に明らかなように、本発明に係る焼結体は、チタ
ン酸アルミニウムを混合しないスピネル質焼結体と比較
して熱間曲げ強度および、耐スポーリング性が著しく優
れている。なお比較例のスピネル質焼結体においてペリ
クレース量が多いものも少ないものも上記諸物性は実施
例のものに及ばない。As is clear from Table 2 of the physical properties of the sintered body, the sintered body according to the present invention has significantly superior hot bending strength and spalling resistance compared to spinel sintered bodies that do not contain aluminum titanate. ing. In addition, in the spinel sintered bodies of the comparative examples, both those with a large amount of periclase and those with a small amount of periclase are not as good as those of the examples.
さらに補足すると本発明に使用するスピネル質焼結体中
のペリクレースが20%未満の場合は、最終的に得られ
る焼結体について熱膨張により発生する歪応力の効果が
ない。他方、該ペリクレースが35%を超える場合は、
該応力が粒界の結合力を1;廻り焼結体が破壊する懸念
がある。したがって、ペリクレースの適jE量は20〜
35%である。さらに本発明に係る焼結体に配合される
チタン酸アルミニウムは、3%未満ではべりクレーズの
大きな膨張に対する緩衝効果が不十分であり、5%を超
えると熱間強度が低下するのでいづれも好ましくない。As a further supplement, if the periclase content in the spinel sintered body used in the present invention is less than 20%, the strain stress generated by thermal expansion will not be effective in the finally obtained sintered body. On the other hand, if the periclase exceeds 35%,
There is a concern that this stress will reduce the bonding force of the grain boundaries by 1, causing the sintered body to break. Therefore, the appropriate amount of periclase is 20~
It is 35%. Further, aluminum titanate mixed in the sintered body according to the present invention is preferably less than 3%, since the buffering effect against large expansion of craze will be insufficient, and if it exceeds 5%, the hot strength will decrease. do not have.
以」−”−
Claims (1)
リンカ−の粉砕物に3〜5重量%のチタン酸アルミニウ
ムをJN合、成形および焼結することを#h徴とするス
ピネル質焼結体の製造方法。A spinel sintered body is produced by JN-coating, forming and sintering 3 to 5% by weight of aluminum titanate to a crushed spinel clinker containing 20 to 35% of periclase as a solid solution. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58015933A JPS59141461A (en) | 1983-02-02 | 1983-02-02 | Manufacture of spinel sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58015933A JPS59141461A (en) | 1983-02-02 | 1983-02-02 | Manufacture of spinel sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59141461A true JPS59141461A (en) | 1984-08-14 |
JPH0229624B2 JPH0229624B2 (en) | 1990-07-02 |
Family
ID=11902569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58015933A Granted JPS59141461A (en) | 1983-02-02 | 1983-02-02 | Manufacture of spinel sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59141461A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995015932A1 (en) * | 1993-12-09 | 1995-06-15 | Harima Ceramic Co., Ltd. | Chromium-free brick |
-
1983
- 1983-02-02 JP JP58015933A patent/JPS59141461A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995015932A1 (en) * | 1993-12-09 | 1995-06-15 | Harima Ceramic Co., Ltd. | Chromium-free brick |
US5559064A (en) * | 1993-12-09 | 1996-09-24 | Harima Ceramic Co., Ltd. | Chrome-free brick |
EP0733604A4 (en) * | 1993-12-09 | 1997-08-27 | Harima Ceramic Co Ltd | Chromium-free brick |
Also Published As
Publication number | Publication date |
---|---|
JPH0229624B2 (en) | 1990-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106145976B (en) | Andalusite-mullite-silicon carbide brick for cement kiln and preparation method thereof | |
CN109456072A (en) | A kind of anti-skinning pouring material for cement kiln and preparation method thereof | |
CN108285350B (en) | Ternary composite silicon carbide refractory material and preparation method thereof | |
JPS59141461A (en) | Manufacture of spinel sintered body | |
JPH02500667A (en) | composite refractory material | |
US3353976A (en) | Refractory and method | |
US3282579A (en) | Refractory lining | |
JP2002308667A (en) | Method for producing basic refractory for cement kiln | |
JP2586151B2 (en) | Alumina-silica based sintered body and method for producing the same | |
JPS62275067A (en) | Manufacture of silicon nitride sintered body | |
JPS6112871B2 (en) | ||
JP2586153B2 (en) | Alumina-silica based sintered body and method for producing the same | |
JPH0383851A (en) | Mullite-based sintered compact and production thereof | |
JP3314983B2 (en) | High durability magnesia-spinel cement and refractory for lime burning kiln | |
JPS63156061A (en) | Cordierite base refractories | |
JPH05117019A (en) | Basic refractory brick | |
JPS6121968A (en) | Manufacture of zirconia refractories | |
JPS5842147B2 (en) | ZrO↓Production method of dual quality sintered body | |
JPH0656517A (en) | Calcium silicate sintered compact and its production | |
JPS60141672A (en) | Manufacture of zirconia sintered body | |
JPH0365554A (en) | Mullite-based sintered material and production thereof | |
JPH0383852A (en) | Mullite-based sintered compact and its production | |
JPS61232265A (en) | Manufacture of thermal shock resistant alumina ceramics | |
JPH03131565A (en) | Sintered mullite and production thereof | |
JPH0323255A (en) | Mullite-type sintered compact and its production |