KR100442769B1 - 고효율 은계 촉매 및 그 제조방법 - Google Patents

고효율 은계 촉매 및 그 제조방법 Download PDF

Info

Publication number
KR100442769B1
KR100442769B1 KR10-2001-0065111A KR20010065111A KR100442769B1 KR 100442769 B1 KR100442769 B1 KR 100442769B1 KR 20010065111 A KR20010065111 A KR 20010065111A KR 100442769 B1 KR100442769 B1 KR 100442769B1
Authority
KR
South Korea
Prior art keywords
catalyst
oxide
component
experiment
boehmite
Prior art date
Application number
KR10-2001-0065111A
Other languages
English (en)
Other versions
KR20030033368A (ko
Inventor
송길홍
이재수
김현석
Original Assignee
주식회사 제너럴시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제너럴시스템 filed Critical 주식회사 제너럴시스템
Priority to KR10-2001-0065111A priority Critical patent/KR100442769B1/ko
Publication of KR20030033368A publication Critical patent/KR20030033368A/ko
Application granted granted Critical
Publication of KR100442769B1 publication Critical patent/KR100442769B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • B01J23/687Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Abstract

본 발명은 고효율 은계 촉매 및 그 제조방법에 관한 것이다.
본 발명의 촉매는 다공성 무기산화물로서 Ag 또는 Ag성분을 함유하는 화합물로부터 얻어진 최소 하나의 Ag성분중 1.0∼6.0wt%을 담지하여서 성형된다.
본 발명의 촉매 제조방법은 정제된 γ-Al2O3, 뵘석(Boehmite:Alumina Monohydrate) 또는 이들 물질의 조합산화물을 수용액에 용해하는 용해단계와;
상기 조합 산화물을 100∼120℃에서 건조시키는 건조단계와;
산소 또는 공기분위기하의 100℃∼650℃에서 단계적으로 소성하는 소성단계와;
지지체에 상기 소성단계에 의해 Ag 성분을 담지한 담체를 소정의 두께로 코팅시키는 코팅단계가 순차적으로 이루어 진다.
따라서, 과잉산소를 함유하는 배기가스중의 질소산화물을 본 발명에 의해 넓은 온도범위에서 제거되고, 이에 여러 종류의 엔진 및 연소장치로부터 발생되는 질소산화물을 제거하는데 매우 유용한 발명인 것이다.

Description

고효율 은계 촉매 및 그 제조방법{Silver Catalyst having the high performance and Manufacturing of the same}
본 발명은 고효율 은계 촉매 및 그 제조방법에 관한 것으로, 더 상세하게는 디젤엔진, 린번(Lean-Burn) 가스엔진, 린번 가솔린엔진 및 기타 고정 연소원에서 발생되는 배기가스중의 질소산화물을 과잉산소 분위기하에서 효과적으로 제어하도록 발명된 것이다.
일반적으로 현재 대부분의 자동차는 3원 촉매를 의무적으로 장착하게 되어 있는 실정이다.
삼원촉매컨버터는 배기매니홀드의 배출구측에 부착되어 촉매작용을 하는 귀금속, 즉 밸금+로듐(Rh) 또는 백금+로듐+파라듐을 사용한 것으로 배기가스중의 CO, HC, NOx를 동시에 저감시키는 것이다.
이 3원촉매컨버터의 정화작용은 엔진을 이론 공연비(A/f) 부근에서 운전하면 촉매반응에 따라 반응이 일어나서, 3성분을 동시에 정화할 수 있는 것이다.
통상적인 촉매용 컨버터의 온도는 300-500℃정도이며, 희박연소 자동차는 이보다 더 낮은 300-400℃의 비교적 낮은 온도를 유지하게 된다.
종래, 3원촉매는 위 온도조건에서는 약 25%내외의 낮은 NOx전환율을 갖게 된다.(A/f=22에서)
따라서, 실제 자동차에 적용하기에는 전환율이 너무 낮아 배기가스규제 등에 대응하지 못하는 등의 무리가 있어, Pt-ZSM-5등과 같은 제오라이트촉매 및 NOx 흡장형 촉매 등이 개발되고 있다.
그러나, 전기한 제오라이트촉매는 이온교환방법을 거쳐야 하므로 처리공정이 복잡하고 가격이 비싸서 적용을 기피하고 있다.
그리고, 흡장형 촉매는 희박연소 영역과 이론 공연비 영역을 번갈아가며 거쳐야 하므로 파워 쇼크(POWER SHOOK)가 발생되는 등의 폐단이 있었던 것이다.
최근, 산업용 배기가스에 포함된 탄화수소중 알코올, 특히 에탄올을 환원제로 사용하여 은(Ag)계 촉매상에서 NOx 저감효율을 얻는 방법도 제시된 바 있다.
이 기술에서는 은(Ag) 혹은 은산화물은(AgO)을 알루미나(Al2O3)상에 담지시켜 NOx가 고효율로 저감되는 것을 확인하였으며, NOx가 저감될 때 NH3나 시안화합물 (CN), 알데히드(CH3CHO)등이 부생되는 단점이 있어 이를 제거하기 위해 Cu를 기본으로 하고 텅스텐(W)과 바나듐(V)산화물을 선택적으로 추가시킨 기본금속 촉매로 NH3나 CN을 제거시켰다. 이 기술은 첫째 층(Layer)에 Ag/Al2O3촉매를 사용하고 둘째 층에 Cu기본 촉매를 사용하여 NOx를 고효율로 저감시키면서 부생물인 NH3나 CN 등을 제거시킨 것이 특징이다.
또한, 배기가스 중에 함유된 일산화탄소(CO)나 환원제의 분해에 의한 생성 CO를 제거하기 위해 촉매 층들 중 마지막 층에 산화촉매를 부착시켜 CO를 제거 시키도록 한 시스템을 채택하였다.
또한, 배기가스 중에 함유된 일산화탄소(CO)나 환원제의 분해에 의한 생성 CO를 제거하기 위해 촉매 층들 중 마지막 층에 산화촉매를 부착시켜 CO를 제거시키도록 한 시스템을 채택하였다.
전체적으로 볼 때, 은 촉매 1∼2층, 기본금속 촉매 1층, 산화촉매 1층으로 촉매 시스템을 구성하거나, 은촉매 1∼2층, 기본금속촉매+산화촉매 1층으로 촉매시스템을 구성한 것이 특징이다.
그러나 이 은계 촉매시스템의 특성은 은촉매층에 있으며, 이 은촉매층이 배기가스중의 NOx와 산소, 환원제인 에탄올과 다음과 같이 반응하여 무해한 가스인 질소(N2), 탄산가스(CO2), 물(H2O)이 된다.
C2H5OH+NOx+O2+CO2+N2+H2O
이 반응이 일어나기 위해서는 우선 에탄올이 은촉매층에 흡착되어야 하며, 다음에 반응 및 탈착의 순서로 무해한 반응가스가 생성된다.
이 반응이 일어나는 조건은 대개 온도 300∼450℃, 산소 2% 이상이므로, 반응의 진행속도는 빠르다.
상기 온도에서는 에탄올이 촉매상에서 충분히 빨리 흡착 및 반응에 참가하고 반응에 참가치 않는 것들은 분해되어 진다.
때로는 에탄올의 분해속도가 반응에 참여하는 속도보다도 빨라, 공급된 에탄올의 소모량이 이론량 보다도 2∼3개 가량 더 공급되어, 시스템의 운전비를 증가시키고 촉매의 단위 크기당 NOx효율을 저감시키는 단점이 있다.
또, 도 2에서와 같은 종래 장치에 의하면 에탄올의 사용량이 증가하더라도 대부분의 에탄올이 환원용 제 1촉매 층에서 NOx환원용으로 반응하거나 분해되어 소모되어 없어져, 제 2 환원촉매층에서는 에탄올이 환원제로서 그 역할이 미미하다.
따라서 본 발명은 종래 문제점을 해소하기 위해 안출된 은(Ag)함유 촉매로서 γ-Al2O3에 함유된 황(Sulfur)성분이, 탄화수소나 산소함유 유기물질을 환원제로 사용하는 알루미나에 담지된 Ag촉매의 질소산화물 제거효율을 저하시키게 된다.
고도로 정제된 γ-Al2O3은 황함유 0.05wt% 미만상에서 단일 Ag촉매 또는 Ti, W, Mo, V 성분과의 조합된 Ag촉매가 탄화수소나 산소함유 유기물질을 환원제로 사용하여 질소산화물을 효과적으로 제거하는 것을 알 수 있었다.
여기서 표현된 질량백분율(wt%)은 다공성 무기산화물 양을 기본으로 하는 금속성분의 양을 나타낸 것이다.
또, 정제된 뵘석(Bohemite)상에서 1차 처리된 Ag을 이용하여, 황성분이 없는 γ-Al2O3상에서 단일 Ag촉매 또는 Ti, W, Mo, V 성분과 조합된 Ag 촉매를, 환원제로탄화수소나 산소함유 유기물질을 사용하여 배기가스에 적용하였을 때 높은 질소산화물 저감효율을 보이게 되는데, 이 결과로 배기가스중의 SO2성분이 5ppm미만일 경우, 350℃이하에서도 정제된 γ-Al2O3상에 담지된 단일 Ag 촉매, 또는 Ti, W, V, Mo 과 혼합된 Ag 촉매는 환원제로 탄화수소나 산소함유 유기물질을 사용하여 배기가스에 적용하였을 때 높은 질소 산화물 저감효율을 보이게 되다.
실제, 배기가스에 대부분 SO2를 함유하고 있는바, Ag촉매를 탄화수소나 산소함유 유기물의 환원제를 주입하면서 저감효율을 살펴본 결과 높은 제거효율을 얻을 수 있음을 알 수 있었다.
고도로 정제된 뵘석(Boehmite:Alumina Monohydrate)에 의해 전처리 된 Ag을 이용하여, 정제된 γ-Al2O3상에 담지한 촉매를 배기가스에 환원제와 함께 적용시킨 결과 높은 배기가스 저감효율을 얻을 수 있음을 알 수 있었다.
이러한 결과로 정제된 γ-Al2O3상에 Ag성분만을 담지한 촉매의 경우에도, 200ppm의 고농도의 SO2가 존재하는 배기가스중에 탄화수소 혹은 산소함유 유기물질의 환원제를 사용할 경우 높은 배기가스 제거효율을 300℃∼600℃의 범위에서 보이게 된다.
본 발명의 목적은 과잉산소를 함유하는 배기가스중의 질소산화물을 넓은 온도범위에서 제거될 수 있는 고효율 은계 촉매를 제공하는데 있다.
본 발명의 다른 목적은 여러 종류의 엔진 및 연소장치로부터 발생되는 질소산화물을 보다 효과적으로 저감할 수 있는 고효율 은계 촉매를 제공하는데 있다.
이러한 본 발명의 촉매는, 다공성 무기산화물로서 Ag 또는 Ag성분을 함유하는 화합물로부터 얻어진 최소 하나의 Ag성분중 1.0∼6.0wt%을 담지하여서 된 것을 특징으로 한다.
여기서 언급한 Ag 화합물은 Ag 산화물이나 Ag 할로겐물질로 구성된 화합물중 하나이며, 다공성 무기산화물은 "정제된" γ-Al2O3, 뵘석(Boehmite) 또는 이들 물질의 혼합물(황함량 0.05wt% 미만) 중의 하나를 포함하게 된다.
이러한 본 발명의 촉매 특성은 기존 은계 촉매에 비해, 배기가스중 고농도 SO2에 대해 내구성을 가지며, 탈질효율에 영향을 끼치지 않게 된다.
이 본 발명의 촉매는, 정제된 γ-Al2O3(황성분 0.05wt%미만)상에 Ag성분(단일 Ag성분 또는 Ag함유 물질)을 1.0∼6.0wt% 담지시켜 성형하거나, 또는 환원에 의해 질소산화물을 제거시 정제된 γ-Al2O3(황성분 0.05wt%미만)상에 Ag성분(단일 Ag성분 또는 Ag함유 물질)을 1.0∼6.0wt%에 Ti, W, Mo, V 성분중 최소한 한 성분 이상을 0.01∼1.0wt% 혼합하여 담지시켜 성형하게 되는데, 위에서 제조된 촉매들을 배기가스 흐름속에 장착하여, 장착된 촉매 전단에 탄화수소류 혹은 산소함유유기물질 중에서 선택된 환원제를 주입하여 약 200∼600℃의 배기가스에 적용하였을 때 높은 제거효율을 보이는 것을 알 수 있었다.
또, 위에서 제조된 촉매들을 고농도의 SO2함유 배기가스 흐름속에 장착하여, 장착된 촉매 전단에 탄화수소류 혹은 산소함유유기물질 중에서 선택된 환원제를 주입하여 약 300∼600℃의 배기가스에 적용하였을 때 높은 제거효율을 보이는 것이다.
이하 본 발명의 바람직한 실시예를 보다 상세히 설명하기로 한다.
본 발명은 배기가스 정화용 촉매로서, Ag성분만을 담지한 다공성 무기 산화물로 구성된 Ag 촉매인 바, 이 Ag성분과 함께 Ti, W, Mo, V 성분도 조합된 Ag 성분을 담지한 다공성 무기 산화물이다.
활성물질을 담지하는 담체(Carrier)로는 다공성이며, 내열성이 강하며 큰 비표면적을 갖는 γ-알루미나(Alumina), 티타니아(Titania), 지코니아(Zirconia), 실리카(Silica)나 이들의 조합산화물인 γ-알루미나-티타니아, γ-알루미나-지코니아 등과 같은 세라믹(Ceramic) 재질의 것이 주로 사용된다.
고온의 내열성이 필요할 때는 코디에라이트(Cordierite), 멀라이트(Mullite) 또는 이들의 조합산화물이 사용될 수도 있다.
Ag촉매는 단일 Ag성분 혹은 Ti, W, Mo, V 등과 조합된 Ag성분을 함유하는 다공성 무기산화물로 구성된다.
Ag 성분은, Ag을 함유하는 화합물로서, Ag 산화물, Ag 할로겐 화합물 등을 모두 포함한다. 담체에 담지되는 Ag의 양은 1.0∼6.0wt%정도이며, 3.5∼5.0wt%가 선호된다. 만일 Ag 함유량이 1wt%미만이거나 6.0wt%이상이면 NOx 제거효율은 감소하게 된다.
이 Ag 성분에 추가적으로 혼합되는 Ti, W, Mo, V 성분은 각각의 물질을 함유하는 화합물을 이용하며, 담체에 담지되는 양은 0.01∼1.5wt% 정도이며, 0.01∼1.0wt%가 선호된다. 만일 성분 함유량이 0.01wt% 미만이거나 1.5wt%이상이면 NOx 제거효율은 감소하게 된다.
다공성 무기산화물인 담체의 선정 및 제조에 있어서 고려해야 할 점으로는, 우선 표면적이 크며 γ-Al2O3구조를 갖는 물질을 선정해야 한다. 정제된 γ-Al2O3, 뵘석(Boehmite:Alumina Monohydrate) 또는 이들 물질의 조합으로부터 얻어진 재료를 갖고 600℃∼650℃의 공기 또는 산화조건에서 3시간을 가열하였을 때 ??-Al2O3구조를 가져야 한다. 정제된 γ-Al2O3, 뵘석(Boehmite:Alumina Monohydrate) 그리고 이들 물질의 조합화합물은 100∼650℃에서 Ag 성분 또는 Ti, W, Mo, V과 조합된 Ag성분과 산소존재하에서 반응하여, 담체 표면상에 Ag-Al2O3또는 Ag(Ti, W, Mo, V)-Al2O3활성점을 생성하게 된다.
정제된 γ-Al2O3표면상의 활성점은 외부에서 공급된 탄화수소나 산소함유 유기물질과 같은 환원제 또는 배기가스 중에 남아있는 탄화수소와 산소함유 유기물질 성분과 반응하여 질소산화물을 저감하게 된다.
산소존재하의 600℃, 3시간 가열후의 정제된 γ-Al2O3, 뵘석(Boehmite:Alumina Monohydrate) 또는 이들 물질의 조합물의 비표면적은150m2/g 이상이어야 하며, 180m2/g이상이면 더욱 좋다. 비표면적이 150m2/g이하가 되면, 표면상의 활성점이 점차 불안정해지고 활성이 저하되어, 효과적인 질소산화물저감이 이뤄지지 않게 된다.
정제된 γ-Al2O3, 뵘석(Boehmite:Alumina Monohydrate) 또는 이들 물질의 조합산화물의 불순물로서 황(S)함유량은 0.1wt% 미만이거나 0.05wt% 미만이어야 한다. 만일 황함유량이 0.1wt%이상이 되면 표면상에 불안정한 활성점이 생성되어, 질소산화물을 효과적으로 제어할 수 없다.
이러한 본 발명의 Ag 촉매의 제조방법은 정제된 γ-Al2O3, 뵘석(Boehmite:Alumina Monohydrate) 또는 이들 물질의 조합산화물상에 담지된 Ag성분 혹은 Ti, W, Mo, V 등과 조합된 Ag성분을 활성물질로 하는 Ag 촉매의 제조는 침강(Precipitation)법 또는 함침(Impregnation)법을 이용하여 만들어진다.
담체에 Ag 와/혹은 Ag 산화물을 담지시키는 방법은, 정제된 γ-Al2O3, 뵘석(Boehmite:Alumina Monohydrate) 또는 이들 물질의 조합산화물을 질산은과 같은 수용액에 용해후 약 100∼120℃에서 건조하고, 산소 또는 공기분위기하의 100℃∼650℃에서 단계적으로 소성하여 얻는다. 뵘석(Boehmite)은 소성단계에서 ??-Al2O3로 전환되어 큰 비표면적을 갖게된다.
또, 다른 사양인 담체에 Ag성분(Ag 와/또는 Ag 산화물)과 Ti, W, Mo, V과의 조합된 성분을 담지시키는 방법은, 정제된 γ-Al2O3, Boehmite(AluminaMonohydrate) 또는 이들 물질의 조합산화물을 Ag 성분 및 Ti, W, Mo, V 성분이 함유되어 있는 수용액에 한번에 용해하거나, Ag성분을 함유한 수용액에 용해한 후 연속적으로 T, W, Mo, V 성분을 함유하는 수용액에 용해하므써 이뤄진다.
즉, 정제된 γ-Al2O3, 뵘석(Boehmite) 또는 이들 물질의 조합산화물이 녹아있는 수용액에 W, Mo, V성분을 함유하는 옥살산염(Oxalate)이나 암모늄염(ammonium salt)을 용해하고, 질산은과 TiO2Sol을 용해한 후 위와 같은 조건에서 건조와 소성 단계를 거치거나, 각각의 물질을 함유하는 용액에 순차적으로 용해한 후 건조와 소성단계를 거치게 된다.
할로겐 Ag(Silver Halide)을 담지 시키려면, 정제된 γ-Al2O3, Boehmite 또는 이들 물질의 조합산화물을 질산은(Silver Nitrate)등과 같은 수용액에 용해시킨 후, 할로겐 암모늄(ammonium halide) 수용액에 용해시켜 질산은을 할로겐은으로 전환시킨 후 위와 동일한 방법으로 건조 및 소성하게 된다.
소성과정에서 뵘석(Boehmite)은 γ-Al2O3상으로 전환되어 큰 표면적을 갖게 된다. 이후 W, Mo, V 성분을 함유하는 용액에 할로겐 Ag을 담지하는 정제된 γ-Al2O3, 뵘석(Boehmite) 또는 이들 물질의 조합산화물을 용해하고, TiO2Sol에 용해한 후 위와 동일한 조건에서 건조, 소성하면 Ti, Mo, V, W 성분과 조합된 Ag 성분이 담지된 것을 얻을 수 있다.
γ-Al2O3상에 담지된 Ag성분은 소성단계를 거치면서 고루 퍼지게 되는데, 평균입경이 20∼100nm 정도면 적절하나, 40∼80nm이면 좋고, 40∼70nm이면 더욱 좋은 NOx 저감효율을 보이는 것을 관찰 할 수 있었다.
일반적으로 담체의 입경이 작을수록 대상오염물질의 제거효율은 증가하는 것을 보이나, 20nm이하이면, Ag성분과 Al2O3사이의 상호작용이 약해져 낮은 Ag-Al2O3활성을 보이게 된다. 반면에 평균입경이 80nm이상이 되면, 비표면적이 작아져 결과적으로 저감효율의 저하를 나타내게 된다.
이후 널리 알려진 워쉬코팅(Washcoating)방법을 이용하여, 지지체(Substrate)에 담체를 입히게 되는데, 코팅시 두께는, Ag성분을 담지한 담체와 지지체 사이의 열팽창계수의 차이에 따라 달라 질 수 있지만, 300㎛정도는 되어야 한다. 그렇지 않을 경우, 배기가스중의 질소산화물을 제어하는 동안에 열충격(Thermal Shock)을 받아 촉매가 파손될 수도 있다.
Ag 성분을 담지한 담체의 지지체상에 입혀지는 양은 약 100∼250g/L, 또는 150∼200g/L 정도가 되며, 만일 100g/L미만일 경우 제거효율에 문제가 있으며, 250g/L이상이 되면 제거효율에는 큰 상승은 없으나 큰 압력손실을 갖게된다.
위에서 제시한 방법으로 제조한 Ag촉매를 이용하면 수분이 함유된 배가스를 150∼600℃의 넓은 범위에서 질소산화물을 제어할 수 있다.
배기가스는 통상 어느 정도의 에틸렌, 프로필렌 등과 같은 잔류 탄화수소를 함유하고 있으나, 그 양이 촉매상에서 질소산화물을 효과적으로 제어할 만큼 충분치 않으므로 최소 한종류의 환원제를 외부에서 공급할 필요가 있다. 환원제 공급위치는 촉매 전단에서 이뤄져야 한다.
환원제로 사용되는 물질은 탄화수소나 산소함유 유기물이며, 이러한 성분을 함유하고 있는 연료(Fuel)도 사용 가능하다.
탄화수소류는 정상상태(25℃, 1atm)에서 기체 또는 액체상의 알칸(Alkanes), 알켄(Alkens), 알킨(Alkines) 등이 사용되며, 알칸과 알켄은 2개 이상의 탄소원자를 갖는 것이 선호된다.
산소함유 유기물은 메탄올(Methanol), 에탄올(Ethanol), 이소프로필 알콜(Isopropyl Alcohol) 등과 같은 알콜을 포함 할 수 있으며, 수분을 함유하는 산소함유 유기물 또한 사용가능하며, NOx 제어에 효과적이다.
배가스중의 질소산화물에 대한 환원제의 질량비는 1∼4정도가 선호되며, 질량비가 1이하이면 질소산화물 제거효율은 저하하며, 5이상일 경우는 뚜렷한 제거효율을 보이지는 않아 경제적인 손실을 끼치게 된다.
환원제를 이용하여 효과적으로 배기가스중의 질소산화물을 제어하기 위해 필요한 공간속도(배기가스와 촉매의 부피비)는 약 100,000hr-1이며, 약 80,000hr-1정도가 선호된다.
300℃이하에서 질소산화물을 제어하기 위해서는 약 50,000hr-1정도의 SV값이 요구되며, 20,000hr-1정도가 선호된다.
환원제가 주입되는 촉매 전단에서의 배기가스의 온도는 150∼600℃정도가 유지되어야 하며, 200∼550℃가 선호된다. 만일 온도가 150℃이하가 되면, 환원제에의한 질소산화물 저감은 효과적으로 이뤄지지 않으며, 600℃이상이 되면, 환원제는 산소와 함께 CO2로 전환하게 되어 질소산화물을 제어 할 수 없게된다.
고농도의 SO2(약 30ppm)를 포함하는 배기가스중의 질소산화물제어에 요구되는 배기가스의 온도는 300∼600℃가 요구되며, 350∼600℃가 선호된다. 만일 온도가 300℃이하가 되면, 환원제에 의한 질소산화물 저감은 효과적으로 이뤄지지 않으며, 600℃이상이 되면, 환원제는 산소와 함께 CO2로 전환하게 되어 질소산화물을 제어 할 수 없게된다.
(실험 1)
정제된 γ-Al2O3(비표면적: 210m2/g, 황함유량: 0.03wt%) Pellet을 질산은(5.0×10-2mol/cm3) 수용액에 30분간 함침하고 120℃에서 3시간 건조한 후 산소조건하에서 630℃까지 단계적으로 소성하여 완성된 Ag/Al2O3촉매(은함유량: 4.5wt%)를 이용하여 <표 1>과 같은 모의가스 조건하에서 실험을 진행하였다.
반응기에 약 1.5g의 촉매를 장착한 후 에탄올을 주입하면서 2L/min의 배기가스를 150∼500℃의 조건에서 주입하면서 실험을 수행하였다. 이때의 공간속도(Space Velocity)는 약 40,000hr-1정도를 나타내었다.
NOx 제거효율은 아래와 같은 식에 의해 산정 되었으며, 촉정은 환경부 인증제품의 전기화학식 가스분석기를 사용하였으며, 실험결과는 <표 2>에 제시하였다.
[ (NOx-Inlet) - (NOx-Outlet) ] / (NOx-Inlet) × 100
(실험 2)
정제된 γ-Al2O3(비표면적: 220m2/g, 황함유량: 0.03wt%)분말을 질산은 수용액에 함침후 염화암모늄수용액에 다시 함침한 다음 Example 1과 동일한 조건으로 건조와 소성단계를 거쳐 약 5.2wt%의 Ag을 함유하는 AgCl/Al2O3를 제조하였다. 이번 경우는 지지체를 일반 산업용 촉매 지지체로 사용되는 400cpsi(직경 20mm, 길이 16.6mm)의 하니콤(Honeycomb) 형태의 세라믹 재질의 것을 사용하였으며, 앞서 만든 AgCl/Al2O3를 이 지지체상에 코팅하여 630℃까지 단계적으로 서서히 건조 및 소성을 하여 AgCl/Al2O3하니콤 촉매를 제조하였다.
그후 반응기에 이 촉매를 장착하여 <표 1>의 모의가스를 2L/min으로 흐르게 하여 공간속도는 약 40,000hr-1을 유지하면서 150∼500℃에서 실험을 진행하였으며, 그 결과는 <표 2>에 제시하였다.
(실험 3)
뵘석(Boehmite:Alumina Monohydrate) 분말(황함유량 0.03wt%)을 질산은 수용액에 함침후 염화암모늄 수용액에 다시 함침하여 Boehmite 표면에 AgCl이 함침되게 한 후 실험 2의 과정과 동일하게 건조 및 소성단계를 거쳐 4.8wt%의 Ag을 함유하는 AgCl/Al2O3를 제조한다. 이것을 실험 2와 같은 하니컴 세라믹 지지체(직경 20mm, 길이 16.6mm, 400cell/in2)에 고루 코팅하여 AgCl/Al2O3의 비표면적이 230m2/g이 되도록 AgCl/Al2O3하니콤 촉매를 제조한다. 실험 2와 같은 조건하에서의 실험을 진행하여 얻은 결과를 <표 2>에 나타내었다.
(실험 4)
실험 2에서 제조한 AgCl/Al2O3(Ag 함유량 5.2wt%)촉매를 TiO2Sol과 증류수의 혼합액에 함침하여 약 120℃에서 3시간 가열한 후, 산소분위기하의 450℃에서 소성하여 0.02wt%의 Ti을 함유하는 AgCl(TiO2)/Al2O3를 제조하였다. 이것을 다시 상업용 하니콤 세라믹 지지체(직경 20mm, 길이 16.6mm, 400cell/in2)에 고루 코팅한 후, 건조 및 소성하여 AgCl(TiO2)/Al2O3하니콤 촉매를 제조하였으며, 실험 2와 같은 조건하에서 실험을 수행한 결과를 <표 2>에 제시하였다.
(실험 5)
실험 3에서 제조한 AgCl/Al2O3(Ag 함유량 4.8wt%)촉매를 TiO2Sol과 증류수의혼합액에 함침하여 약 120℃에서 3시간 가열한 후, 산소분위기하의 450℃에서 소성하여 0.02wt%의 Ti을 함유하는 AgCl(TiO2)/Al2O3를 제조하였다. 이것을 다시 하니콤 세라믹 지지체(직경 20mm, 길이 16.6mm, 400cell/in2)에 코팅하여 건조 후 630℃까지 6시간동안 단계적으로 소성하여 AgCl(TiO2)/Al2O3하니콤 세라믹 촉매를 제조하였다. 이 촉매를 이용하여 Example 2와 같은 조건하에서 실험한 결과를 <표 2>에 나타내었다.
(실험 6)
실험e 3에서 제조한 AgCl/Al2O3촉매(Ag 함유량 4.8wt%)를 Ammonium Tungstate para-penta Hyrate 수용액 3g, Oxalic Acid 1.5g, 증류수 100mL의 혼합액에 함침한 후 120℃에서 3시간 건조한다. 이후 산소조건하의 500℃에서 소성하여 텅스텐 산화물을 담지하는(W함유량 0.75wt%) AgCl/Al2O3촉매를 제조하였다. 이후 하니콤 세라믹 지지체(직경 20mm, 길이 16.6mm, 400cell/in2)에 코팅하여 실험 4의 TiO2를 담지하는 AgCl/Al2O3촉매를 제조하는 동일한 방법으로 텅스텐 산화물을 담지하는 촉매를 제조한다. 실험 2와 동일한 조건하에서 실험한 결과를 <표 2>에 나타내었다.
(비교 실험 1)
γ-Al2O3분말(비표면적: 220m2/g, 황함유량: 0.5wt%)을 이용하여 실험 2의 AgCl/Al2O3촉매분말 제조와 동일한 방법으로 5.2wt%의 Ag을 담지하는 AgCl/Al2O3촉매분말을 제조하였다. 이렇게 제조된 촉매분말을 하니콤 세라믹 지지체에 코팅하여 실험 2의 AgCl/Al2O3하니컴 세라믹 촉매를 제조하는 동일한 절차를 거쳐 텅스텐 산화물을 담지하는 AgCl/Al2O3하니컴 세라믹 촉매를 제조하였다. 실험 2와 동일한 실험을 한 결과를 <표 2>에 제시하였다.
(비교 실험 2)
실험 3의 AgCl/Al2O3촉매분말을 제조하는 방법과 동일한 방법으로 뵘석(Boehmite:Alumina Monohydrate) 분말(황함유량 0.03wt%)을 사용하여 Ag 함유량 4.8wt%를 담지하는 AgCl/Al2O3촉매분말을 제조하였다. 이후 이 촉매분말을, 실험 4의 AgCl(TiO2)/Al2O3촉매를 제조하듯이, TiO2Sol과 증류수의 혼합액에 함침하여 약 120℃에서 3시간 가열한 후, 산소분위기하의 450℃에서 소성하여 0.02wt%의 Ti을 함유하는 AgCl(TiO2)/Al2O3를 제조하였다. 이것을 상용 세라믹 하니콤 지지체에 코팅하여 실험 4의 AgCl(TiO2)/Al2O3하니콤 촉매를 제조하는 동일한 방법으로 건조와 소성을 하여 AgCl(TiO2)/Al2O3하니컴 촉매를 제조하였다. 실험 2와 동일한 방법으로 실험한 결과는 <표 2>에 나타내었다.
모의가스 성분
모의가스 성분 농도
질소산화물(Nitrogen Oxides) 800ppm
산소(Oxygen) 10%
에탄올(Ethanol) 1563ppm
질소(Nitrogen) Balance
수분(Water) 위 가스성분 총량의 10%
질소산화물 제거효율
Example 모의 배기가스 온도(℃)
150 200 250 300 350 400 500
1 30.5 52.1 72.4 85.4 89.4 91.3 74.3
2 28.3 50.4 71.2 83.2 88.4 90.7 75.5
3 28.2 52.5 72.4 84.6 88.9 91.0 70.5
4 38.2 60.3 76.3 88.5 90.3 88.0 70.3
5 38.5 62.5 77.8 89.9 90.5 86.4 70.2
6 38.3 61.6 77.8 89.4 90.6 86.7 70.3
Comparative Example
1 0 3.5 35.1 57.4 74.2 76.5 63.6
2 0 8.7 37.1 63.3 76.4 78.4 60.5
<표 2>에서 알 수 있듯이, 고농도 황을 함유하는 γ-Al2O3와 빔석(Boehmite)을 사용한 비교 실험 1, 2에 비해 실험 1∼6의 질소산화물 제거효율은 200∼400℃의 배기가스 온도범위에서 높은 제거효율을 보였다.
(실험 7)
실험 2의 AgCl/Al2O3하니컴 촉매를 반응기에 장착한 후, <표 3>의 조성을 갖는 모의가스를 약 300∼500℃에서 2L/min으로 통과시키며, 환원제로 에탄올을 사용하여 질소산화물 저감 효율을 살펴보았다. 이때의 공간속도는 약 40,000hr-1정도였으며, 실험결과는 <표 4>와 같다.
(실험 8)
실험 3의 AgCl/Al2O3하니컴 촉매를 반응기에 장착한 후, <표 3>의 조성을 갖는 모의가스를 약 300∼500℃에서 2L/min으로 통과시키며, 환원제로 에탄올을 사용하여 질소산화물 저감 효율을 살펴보았다. 이때의 공간속도는 약 40,000hr-1정도였으며, 실험결과는 <표 4>와 같다.
(비교 실험 3)
비교 실험 1의 AgCl/Al2O3하니컴 촉매를 반응기에 장착한 후, <표 3>의 조성을 갖는 모의가스를 약 300∼500℃에서 2L/min으로 통과시키며, 환원제로 에탄올을 사용하여 질소산화물 저감 효율을 살펴보았다. 이때의 공간속도는 약 40,000hr-1정도였으며, 실험결과는 <표 4>와 같다.
모의가스 성분
모의가스 성분 농도
질소산화물(Nitrogen Oxides) 800ppm
산소(Oxygen) 10%
에탄올(Ethanol) 1563ppm
질소(Nitrogen) Balance
이산화황(Sulfur Dioxide) 30ppm
수분(Water) 위 가스성분 총량의 10%
질소산화물 제거효율
Example 모의 배기가스 온도(℃)
300 350 400 450 500
7 53.3 75.3 78.5 80.5 75.3
8 54.5 76.4 78.9 83.2 76.0
Comparative Example
3 34.0 50.1 67.4 70.4 65.0
<표 4>에서 알 수 있듯이, 고농도 황을 함유하는 γ-Al2O3와 뵘석(Boehmite)을 사용한 비교 실험 3에 비해 실험 7, 8의 질소산화물 제거효율은 200∼400℃의 배기가스 온도범위에서 높은 제거효율을 보였다.
(실험 9)
실험 2의 AgCl/Al2O3하니컴 촉매를 반응기에 장착한 후, <표 5>의 조성을 갖는 모의가스를 약 300∼500℃에서 2L/min으로 통과시키며, 환원제로 에탄올을 사용하여 질소산화물 저감 효율을 살펴보았다. 이때의 공간속도는 약 40,000hr-1정도였으며, 실험결과는 <표 6>과 같다.
(실험 10)
실험 3의 AgCl/Al2O3하니컴 촉매를 반응기에 장착한 후, <표 5>의 조성을 갖는 모의가스를 약 300∼500℃에서 2L/min으로 통과시키며, 환원제로 에탄올을 사용하여 질소산화물 저감 효율을 살펴보았다. 이때의 공간속도는 약 40,000hr-1정도였으며, 실험결과는 <표 6>과 같다.
(비교 실험 4)
비교 실험 1의 AgCl/Al2O3하니컴 촉매를 반응기에 장착한 후, <표 5>의 조성을 갖는 모의가스를 약 300∼500℃에서 2L/min으로 통과시키며, 환원제로 에탄올을 사용하여 질소산화물 저감 효율을 살펴보았다. 이때의 공간속도는 약 40,000hr-1정도였으며, 실험결과는 <표 6>과 같다.
모의가스 성분
모의가스 성분 농도
질소산화물(Nitrogen Oxides) 800ppm
산소(Oxygen) 10%
에탄올(Ethanol) 1563ppm
질소(Nitrogen) Balance
이산화황(Sulfur Dioxide) 200ppm
수분(Water) 위 가스성분 총량의 10%
질소산화물 제거효율
Example 모의 배기가스 온도(℃)
300 350 400 450 500
9 30.3 48.3 66.0 73.2 74.8
10 34.5 53.2 70.9 75.5 75.0
Comparative Example
4 10.0 34.1 58.3 60.4 68.0
<표 6>에서 알 수 있듯이, 고농도 황을 함유하는 γ-Al2O3와 뵘석(Boehmite)을 사용한 비교 실험 4에 비해 Example 9, 10의 질소산화물 제거효율은 200∼400℃의 배기가스 온도범위에서 높은 제거효율을 보였다.
(실험 11)
실험 2의 AgCl/Al2O3하니컴 촉매를 반응기에 장착한 후, <표 7>의 조성을 갖는 모의가스를 약 300∼500℃에서 2L/min으로 통과시키며, 환원제로 에탄올을 사용하여 질소산화물 저감 효율을 살펴보았다. 이때의 공간속도는 약 40,000hr-1정도였으며, 실험결과는 <표 8>과 같다.
(실험 12)
실험 4의 TiO2를 담지하는 AgCl/Al2O3하니컴 촉매를 반응기에 장착한 후, <표 7>의 조성을 갖는 모의가스를 약 300∼500℃에서 2L/min으로 통과시키며, 환원제로 에탄올을 사용하여 질소산화물 저감 효율을 살펴보았다. 이때의 공간속도는 약 40,000hr-1정도였으며, 실험결과는 <표 8>과 같다.
(비교 실험 5)
비교 실험 1의 AgCl/Al2O3하니컴 촉매를 반응기에 장착한 후, <표 7>의 조성을 갖는 모의가스를 약 300∼500℃에서 2L/min으로 통과시키며, 환원제로 에탄올을 사용하여 질소산화물 저감 효율을 살펴보았다. 이때의 공간속도는 약 40,000hr-1정도였으며, 실험결과는 <표 8>과 같다.
(비교 실험 1)
비교 실험 2의 TiO2를 담지하는 AgCl/Al2O3하니컴 촉매를 반응기에 장착한 후, <표 7>의 조성을 갖는 모의가스를 약 300∼500℃에서 2L/min으로 통과시키며, 환원제로 에탄올을 사용하여 질소산화물 저감 효율을 살펴보았다. 이때의 공간속도는 약 40,000hr-1정도였으며, 실험결과는 <표 8>과 같다.
모의가스 성분
모의가스 성분 농도
질소산화물(Nitrogen Oxides) 800ppm
산소(Oxygen) 10%
프로필렌(Propylene) 1714ppm
질소(Nitrogen) Balance
수분(Water) 위 가스성분 총량의 10%
질소산화물 제거효율
Example 모의 배기가스 온도(℃)
300 350 400 450 500
11 43.3 68.4 80.4 87.5 80.9
12 47.3 80.4 88.4 80.3 73.8
Comparative Example
5 20.2 45.4 68.5 76.0 70.3
6 21.3 46.6 70.9 78.8 72.5
<표 8>에서 알 수 있듯이, 고농도 황을 함유하는 γ-Al2O3와 뵘석(Boehmite)을 사용한 비교 실험 5, 6에 비해 실험 11, 12의 질소산화물 제거효율은 300∼500℃의 배기가스 온도범위에서 높은 제거효율을 보였다.
본 발명에 따른 촉매는, 과잉산소를 함유하는 배기가스중의 질소산화물을 본 발명에 의해 넓은 온도범위에서 제거된다.
따라서, 이에 여러 종류의 엔진 및 연소장치로부터 발생되는 질소산화물을 제거하는데 매우 유용한 발명인 것이다.

Claims (6)

  1. 다공성 무기산화물로서 Ag 또는 Ag성분을 함유하는 화합물로부터 얻어진 최소 하나의 Ag성분중 1.0∼6.0wt%을 담지하여서 된 것을 특징으로 하는 고효율 은계 촉매.
  2. 청구항 1에 있어서, 상기 Ag 또는 Ag성분을 함유하는 화합물에 Ti, W, Mo, V 산화물로 구성된 화합물중 최소 하나 성분을 0.01∼1.5wt%를 더 담지하여서 된 것을 특징으로 하는 고효율 은계 촉매.
  3. 청구항 1 및 청구항 2중 어느 한 항에 있어서, 상기 Ag 화합물은 Ag 산화물이나 Ag 할로겐물질로 구성된 화합물중 어느 하나인 것을 특징으로 하는 고효율 은계 촉매.
  4. 청구항 1 및 청구항 2중 어느 한 항에 있어서, 상기 다공성 무기산화물은 정제된 γ-Al2O3, 뵘석(Boehmite) 또는 이들 물질의 혼합물로 황함량 0.05wt% 미만인것을 특징으로 하는 고효율 은계 촉매.
  5. 정제된 γ-Al2O3, 뵘석(Boehmite:Alumina Monohydrate) 또는 이들 물질의 조합산화물을 수용액에 용해하는 용해단계와;
    상기 조합 산화물을 100∼120℃에서 건조시키는 건조단계와;
    산소 또는 공기분위기하의 100℃∼650℃에서 단계적으로 소성하는 소성단계와;
    지지체에 상기 소성단계에 의해 Ag 성분을 담지한 담체를 소정의 두께로 코팅시키는 코팅단계가 순차적으로 이루어 지는 것을 특징으로 하는 고효율 은계 촉매의 제조방법.
  6. 청구항 5에 있어서, 정제된 γ-Al2O3, 뵘석(Boehmite) 또는 이들 물질의 조합산화물이 녹아있는 수용액에 W, Mo, V성분을 함유하는 옥살산염(Oxalate) 또는 암모늄염(ammonium salt)을 용해하고, 질산은과 TiO2Sol을 용해한 후 건조와 소성 및 코팅 단계를 거치는 것을 특징으로 하는 고효율 은계 촉매의 제조방법.
KR10-2001-0065111A 2001-10-22 2001-10-22 고효율 은계 촉매 및 그 제조방법 KR100442769B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0065111A KR100442769B1 (ko) 2001-10-22 2001-10-22 고효율 은계 촉매 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0065111A KR100442769B1 (ko) 2001-10-22 2001-10-22 고효율 은계 촉매 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20030033368A KR20030033368A (ko) 2003-05-01
KR100442769B1 true KR100442769B1 (ko) 2004-08-02

Family

ID=29565777

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0065111A KR100442769B1 (ko) 2001-10-22 2001-10-22 고효율 은계 촉매 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR100442769B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8173574B2 (en) * 2006-09-20 2012-05-08 Basf Corporation Catalysts to reduce NOx in an exhaust gas stream and methods of preparation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247238A (ja) * 1990-09-13 1992-09-03 Basf Ag 銀含有触媒及び酸化二窒素の分解法
JPH0871419A (ja) * 1994-08-31 1996-03-19 Sumitomo Metal Mining Co Ltd 脱硝触媒およびそれを用いた脱硝方法
US5593933A (en) * 1995-08-30 1997-01-14 Ford Motor Company Refractory oxides based silver-tungsten lean-NOx catalyst
JPH10230165A (ja) * 1997-02-18 1998-09-02 Sekiyu Sangyo Kasseika Center 窒素酸化物の還元触媒の製造方法
JP2000213334A (ja) * 1999-01-21 2000-08-02 Tokyo Gas Co Ltd 燃料バイパスラインを有する脱硝兼脱臭用銀担持アルミナ触媒付ghpシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247238A (ja) * 1990-09-13 1992-09-03 Basf Ag 銀含有触媒及び酸化二窒素の分解法
JPH0871419A (ja) * 1994-08-31 1996-03-19 Sumitomo Metal Mining Co Ltd 脱硝触媒およびそれを用いた脱硝方法
US5593933A (en) * 1995-08-30 1997-01-14 Ford Motor Company Refractory oxides based silver-tungsten lean-NOx catalyst
JPH10230165A (ja) * 1997-02-18 1998-09-02 Sekiyu Sangyo Kasseika Center 窒素酸化物の還元触媒の製造方法
JP2000213334A (ja) * 1999-01-21 2000-08-02 Tokyo Gas Co Ltd 燃料バイパスラインを有する脱硝兼脱臭用銀担持アルミナ触媒付ghpシステム

Also Published As

Publication number Publication date
KR20030033368A (ko) 2003-05-01

Similar Documents

Publication Publication Date Title
EP3027309B1 (en) Ammonia slip catalyst
JP3741303B2 (ja) 排ガス浄化用触媒
US6555081B2 (en) Method of the purification of the exhaust gas from a lean-burn engine using a catalyst
JPH0631173A (ja) 排気ガス浄化用触媒及び排気ガスの浄化方法
JP2004512162A (ja) Co、vocおよびハロゲン化有機物の放出物を消失させる触媒
JP3409894B2 (ja) 排ガス浄化用触媒及び排ガス浄化方法
US5939037A (en) Sulfur tolerant NOx traps highly loaded with sodium or potassium
KR20070104419A (ko) 배기가스정화촉매
WO1997047374A1 (en) Nitrogen oxide traps
US5922295A (en) Sulfur-resistant NOx traps containing tungstophosphoric acid and precious metal
JPH07829A (ja) 希薄混合気燃焼エンジン用卑金属触媒系
KR100442769B1 (ko) 고효율 은계 촉매 및 그 제조방법
JP3800200B2 (ja) 排ガス浄化方法及び排ガス浄化用触媒
JP4135698B2 (ja) 硫黄酸化物吸収材の製造方法
EP0864354A1 (en) Sulphur resistant lean-NOx catalyst for treating diesel emissions
JP3395525B2 (ja) 内燃機関排ガスの浄化触媒及び浄化方法
JP2700386B2 (ja) 排ガス浄化材及び排ガス浄化方法
US20240066468A1 (en) Exhaust gas treatment system
JP2001058131A (ja) 排ガス浄化用触媒
JP3854325B2 (ja) 排ガス浄化材及び排ガス浄化方法
JP3567998B2 (ja) 脱硝触媒およびそれを用いた脱硝方法
JP4985499B2 (ja) 硫黄酸化物吸収材及び排ガス浄化装置
JPH07289894A (ja) 脱硝触媒およびそれを用いた脱硝方法
JPH07275708A (ja) 脱硝触媒及びその製造方法並びに脱硝方法
JPH08131829A (ja) 脱硝触媒およびそれを用いた脱硝方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090716

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee