KR100418465B1 - Gene theraphy and gene therapeutic composition for insulin dependent diabetes mellitus - Google Patents

Gene theraphy and gene therapeutic composition for insulin dependent diabetes mellitus Download PDF

Info

Publication number
KR100418465B1
KR100418465B1 KR10-2001-0002229A KR20010002229A KR100418465B1 KR 100418465 B1 KR100418465 B1 KR 100418465B1 KR 20010002229 A KR20010002229 A KR 20010002229A KR 100418465 B1 KR100418465 B1 KR 100418465B1
Authority
KR
South Korea
Prior art keywords
insulin
gene
vector
promoter
expression
Prior art date
Application number
KR10-2001-0002229A
Other languages
Korean (ko)
Other versions
KR20020061270A (en
Inventor
서동상
Original Assignee
서동상
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서동상 filed Critical 서동상
Priority to KR10-2001-0002229A priority Critical patent/KR100418465B1/en
Priority to JP2001019261A priority patent/JP3538148B2/en
Priority to US09/775,508 priority patent/US6596515B2/en
Priority to EP01103348A priority patent/EP1223221B1/en
Priority to DE60111818T priority patent/DE60111818T2/en
Priority to AT01103348T priority patent/ATE299186T1/en
Priority to CNB011043709A priority patent/CN1202257C/en
Publication of KR20020061270A publication Critical patent/KR20020061270A/en
Application granted granted Critical
Publication of KR100418465B1 publication Critical patent/KR100418465B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4741Keratin; Cytokeratin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Abstract

Disclosed are a recombinant vector for use in gene therapy for insulin-dependent diabetes mellitus and a therapeutic composition thereof. Following the injection of a beta -galactosidase expression vector having a K14 promoter gene, along with a Drosophola's P transposase expression helper vector, into murine skin in a liposome-mediated manner, the beta -galactosidase gene is expressed in the keratinocyte layer from 24 hours to 20 weeks after injection as measured by X-gal staining. With the enhancement effect and tissue specificity, the K14 promoter is applied for the expression of a human insulin gene in keratinocytes, thereby suggesting a new gene therapy method for treating insulin-dependent diabetes mellitus. When, in combination with the P-element expression helper vector, a human insulin expression vector with the K14 promoter is injected into the skin of diabetic mice, which lack insulin-producing beta -cells of the pancreas, their blood glucose levels are maintained in a normal range. <IMAGE>

Description

인슐린 의존성 당뇨병의 유전자 치료방법 및 그 치료용 조성물{Gene theraphy and gene therapeutic composition for insulin dependent diabetes mellitus}Gene theraphy and gene therapeutic composition for insulin dependent diabetes mellitus}

본 발명은 인슐린 의존성 당뇨병의 유전자 치료방법 및 그 치료용 조성물에 관한 것이다. 더욱 상세하게는, 본 발명은 K14 프로모터와 인간의 인슐린 유전자, K 14 프로모터와 β-갈락토시데이즈(galactosidase) 유전자가 클로닝된 벡터를 제작하고 리포솜 방법과 가압주입법으로 노랑초파리의 P-전이효소를 발현하는 헬퍼 벡터와 함께 마우스의 피부조직에 투여한 결과, 헬퍼 벡터에서 발현된 전이효소에 의해 β-갈락토시데이즈 유전자가 마우스 염색체상에 삽입되며, 24시간부터 20주까지 발현되고, K 14 프로모터에 의해 β-갈락토시데이즈 유전자가 케라틴 세포층(keratinocytes layer)에서 발현되는 조직 특이성을 확인하였으며, 당뇨마우스에서 인슐린 벡터의 발현으로 케라틴 세포(Keratinocytes)에서 생성되는 인슐린이 혈당치를 낮추어 인슐린 의존성 당뇨병의 치료에 효과가 있는 인슐린 발현 벡터와 이를 이용한 유전자 치료법에 관한 것이다.The present invention relates to a method for gene therapy of insulin-dependent diabetes and a composition for treating the same. More specifically, the present invention provides a cloned vector of the K14 promoter and the human insulin gene, the K14 promoter and the β-galactosidase gene, and the P-transferase of yellow fruit flies by liposome method and pressure injection method. When administered to the skin tissue of the mouse together with the helper vector expressing a, β-galactosidase gene is inserted on the mouse chromosome by the transferase expressed in the helper vector, expressed from 24 hours to 20 weeks, K 14 Promoters confirmed the specificity of tissues expressing β-galactosidase gene in keratinocytes layer.Insulin-dependent expression of insulin produced in keratinocytes by insulin vector expression in diabetic mice lowered blood glucose levels. It relates to an insulin expression vector and gene therapy using the same for the treatment of diabetes.

유전자 치료법은 유전자 전이와 유전자의 발현을 인공적으로 조절하여 환자의 돌연변이된 유전정보를 유전자 재조합에 의해 교정하는 것으로써 신경계교란, 심장혈관 질환, 관절염 또는 암을 포함한 다양한 유형의 병리 치료를 위해 개발되어 왔다. 종래에 유전자 치료에 대한 연구로는 국제 공개번호 제 1997-27310에 레트로 바이러스 벡터 및 유전자 치료에서의 이의 용도가 공지된 바 있고, 국제 공개번호 제 1997-34009에 인간 종양 유전자 치료를 위한 재조합 아데노 바이러스 벡터가 공지된 바 있다. 그러나 상기와 같이 공지된 방법들은 바이러스 벡터를 이용한 것으로써 많은 시간과 고비용을 요하며 안전성 여부와 과정의 복잡성 때문에 유전병의 치료에만 제한적으로 사용되고 있으며 본 발명에서와 같은 비바이러스 인슐린 벡터는 공지된 바 없다.Gene therapy is a method of artificially regulating gene transfer and expression of genes to correct mutated genetic information of patients by genetic recombination, which has been developed for the treatment of various types of pathologies, including nervous system disturbances, cardiovascular disease, arthritis or cancer. come. Conventional studies on gene therapy have been known in retro-published publication No. 1997-27310 for retroviral vectors and their use in gene therapy, and in international publication no. 1997-34009 for recombinant adenoviruses for the treatment of human tumor genes. Vectors are known. However, these known methods require a lot of time and high cost by using viral vectors and are limited to the treatment of genetic diseases due to safety and complexity of the process. Non-viral insulin vectors as in the present invention are not known. .

당뇨병은 인슐린을 생산하는 췌장의 β-세포가 손상되었을 경우 인슐린 부족으로 야기되는 신체 대사장애이다. type Ⅰ으로 불리는 인슐린 의존성 당뇨병(IDDM)은 매년 3%가 새로 발생하며 아동 7000명 중 한 명이 발병되고 있다. 현재 인슐린 의존성 당뇨병을 치료하기 위해 혈당측정, 인슐린 투여, 식이용법, 운동요법등이 행해지고 있으나 집중적인 치료에도 불구하고 당뇨병의 악화를 감소시킬 수 있는 경우는 50∼70% 정도에 불과하며 더 나은 치료법이 요구되고 있는 실정이다.Diabetes is a body metabolic disorder caused by insulin deficiency when the β-cells of the insulin producing pancreas are damaged. Insulin-dependent diabetes mellitus (IDDM), called type I, develops by 3% each year and affects one in 7,000 children. In order to treat insulin-dependent diabetes, blood glucose measurement, insulin administration, dietary use, exercise therapy, etc. are being performed, but only 50-70% of cases can reduce the worsening of diabetes despite intensive treatment. This situation is required.

한편, 스스로 재생능력이 있는 상피세포와 그 부속물은 간세포(stem cell)의 일부로 구성되어 있으며 인체 표면을 덮고 있고 증식능력이 있다. Green에 의해서 연구된 몇 백 세대에 걸쳐 증식할 수 있는 인간 피부 케라틴 세포(keratinocytes)의 배양기술은 현재 주요 병원에서 화상치료를 위해 케라틴 세포(keratinocytes)를 배양하여 이식하므로써 널리 이용되고 있다. 배양된 케라틴 세포(keratinocytes)로의 유전자 전이는 다양한 외부 프로모터를 이용하여 발현된 다양한 생성물에 의해 입증되었다. 상피세포내의 케라틴 세포(keratinocytes)는 (1) 무제한 성장 능력을 가지거나 증식할 수 있는 간세포 (2) 간세포로부터 발생되고 최종 분화되기 전까지 한정된 수의 사이클을 반복하는 TA세포(translent amplifying cell), 이 두 범주의 복제세포에 의해 재생된다. 간세포(stem cell)는 주기(cycle)가 느리고 뉴클레오타이드 아날로그에 잘 표식되지 않지만, 한번 표식되면 긴 기간동안 유지된다. 간세포와 TA세포(transient amplifiying cell)는 super-basal층을 형성하는 최종분화세포와 상피세포의 기저부위에 위치하고 있다. 간세포와 그 분열된 세포 및 최종분화세포는 별개의 공간배열을 이루고 있으며 '상피증식단위(epidermal proliferation unit)'로 일컬어지고 있다. 케라틴 14(K 14)와 케라틴 5(K 5)는 상피와 그 부속물의 활성세포에 의해 발현되는 주 단백질이다. 이러한 케라틴을 암호화하는 유전자는 배양된 인간 케라틴세포 배양에 있어서 많이 전사된다. 이러한 이유 때문에 K14와 K5의 프로모터의 이용은 케라틴 세포 관련(Keratinocyte-mediated) 유전자 치료에 이상적이라 할 수 있다.On the other hand, epithelial cells and their appendages, which are capable of self-renewal, are composed of parts of stem cells, covering the surface of the human body, and proliferating. Cultivation of human dermal keratinocytes, which can be propagated for hundreds of generations, studied by Green, is now widely used by culturing and transplanting keratinocytes for burn treatment in major hospitals. Gene transfer into cultured keratinocytes has been demonstrated by various products expressed using various external promoters. Keratinocytes in epithelial cells are: (1) hepatocytes with unlimited growth capacity or proliferation; (2) TA cells, which are generated from hepatocytes and repeat a limited number of cycles until their final differentiation, It is reproduced by two categories of cloned cells. Stem cells are slow in cycles and poorly labeled on the nucleotide analogues, but once labeled they persist for long periods of time. Hepatocytes and TA cells (transient amplifiying cells) are located at the base of the final differentiated and epithelial cells forming the super-basal layer. Hepatocytes, their divided cells and final differentiated cells form separate spatial arrangements and are called 'epidermal proliferation units'. Keratin 14 (K 14) and Keratin 5 (K 5) are the main proteins expressed by the active cells of the epithelium and its appendages. Genes encoding such keratin are highly transcribed in cultured human keratinocyte cultures. For this reason, the use of K14 and K5 promoters is ideal for keratinocyte-mediated gene therapy.

노랑초파리의 전이인자는 1970년대에 교잡 부전(hybrid dysgenesis)현상에 P 전이인자가 관여하는 것이 발견된 이래 많은 연구가 보고되었으며, 1982년에 P 전이인자가 클로닝된 유전자를 초파리의 배(embryo)에 운반할 수 있는 기술이 보고된 바 있다(Rubin, G.M et al. Science. 1982, 218:348-353). 그러나 상기 공지된 방법은 근연종에서조차 활성이 없는 것으로 알려져 왔다. 특히 본 발명에서와 같이 포유류에서의 노랑초파리의 P 전이인자의 적용은 현재까지 보고된 바 없다.Since the discovery of the involvement of the P transfer factor in hybrid dysgenesis in the 1970s, many studies have been reported. In 1982, the gene cloned with the P transfer factor was cloned from the fruit fly embryo. Has been reported (Rubin, GM et al. Science. 1982, 218: 348-353). However, the known method has been known to be inactive even in recent years. In particular, the application of the P transfer factor of yellow fruit flies in mammals as in the present invention has not been reported to date.

본 발명자들은 상기와 같은 점을 착안하여 K14 프로모터와 인간의 인슐린 유전자, K14 프로모터와 β-갈락토시데이즈(galactosidase)유전자를 클로닝하여 본 발명 유전자 재조합 벡터를 제조하고 리포솜 방법과 가압주입법으로 노랑초파리 전이효소를 발현하는 헬퍼 벡터와 함께 피부조직에 투여한 결과, 인슐린 벡터의 발현으로 피부 케라틴 세포(Keratinocytes)에서 인슐린이 생성되어 혈당치를 낮추므로 본 발명 재조합 유전자 벡터는 인슐린 의존성 당뇨병치료에 효과가 있음을 확인함으로써 본 발명을 완성하였다.In view of the above, the present inventors cloned the K14 promoter and the human insulin gene, the K14 promoter and the β-galactosidase gene, to prepare a recombinant vector of the present invention, and yellow fruit flies by liposome method and pressure injection method. As a result of administration to a skin tissue with a helper vector expressing a transferase, the expression of the insulin vector produces insulin in the skin keratinocytes and lowers the blood glucose level. Thus, the recombinant gene vector of the present invention is effective in treating insulin-dependent diabetes. By confirming that the present invention was completed.

따라서, 본 발명의 목적은 인슐린 의존성 당뇨병 유전자 치료에 효과가 있는 비바이러스성 인슐린 발현 재조합 벡터 및 그 제조방법을 제공함에 있다.Accordingly, an object of the present invention is to provide a non-viral insulin expression recombinant vector and method for producing the same, which are effective for treating insulin-dependent diabetes gene.

본 발명의 다른 목적은 노랑초파리의 P 전이인자를 포유류의 비바이러스성 벡터로 사용함에 있다.It is another object of the present invention to use the P transfer factor of Drosophila as a mammalian nonviral vector.

본 발명의 또 다른 목적은 상기 비바이러스성 인슐린 발현 재조합 벡터와 노랑초파리 P 전이효소 발현 재조합 헬퍼 벡터를 리포솜 방법과 가압주입법으로 피부에 투여, 인슐린 유전자가 염색체에 삽입되어 장기간 유지되게 하는 인슐린 의존성 당뇨병의 치료용 조성물을 제공함에 있다.Another object of the present invention is to administer the non-viral insulin expression recombinant vector and the yellow fruit fly P transferase expression recombinant helper vector to the skin by liposome method and pressure injection method, and the insulin gene is inserted into the chromosome to maintain the insulin-dependent diabetes mellitus for a long time. In providing a therapeutic composition of the.

본 발명의 상기 목적은 K14 프로모터와 인간의 인슐린 유전자, K14 프로모터와 β-갈락토시데이즈(galactosidase) 유전자가 클로닝된 벡터를 제조하고 리포솜 방법과 가압주입법으로 노랑초파리 전이효소를 발현하는 헬퍼 벡터와 함께 피부조직에 투여한 다음 X-gal 염색법으로 β-갈락토시데이즈 유전자의 발현을 확인하고, PCR과 서던 블럿(Southern blot analysis)으로 헬퍼 벡터에서 만들어지는 전이효소(transposase)에 의해 β-갈락토시데이즈 유전자가 마우스의 염색체로 삽입(integration)되며, H/E(Hematoxylin/Eosin)염색법으로 β-갈락토시데이즈 유전자가 케라틴 세포층에서 발현되는 조직특이성(tissue specificity)을 확인하고 면역염색(Immunostaining)에 의해 췌장의 α, β, δ 세포분포를 관찰한 결과 β세포는 거의 존재하지 않음을 관찰하여 케라틴 세포층에서 생성되는 인슐린이 혈당치를 낮추는 것을 확인함으로써 달성하였다.The object of the present invention is to prepare a vector cloned from the K14 promoter and the human insulin gene, the K14 promoter and the β-galactosidase gene, and a helper vector expressing the yellow fruit fly transferase by liposome method and autoinjection method. After administration to the skin tissue, the expression of β-galactosidase gene was confirmed by X-gal staining, and β-gal by transposase made from helper vector by PCR and Southern blot analysis. The lactosidase gene is integrated into the chromosome of the mouse, and H / E (Hematoxylin / Eosin) staining method confirms tissue specificity in which β-galactosidase gene is expressed in the keratinocyte layer and immunostaining ( Immunostaining observed the distribution of α, β, and δ cells in the pancreas, indicating that little β cells were present. Achieved by confirming lowering blood glucose levels.

이하, 본 발명의 구성 및 작용을 설명한다.Hereinafter, the configuration and operation of the present invention.

도 1a은lacZ 유전자와 K14 프로모터(pUC KZ),lacZ 유전자(pUC4.3Z)를 각각 도입시켜 구축한 β-갈락토시데이즈 발현 벡터의 제작 모식도이다.Figure 1a is a schematic diagram of the production of β-galactosidase expression vector constructed by introducing the lac Z gene, K14 promoter (pUC KZ), lac Z gene (pUC4.3Z).

도 1b는 노랑초파리의 P-전이효소를 발현하는 헬퍼 벡터(pπ25.7wc??2-3)의 모식도이다.1B is a schematic diagram of a helper vector (pπ25.7wc ?? 2-3) expressing P-transferase of yellow fruit flies.

도 2는 pUCK-Z을 투여한 마우스의 피부조직에 시간 경과에 따른(1일 ∼ 20주)lacZ 발현을 X-gal염색으로 확인한 결과이다.FIG. 2 shows the results of confirming lac Z expression by X-gal staining over time (1 day to 20 weeks) in skin tissue of mice administered pUCK-Z.

도 3은 pUCK-Z을 투여한 마우스 피부조직의 시간 경과에 따른 β-갈락토시데이즈 유전자의 발현을 X-gal 염색과 H/E(Hematoxylin/ Eosin)염색한 결과이다.Figure 3 is the result of X-gal staining and H / E (Hematoxylin / Eosin) staining the expression of β-galactosidase gene over time of the mouse skin tissue administered pUCK-Z.

도 4는 전이효소(transposase)에 의한 염색체상의 β-갈락토시데이즈 유전자의 삽입여부를 확인하기 위해 PCR한 결과이다.Figure 4 is a result of PCR to confirm the insertion of β-galactosidase gene on the chromosome by transposase.

도 5는 전이효소(transposase)에 의한 염색체상의 β-갈락토시데이즈 유전자의 삽입여부를 확인하기 위해 서던 블럿(southern blot analysis)한 결과이다.5 is a result of Southern blot analysis to confirm the insertion of β-galactosidase gene on the chromosome by transposase.

도 6은 본 발명 인슐린 벡터(pUCK14-INS)의 제작 모식도이다.Fig. 6 is a schematic diagram showing the production of the present invention insulin vector (pUCK14-INS).

도 7은 본 발명 인슐린 벡터의 K14 프로모터와 인슐린유전자의 염기서열을 나타낸 것이다.Figure 7 shows the nucleotide sequence of the K14 promoter and insulin gene of the insulin vector of the present invention.

도 8a는 스트렙토조토신 (STZ)을 65㎎/㎏의 농도로 처리하여 당뇨마우스를 만든 다음 pUCK14-INS을 처리하여 혈당 변화를 측정한 결과를 나타낸 그래프이다.Figure 8a is a graph showing the result of measuring the blood glucose change by treating the streptozotocin (STZ) at a concentration of 65 mg / kg and then treated with pUCK14-INS.

도 8b는 스트렙토조토신(STZ)을 200㎎/㎏의 농도로 처리하여 당뇨마우스를 만든 다음 pUCK14-INS을 처리하여 혈당의 변화를 측정한 결과를 나타낸 그래프이다.Figure 8b is a graph showing the result of measuring the change in blood glucose by treating the streptozotocin (STZ) at a concentration of 200mg / kg and then treated with pUCK14-INS.

도 9는 췌장의 형태와 랑게르한스 섬의 분포를 나타낸 사진이다.9 is a photograph showing the shape of the pancreas and the distribution of the island of Langerhans.

도 10은 정상마우스, 당뇨마우스 및 인슐린발현 벡터를 처리한 당뇨마우스의 랑게르한스 섬을 면역염색(immunostaining)한 결과이다.10 shows the results of immunostaining of Langerhans island of diabetic mice treated with normal mice, diabetic mice and insulin expression vectors.

본 발명은 K14 프로모터가 있는 β-갈락토시데이즈 발현 벡터(pUC KZ)와 K14 프로모터가 없는 β-갈락토시데이즈 발현 벡터(pUC-4.3Z)을 구축하는 단계; 상기벡터에 리포솜을 혼합하고 노랑초파리의 P-전이효소를 발현하는 헬퍼 벡터를 첨가하여 DNA/리포솜 혼합체를 제조하는 단계; 상기 DNA/ 리포솜 혼합체를 마우스 피부에 가압주입법으로 투여하고 시간경과에 따라 피부조직을 획득하는 단계; 상기 피부조직을 X-gal 염색하여 β-갈락토시데이즈의 발현을 확인하는 단계; 상기 피부조직을 H/E(Hematoxylin/Eosin) 염색하여 상기 인슐린 유전자가 케라틴 세포층에서 발현됨을 확인하는 단계; 상기 피부조직에서 게놈 DNA를 추출하는 단계; 마우스 염색체상에 삽입여부를 알기 위해lacZ 프라이머를 이용하여 PCR 하는 단계; 마우스 염색체상에 삽입여부를 알기 위해 서던 블럿(sourthern blot analysis)하는 단계; 상기 실험결과, 벡터의 조직특이성과 염색체상으로의 전이를 확인하고, 이 결과를 바탕으로 해서 기존에 알려진 인간 preproinsulin 유전자와 K 14 프로모터 부분의 염기서열로부터 프라이머를 제작하고, 이 프라이머를 이용하여 PCR 증폭하고 pUChsneo와 pGEM T-easy 벡터에 각각 클로닝한 다음 pUChsneo에 삽입하여 인슐린 발현 벡터를 제작하는 단계; 상기 제작된 인슐린 발현 벡터를 시퀀싱 하는 단계; 마우스에 60㎎/㎏, 200㎎/㎏의 농도가 되게 스트렙토조토신(STZ)를 투여하여 마우스에서 당뇨를 유발하는 단계; 당뇨가 유발된 마우스에 본 발명 인슐린 발현 벡터를 1㎍, 50㎍, 100㎍ 주입하고 혈당 측정하는 단계; H/E염색을 통하여 인슐린 발현벡터가 투여된 마우스의 췌장 형태와 랑게르한스 섬의 분포를 관찰하는 단계; 랑게르한스 섬을 면역염색(immuno staining)하여 α, β, δ세포의 분포를 측정하는 단계로 구성된다.The present invention comprises the steps of constructing a β-galactosidase expression vector with a K14 promoter (pUC KZ) and a β-galactosidase expression vector without a K14 promoter (pUC-4.3Z); Preparing a DNA / liposomal mixture by mixing liposomes to the vector and adding a helper vector expressing the P-transferase of yellow fruit flies; Administering the DNA / liposome mixture to the mouse skin by autoinjection and obtaining skin tissue over time; Confirming the expression of β-galactosidase by X-gal staining of the skin tissue; Confirming that the insulin gene is expressed in the keratinocyte layer by staining the skin tissue with H / E (Hematoxylin / Eosin); Extracting genomic DNA from the skin tissue; PCR using lac Z primer to determine whether the mouse chromosome is inserted; Southern blot analysis to determine whether the mouse chromosome is inserted; As a result of the experiment, the tissue specificity of the vector and the transition to the chromosome were confirmed. Based on the results, primers were prepared from the known human preproinsulin gene and the nucleotide sequence of the K 14 promoter region, and PCR was performed using the primers. Amplifying and cloning into pUChsneo and pGEM T-easy vectors, respectively, and inserting into pUChsneo to prepare insulin expression vectors; Sequencing the prepared insulin expression vector; Inducing diabetes in mice by administering streptozotocin (STZ) to a concentration of 60 mg / kg and 200 mg / kg; Injecting 1 μg, 50 μg, 100 μg of the insulin expression vector of the present invention into a diabetic-induced mouse and measuring blood glucose level; Observing the distribution of pancreatic morphology and islets of Langerhans in mice receiving an insulin expression vector through H / E staining; Immuno staining of the Langerhans islet consists of measuring the distribution of α, β and δ cells.

본 발명의 가압주입법에 사용된 Needless jet injector는 MADA MEDICALPRODUCTS, INC(USA, NJ)에서 구입하였다.Needles jet injector used in the pressure injection method of the present invention was purchased from MADA MEDICAL PRODUCTS, INC (USA, NJ).

본 발명에 이용된 혈당측정기(Super Glucocard Ⅱ kit)와 스트립(Glucocard test strip Ⅱ)은 Arkray KDK Corp (Kyoto, Japan)에서 구입하였다.The blood glucose meter (Super Glucocard II kit) and strip (Glucocard test strip II) used in the present invention were purchased from Arkray KDK Corp (Kyoto, Japan).

GENEPORTERTMtransfection reagent는 GTS INC(San diego CA,USA)로부터 구입하였고, STZ(스트렙토조토신)은 시그마사로부터 구입하였다.GENEPORTER transfection reagent was purchased from GTS INC (San diego CA, USA) and STZ (streptozotocin) was purchased from Sigma.

본 발명의 실험동물인 마우스는 12 ∼ 14주 된 무게 26g 정도인 것을 대한 바이오 링크(주)에서 구입하였다.Mice, which are experimental animals of the present invention, were purchased from Biolink Co., Ltd., having a weight of about 26 g of 12 to 14 weeks.

본 발명 인슐린 발현 벡터 또는 그 치료용 조성물은 상기 공지한 방법을 단독 또는 적합하게 조합하여 획득할 수 있다.The insulin expression vector of the present invention or a composition for treating the same can be obtained by combining the above known methods alone or suitably.

이하 실시예에 의해 본 발명을 보다 상세하게 설명하지만, 본 발명의 권리범위는 이들 실시예에만 국한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following Examples, but the scope of the present invention is not limited to these Examples.

실험예1: 마우스 피부에서β-갈락토시데이즈 유전자의 발현Experimental Example 1 Expression of β-galactosidase Gene in Mouse Skin

제 1단계: β-갈락토시데이즈 발현 벡터 제작Step 1: construct β-galactosidase expression vector

K14 프로모터 유무에 따른 효과(activieity)를 확인하기 위해 도 1a에 나타낸 바와 같이 pUCheo의EcoR I 사이트에 K14 프로모터를 클로닝한 다음 cpwβ-22의 4.3kblacZ 유전자를BamHI과SalI 사이트에 클로닝하여 pUC KZ을 제작하였고, K 14 프로모터 없이lacZ 유전자만 삽입하여 pUC 4.3Z을 제작하였다. 상기 두종류의 벡터를 대장균에 형질전환한 다음 페놀/ 클로로포름/이소아미알콜로 플라스미드를추출하여 제한효소 지도로 클로닝을 확인하였다.In order to confirm the activity (activieity) with or without the K14 promoter, cloned the K14 promoter at the Eco R I site of pUCheo as shown in Figure 1a and then cloned 4.3kb lac Z gene of cpwβ-22 to Bam HI and Sal I site pUC KZ was prepared and pUC 4.3Z was prepared by inserting only the lac Z gene without the K 14 promoter. The two kinds of vectors were transformed into Escherichia coli, and then plasmids were extracted with phenol / chloroform / isoamialcohol to confirm cloning by restriction map.

제 2단계: 헬퍼 벡터 제조Step 2: Build a Helper Vector

pUCHshneo 스스로 염색체 상에 전이될 수 없으므로 도 1b에 나타낸 바와 같은 노랑 초파리의 전이효소를 발현하는 헬퍼 벡터를 구축하였다. 헬퍼 벡터(pπ25.7wc△2-3) ORF 2와 ORF 3사이의 인트론을 조절하여 전이효소를 생산할 수 있게 제작하였다.Since pUCHshneo itself cannot be transferred onto a chromosome, a helper vector expressing a yellow Drosophila transferase as shown in FIG. 1B was constructed. Helper vector (pπ25.7wcΔ2-3) The intron between ORF 2 and ORF 3 was controlled to produce a transferase.

제 3단계: DNA/리보솜 복합체 제조Step 3: preparing the DNA / ribosome complex

상기 제 1단계에서 제조한 β-갈락토시데이즈 발현 벡터를 QIAGEN plasmid maxi kit로 정제하였고 Gene PORTERTM유전자 전이시약은 0.75mL의 수화용액(hydration buffer)에서 수화시켰다. 2 ㎍, 5㎍, 10㎍, 50㎍ 100㎍의 정제한 플라스미드 DNA와 5uL, 10 uL, 20uL의 리포솜을 각각 혼합하여 복합체(complex)를 만들고, 노랑초파리의 P-전이효소(transposase)를 발현하는 헬퍼 벡터(pπ25.7wc2-3)를 상기 정제한 플라스미드 DNA의 40%(w/v)가 되게 첨가한 다음 동량의 GenePOPTERTM전이(trnasfection)시약을 넣고 PBS 용액을 섞어주어 30분간 실온에서 방치한다.The β-galactosidase expression vector prepared in step 1 was purified by QIAGEN plasmid maxi kit, and the Gene PORTER gene transfer reagent was hydrated in 0.75 mL of hydration buffer. 2 µg, 5 µg, 10 µg, 50 µg 100 µg purified plasmid DNA and 5 uL, 10 uL and 20 uL liposomes were mixed to form a complex and express the P-transposase of yellow fruit flies. Helper vector (pπ25.7wc2-3) was added to 40% (w / v) of the purified plasmid DNA, and then the same amount of GenePOPTER transfection reagent was added and the PBS solution was mixed and left at room temperature for 30 minutes. do.

제 4단계: 마우스에 DNA 투여Step 4: administer DNA to the mouse

10 ∼ 12주된 평균무게 26g 정도의 마우스에 상기 제 3단계에서 제조된 DNA/리포솜 복합체를 Needless jet injector(Madajet XL)에 충진시켜 가압주입법으로 마우스의 뒷다리에 주입하고, 주입 후 1일∼20주동안 기간별로 경추탈골(cervical dislocation)하여 시료를 준비하고 투여부위 피부의 털을 깎아낸 후 멸균된 가위로 피부조직을 잘라내었다.The average weight of 26g mice aged 10-12 weeks is filled with the DNA / liposome complex prepared in the third step in the Needless jet injector (Madajet XL) and injected into the hind limb of the mouse by a pressure injection method. During the period, cervical dislocation was used to prepare a sample, and the skin of the administration site was scraped off, and skin tissue was cut with sterile scissors.

제 5단계 : X-gal 염색5th step: X-gal staining

상기 제 4단계에서 자른 피부조직을 PBS 버퍼에 씻은 후 고정액(2% Paraformaldehyde, 0.2% glutaraldehyde in 0.1M sodium phosphate buffer, pH 7.3)에서 4℃, 30분간 고정하였다. X-gal용액(1.3mM MgCl2,3 mM K4Fe(CN)6,1 ㎎/mL X-gal, 0.1M sodium phosphate buffer, Ph 7.3)은 사용하기 바로 직전에 제조하여 37℃에서 3시간 동안 침지하였다. 피부조직에서의lacZ 발현을 비교하기 위해서 대조군으로 마우스에 리포솜만 주입하고 상기와 같은 방법으로 염색한 후 현미경으로 관찰비교하였다.The skin tissues cut in step 4 were washed in PBS buffer and fixed at 4 ° C. for 30 minutes in fixed solution (2% Paraformaldehyde, 0.2% glutaraldehyde in 0.1M sodium phosphate buffer, pH 7.3). X-gal solution (1.3 mM MgCl 2, 3 mM K 4 Fe (CN) 6, 1 mg / mL X-gal, 0.1M sodium phosphate buffer, Ph 7.3) was prepared immediately before use and 3 hours at 37 ° C. Soak. In order to compare lac Z expression in skin tissues, only mice were injected with liposomes, stained in the same manner as above, and observed under a microscope.

현미경 관찰결과, 프로모터가 없는 플라스미드 벡터(pUC 4.3Z)를 투여하였을 경우 5일까지만 낮은 농도로 발현되며 X-gal 염색하였을 때 옅은 파란색을 나타내었다. 반면, K 14 프로모토를 포함하고 있는 pUCK-Z 벡터를 투여하였을 경우 도 2에 나타난 것과 같이 β-갈락토시데이즈 유전자가 5∼6주까지 강하게 발현되어 X-gal 염색시 진한 파란색을 나타내었고 20주까지 지속되었다. 또한 K 14 프로모터의 증강작용(enhancement)에 의한 조직 특이성이 나타났다.As a result of microscopic observation, when the plasmid vector without promoter (pUC 4.3Z) was administered, it was expressed at low concentration only up to 5 days and appeared light blue when stained with X-gal. On the other hand, when the pUCK-Z vector containing K 14 promoto was administered, β-galactosidase gene was strongly expressed up to 5-6 weeks as shown in FIG. It lasted up to 20 weeks. In addition, tissue specificity by enhancement of the K 14 promoter was shown.

제 6단계 : H/E(Hematoxylin/Eosin)염색6th step: H / E (Hematoxylin / Eosin) dyeing

상기 실시예 5에서 파란색을 나타낸 피부조직을 PBS에서 두번 씻은 후 H/E(Hematoxylin/ Eosin)염색을 위해 포르말린에서 고정하였다. 16시간∼3일간 고정하고 일반적 H/E 염색 방법으로 수행하였으며 섹션은 10 um이하 두께로 시행하였다.The skin tissue shown blue in Example 5 was washed twice in PBS and fixed in formalin for H / E (Hematoxylin / Eosin) staining. Fixing was carried out for 16 hours to 3 days, and performed by the general H / E staining method, the section was carried out to a thickness less than 10um.

실험결과, 도 3에 나타난 것과 같이, pUCK-Z 벡터를 투여한 경우, 케라틴 세포층에서 β-갈락토시데이즈 유전자가 발현되어 조직 특이성을 나타내었고, 4일부터 5∼6주까지 강하게 지속되었다.As shown in FIG. 3, when the pUCK-Z vector was administered, β-galactosidase gene was expressed in the keratinocyte layer, indicating tissue specificity, and persisted strongly from 4 days to 5-6 weeks.

제 7단계 : 마우스 게놈 DNA 추출Step 7: Extract Mouse Genomic DNA

마우스 피부를 자른 후 tail tip 버퍼 (60mM Tris pH 8.0, 100mM EDTA, 0.5% SDS)에서 잘게 썰어 혼합한 후 600uL의 tail tip 버퍼를 첨가한 다음 RNase A (20 ㎎/mL)를 처리하고 37℃에서 30분간 방치하였다. 프로티나제 K는 500㎍/㎖이 되게 넣어 준 후 50∼55℃에서 반응시켰다. 20℃, 12000rpm에서 30분간 원심분리한 후 중간층을 제거하고 다시 재원심분리하였다. 상층은 3번의 페놀/클로로포름과 1번의 클로로포름으로 처리하였고 20℃ 10,000rpm에서 15분간 원심분리하였다. 1/10의 3M NaOAc를 넣고 에탄올 침전한 후 건조시켜 pellet을 TE 버퍼에 녹이고1/5000로 희석하여 260nm에서 O·D값을 측정하였다.Cut the mouse skin, chop it in tail tip buffer (60 mM Tris pH 8.0, 100 mM EDTA, 0.5% SDS), mix, add 600 uL of tail tip buffer, then treat RNase A (20 mg / mL) and at 37 ° C. It was left for 30 minutes. Proteinase K was added to 500 µg / ml and reacted at 50 to 55 ° C. After centrifugation at 20 ° C. and 12000 rpm for 30 minutes, the intermediate layer was removed and recentrifuged. The upper layer was treated with 3 phenol / chloroform and 1 chloroform and centrifuged at 10,000 rpm for 20 minutes at 20 ° C. 1/10 of 3M NaOAc was added, ethanol precipitated and dried. The pellet was dissolved in TE buffer, diluted to 1/5000, and the O.D value was measured at 260 nm.

제 8단계: 염색체상의 β-갈락토시데이즈 삽입을 확인을 위한 PCR 스크리닝Step 8: PCR screening for confirmation of β-galactosidase insertion on chromosomes

lacZ 유전자의 마우스 염색체상의 삽입을 확인하기 위해, 투여한지 5일에서 4주된 마우스의 투여부위(반경 2㎝)피부 조직에서 상기 제 7단계의 방법으로 게놈 DNA를 추출하여 PCR 하였다.lacZ의 확인은 하기와 같은 프라이머를 사용하였으며, PCR 산물은 약 3110bp로 추정되었다. PCR 반응은 표 1에 나타낸 바와 같은 조건으로 실시하였다. In order to confirm the insertion of the lac Z gene on the mouse chromosome, genomic DNA was extracted and PCR from the administration site (radius 2 cm) of the skin tissue of the mouse 5 to 4 weeks old by the method of step 7 above. The identification of lac Z was performed using the following primers, and the PCR product was estimated to be about 3110 bp. PCR reactions were carried out under the conditions shown in Table 1.

lacZ forward - 5' TCACTCTAGAAACAGCTCTGA 3'lacZ forward-5 'TCACTCTAGAAACAGCTCTGA 3'

lacZ reverse - 5' TCGACCCGGTTATTATTA 3'lacZ reverse-5 'TCGACCCGGTTATTATTA 3'

lacZ 유전자의 PCR 반응농도 및 조건PCR reaction concentration and condition of lacZ gene 반 응 농 도Reaction concentration 프라이머primer 10 pmol(lac5', lac3')10 pmol (lac5 ', lac3') PCR 산물의 예상 사이즈Estimated Size of PCR Product 3110 bp3110 bp 반응부피Reaction volume 20 uL20 uL Ex TaqEx Taq 0.5 unit0.5 unit 10× Ex Taq 버퍼10 × Ex Taq Buffer 2 uL2 uL 주형 DNA 농도Template DNA concentration 50 pmol50 pmol dNTPsdNTPs 200 umol200 umol PCR 반응조건PCR reaction condition 1 사이클(cycle)1 cycle 35 사이클(cycle) 35 cycles 1 사이클(cycle)1 cycle 변성(denaturation)어닐링(annealing)신장(extension)Denaturation annealing extension 90°(180초)52°(60초)72°(60초)90 ° (180 sec) 52 ° (60 sec) 72 ° (60 sec) 94°(30초)52°(60초)72°(60초)94 ° (30 sec) 52 ° (60 sec) 72 ° (60 sec) 94°(60초)52°(60초)72°(60초)94 ° (60 sec) 52 ° (60 sec) 72 ° (60 sec)

실험결과, 도 4에 나타난 것과 같이 5개의 시료( 5일∼ 4주)에서 3100 bp의 PCR 산물이 증폭되어 β-갈락토시데이즈 유전자가 마우스 염색체상으로 삽입되었음을 확인할 수 있었다.As a result, as shown in FIG. 4, 3100 bp PCR products were amplified in five samples (5 to 4 weeks), and it was confirmed that β-galactosidase gene was inserted onto the mouse chromosome.

제 9단계: 염색체상의 β-갈락토시데이즈 삽입 확인을 위한 서던 블럿 ( Southern blotting )Step 9: Southern blotting to confirm insertion of β-galactosidase on the chromosome

β-갈락토시데이즈 발현 벡터가 투여된 마우스와 negative control로써 투여되지 않은 마우스, positive control로써 pUCK-Z DNA를 사용하여 서던 블럿을 실시하였다. 0.8% 아가로즈 겔, 1×TAE에서 전기영동하고 Hybond N+ 멤브레인에 트랜스퍼(transfer)한 후 80℃에서 2시간 건조시킨 다음 혼성화(hybridization) 버퍼 (5×SSC, 1/20 희석된 liquid Block, 0.1% SDS, 5% Dextran sulphate)를 사용하여 [α-32P]dCTP로 라벨된 프로브를 이용하여 혼성화(hybridization)하였다. 혼성화한 후 2×SSC, 0.1% SDS로 42℃에서 10분 동안 씻어준 다음 다시 1×SSC, 0.1% SDS로 42℃에서 10분 씻어주고 마지막으로 1×SSC, 0.1% SDS로 65℃에서 10분간 2번 씻어주었다.Southern blots were performed using pUCK-Z DNA as a positive control and mice administered with β-galactosidase expression vector, mice not administered as a negative control. Electrophoresis on 0.8% agarose gel, 1 × TAE, transfer to Hybond N + membrane, dry at 80 ° C for 2 hours, hybridization buffer (5 × SSC, 1/20 diluted liquid block, 0.1 % SDS, 5% Dextran sulphate) and hybridized using a probe labeled [α- 32 P] dCTP. After hybridization, wash with 2 × SSC, 0.1% SDS at 42 ℃ for 10 minutes, then wash again with 1 × SSC, 0.1% SDS for 10 minutes at 42 ℃, and finally at 1 × SSC, 0.1% SDS at 65 ℃ Rinse twice for a minute.

실험결과, 도 5에 나타난 것과 같이 투여 5일에서 1주일까지는 밴드가 불명확하지만 나머지는 밴드가 명확히 나타나 헬퍼 벡터에서 발현된 전이효소에 의한 β-갈락토시데이즈 유전자가 마우스 염색체상에 삽입됨을 확인할 수 있었다.As a result, as shown in Fig. 5, the band is unclear from 5 days to 1 week of administration but the rest of the band is clear, confirming that the β-galactosidase gene by the transferase expressed in the helper vector is inserted on the mouse chromosome. Could.

실시예 1: 본 발명 인슐린 발현 벡터의 제조Example 1 Preparation of Insulin Expression Vectors of the Invention

기존에 알려진 인간 preproinsulin 유전자와 K 14 프로모터 부분의 염기서열로부터 표 2에 나타낸 것과 같은 PCR 프라이머를 제작하고, 이 프라이머를 이용하여 PCR 증폭을 하여 pUChsneo와 pGEM T-easy 벡터에 각각 클로닝한 다음 도 6의 벡터 모식도에 나타낸 것과 같이SalI 사이트로 pUChsneo에 삽입하여 인슐린 발현 벡터를 제작하고, pUCK14-INS 명명하였다.PCR primers as shown in Table 2 were prepared from the known human preproinsulin gene and the nucleotide sequence of the K 14 promoter region, and PCR amplification using the primers was then cloned into pUChsneo and pGEM T-easy vectors, respectively. As shown in the vector schematic diagram of the vector, a Sal I site was inserted into pUChsneo to prepare an insulin expression vector and named pUCK14-INS.

인슐린 발현벡터를 제작하기 위한 K14 프로모터와 인슐린 유전자 프라이머.K14 promoter and insulin gene primer for producing insulin expression vectors. 프라이머primer 염기서열( sequence )Sequence 인슐린 forward인슐린 reverseInsulin forwardinsulin reverse 5'CCTGCCTGTCTCCCAGAGCTCTGTCCTTCT 3'5'GCAGGGCTGGTTCTAGAGCTTTATTCCATC 3'5'CCTGCCTGTCTCCCAGAGCTCTGTCCTTCT 3'5'GCAGGGCTGGTTCTAGAGCTTTATTCCATC 3 ' K 14 프로모터 forwardk 14프로모토 reverseK 14 promoter forwardk 14 5'ATTGCTGAAGTTTTGATCTAGACACCTCCA 3'5'CTGAGTGAAGAGAAGGAGCTCGGGTAAATT 3'5'ATTGCTGAAGTTTTGATCTAGACACCTCCA 3'5'CTGAGTGAAGAGAAGGAGCTCGGGTAAATT 3 '

상기 본 발명 인슐린 발현 재조합 벡터 pUCK14-INS는 2001년 1월 10일자로 생명공학연구소 유전자은행에 수탁번호 KCTC 0928BP로 기탁하였다.The insulin expression recombinant vector pUCK14-INS of the present invention was deposited with the accession number KCTC 0928BP to the Bank of Biotechnology on January 10, 2001.

실시예 2: 인슐린벡터의 염기서열 분석Example 2 Sequence Analysis of Insulin Vectors

상기 실시예 1에서 제작된 인슐린 벡터를 QUAGEN Plasmid mini로 정제하고 ABI Prism 377 XL로 Sequence 분석하였다. 분석결과를 도 7에 나타내었다.The insulin vector prepared in Example 1 was purified by QUAGEN Plasmid mini and sequenced by ABI Prism 377 XL. The analysis results are shown in FIG. 7.

K 14 프로모터는SacI 사이트로 연결되어 있고 프로인슐린(proinsulin) 펩타이드B, 프로인슐린 펩타이드 C, 프로인슐린 펩타이드 A와 C-체인의 인트론 790bp로 구성되어있다.The K 14 promoter is linked to the Sac I site and consists of proinsulin peptide B, proinsulin peptide C, proinsulin peptide A and intron 790 bp of the C-chain.

실시예 3: 마우스의 당뇨 유도와 본 발명 인슐린 발현벡터를 투여했을 경우 혈당의 변화Example 3 Induction of Diabetes in Mice and Changes in Blood Glucose When Administered Insulin Expression Vectors of the Invention

스트렙토조토신(STZ)을 차가운 0.1M 시트레이트 용액(ph4.5)에 용해시킨 후 마우스에 65㎎/㎏과 200㎎/㎏의 농도로 투여하여 당뇨를 유발하였다. STZ 처리후 DNA 주입은 4일 간격으로 반복 투여하였으며 혈당측정을 통해 변화를 분석하였다.Streptozotocin (STZ) was dissolved in cold 0.1M citrate solution (ph4.5) and then administered to mice at concentrations of 65 mg / kg and 200 mg / kg to induce diabetes. DNA injection after STZ treatment was repeated at 4 day intervals and changes were analyzed by blood glucose measurement.

혈액시료는 쥐의 꼬리로부터 혈액 한 방울을 Glucocard test strip에 떨어뜨리고 혈당측정기(Super GlucocardTMⅡ)에 넣어 측정하였다.Blood samples were measured by dropping a drop of blood from the tail of the rat onto a Glucocard test strip and placing it in a blood glucose meter (Super Glucocard TM Ⅱ).

대조구로써 일반 마우스의 혈당은 매 2시간마다 측정한 결과 하루동안 혈당은 65㎎/dL에서 145㎎/dL 범위내로 나타났고, 평균혈당은 105㎎/dL로 결정되었다.As a control, the blood glucose of normal mice was measured every 2 hours, and the blood glucose ranged from 65 mg / dL to 145 mg / dL and the mean blood sugar was 105 mg / dL.

마우스에서 당뇨를 유발하기 위하여 65㎎/㎏, 200㎎/㎏이 되게 스트렙토조토신(STZ)을 10회에 걸쳐 투여하였고, 매회 혈당을 측정하여 표 3에 나타내었다. 상기와 같이 스트렙토조토신(STZ) 처리 4 일후에 인슐린 벡터를 1㎍, 2㎍, 3㎍과 10㎍, 50㎍, 100㎍으로 투여하였고, 한 그룹당 4개체씩 투여하여 혈당을 측정하였다.In order to induce diabetes in the mice, streptozotocin (STZ) was administered to 10 times to 65 mg / kg and 200 mg / kg, and blood glucose was measured every time and is shown in Table 3. As described above, 4 days after streptozotocin (STZ) treatment, insulin vectors were administered at 1 μg, 2 μg, 3 μg and 10 μg, 50 μg, 100 μg, and blood glucose was measured by administering 4 objects per group.

인슐린 벡터를 투여한 결과 표 4, 5와 도8a, 8b에 나타난 것과 같이, dose-dependent하게 혈당치가 감소하는 것을 관찰하였고 65㎎/㎏의 STZ와 인슐린 벡터를반복적으로 투여하면서 횟수에 따라 반응하는 혈당상승 효과는 감소했고 인슐린 벡터의 혈당강하 효과는 지속적으로 나타났다. 그리고 또한 200㎎/㎏의 농도로 STZ을 높여서 투여한 마우스 집단에서는 상대적으로 짧은 시간 안에 혈당값이 급격히 상승되어 당뇨병이 유도되었고 인슐린 벡터 역시 dose-dependent하게 혈당 강하 효과를 보였다.As a result of administering the insulin vector, as shown in Tables 4 and 5 and FIGS. 8A and 8B, the blood glucose level was observed to decrease dose-dependently, and the reaction was repeated depending on the number of times while repeatedly administering 65 mg / kg STZ and the insulin vector. The hypoglycemic effect was reduced and the hypoglycemic effect of the insulin vector continued. In addition, in the mouse group administered with STZ at a concentration of 200 mg / kg, the blood glucose level rapidly increased in a relatively short time, and diabetes was induced, and the insulin vector also had a dose-dependently lowering effect.

스트렙토조토신에 의해 유발된 당뇨마우스의 혈당값Blood Glucose Levels in Diabetic Mice Induced by Streptozotocin 투여량(㎎/㎏)Dose (mg / kg) 투여횟수Number of doses 혈당값(㎎/dl)Blood glucose level (mg / dl) 6565 00 105105 6565 1,21,2 119,128119,128 6565 3.4.53.4.5 130,238,280130,238,280 6565 66 320320 6565 1010 600이상More than 600 200200 00 105105 200200 1,21,2 339,448339,448 200200 3.4.53.4.5 574, 600,600이상574, 600,600 or more 200200 66 600이상More than 600 200200 1010 600이상More than 600

STZ 65㎎/㎏농도로 처리되어 유도된 당뇨마우스에 인슐린 벡터 투여한 경우 혈당변화Changes in blood glucose levels when insulin vectors were administered to diabetic mice treated with STZ 65 mg / kg 처리전 혈당값(㎎/dl)Blood glucose level before treatment (mg / dl) 처리 후 혈당값 (㎎/dl)Blood Sugar Value After Treatment (mg / dl) 인슐린 벡터1㎍Insulin vector 인슐린 벡터2㎍2 μg insulin vector 인슐린 벡터3㎍Insulin vector 150150 116116 147147 121121 200200 148148 9999 114114 300300 105105 121121 263263 400400 196196 204204 215215 500500 207207 245245 234234 600600 328328 342342 344344

STZ 200㎎/㎏농도로 처리되어 유도된 당뇨마우스에 인슐린 벡터를 투여한 경우 혈당변화Changes in blood glucose levels when insulin vector was administered to diabetic mice treated with STZ 200 ㎎ / ㎏ concentration 처리전 혈당값(㎎/dl)Blood glucose level before treatment (mg / dl) 처리 후 혈당값 (㎎/dl)Blood Sugar Value After Treatment (mg / dl) 인슐린 벡터10㎍Insulin vector 인슐린 벡터50㎍50 μg insulin vector 인슐린 벡터100㎍Insulin vector 100 µg 150150 7676 6262 6161 200200 138138 9999 6868 300300 5858 182182 108108 400400 293293 ** ** 500500 300300 ** ** 600600 375375 ** ** * 는 인슐린 발현벡터를 50㎍/uL, 100㎍/uL로 투여하였을 때 모든 그룹에서 혈당치는 320㎎/dl이상 나타나지 않았고 85∼120㎎/dl 사이를 유지하였다.* When the insulin expression vector was administered at 50 µg / uL and 100 µg / uL, blood glucose level was not higher than 320 mg / dl in all groups and maintained between 85 and 120 mg / dl.

실시예 5: 랑게르한스 섬의 면역 조직 화학분석(Immunohistochemistry)Example 5: Immunohistochemistry of Langerhans Island

정상 마우스, 65㎎/㎏, 200㎎/㎏ STZ 에 의해 유발된 당뇨마우스, 1㎍, 50㎍, 100㎍의 인슐린 벡터가 투여된 마우스의 췌장을 분리하여 10% 포르말린 고정용액에 고정시켰다. 랑게르한스 섬과 인슐린을 생성하는 β세포의 존재를 분석하기 위해 anti-insulin Ab, anti-glucagon Ab, anti-somatostatin Ab를 이용하여 면역염색(immunostaining)과 H/E (Hematoxylin/Eosin)염색을 하였다.The pancreas of normal mice, 65 mg / kg, 200 mg / kg STZ-induced diabetic mice, mice administered with 1 μg, 50 μg, 100 μg insulin vector were isolated and fixed in 10% formalin fixed solution. Immunostaining and H / E (Hematoxylin / Eosin) staining were performed using anti-insulin Ab, anti-glucagon Ab, and anti-somatostatin Ab to analyze the presence of Langerhans island and insulin-producing β cells.

실험결과, 도 9에 나타난 것과 같이 혈당치가 벡터 투여 후 정상적으로 회복된 마우스 선별하여 췌장의 인슐린을 생성하는 β세포를 관찰한 결과 랑게르한스 섬의 수가 현저히 줄어들었거나 거의 존재하지 않았고 외부로부터 함몰되어 흐트러진 모양을 갖고 있었다. 남아있는 랑게르한스 섬의 α, β, δ세포 중 남아있는 세포가 어떤 것인지를 보기 위해 anti-insulin Ab, anti-glucagon Ab, anti-somatostatin Ab를 이용해 면역분석(immunoassay)을 시행한 결과, 도 10에 나타낸 바와 같이, 거의 β세포는 존재하지 않았고 그 자리가 대부분 α세포로 채워져 있었으며 δ세포가 가장자리로 분포하고 있었다. 이로써 STZ로 유도되어 높아졌던 혈당치가 정상으로 되돌아 온 마우스에서 췌장의 인슐린 세포를 대신해 투여된 인슐린 벡터의 발현으로 케라틴 세포에서 생성되는 인슐린이 혈당치를 낮춘다는 결론을 얻었다.As a result, as shown in FIG. 9, mice whose blood glucose levels recovered normally after administration of the vector were selected, and the beta-cells producing insulin of the pancreas were observed. As a result, the number of islands of Langerhans was significantly reduced or almost absent. Had. Immunoassay was performed using anti-insulin Ab, anti-glucagon Ab, and anti-somatostatin Ab to see which of the remaining cells of α, β, and δ cells of the Langerhans island. As shown, almost β cells were absent, the site was mostly filled with α cells, and δ cells were distributed at the edges. Thus, it was concluded that insulin produced in keratin cells lowers blood glucose levels by expression of an insulin vector administered in place of pancreatic insulin cells in mice whose blood glucose levels, which were induced by STZ and returned to normal levels, returned to normal.

이상, 상기 실험예와 실시예를 통하여 설명한 바와 같이, K14 프로모터와 인간의 인슐린 유전자를 클로닝한 본 발명 재조합 인슐린 벡터를 노랑 초파리 P-전이효소를 발현하는 헬퍼 벡터와 함께 리포솜 방법과 가압주입법으로 피부조직에 투여한 결과, 인슐린 벡터의 발현으로 케라틴 세포(Keratinocytes)에서 생성되는 인슐린이 혈당치를 낮추어 인슐린 의존성 당뇨병을 치료할 수 있는 재조합 벡터 및 그를 이용한 치료방법을 제공하는 뛰어난 효과가 있으므로 의약산업상 매우 유용한 발명인 것이다.As described above, the recombinant insulin vector of the present invention cloned from the K14 promoter and the human insulin gene, together with the helper vector expressing the yellow Drosophila P-transferase, was subjected to the skin by liposome method and pressure injection method. As a result of administration to the tissue, the expression of the insulin vector is very useful in the pharmaceutical industry because the insulin produced from keratinocytes provides a recombinant vector for treating insulin dependent diabetes mellitus by treating the insulin dependent diabetes mellitus. It is an invention.

Claims (7)

삭제delete 삭제delete 삭제delete 하기와 같은 염기서열을 갖는 인슐린 유전자 프라이머(Ⅰ)와 K 14 프로모터 프라이머(Ⅱ)로 PCR 한 다음 증폭된 인슐린 유전자와 K 14 프로모터를 pUChsneo에 삽입하여 구축된 서열목록 1의 염기서열을 갖는 비바이러스성 인슐린 발현 벡터 pUCK14-INS(수탁번호 KCTC 0928BP)에 리포솜을 넣어 혼합체를 만든 후 노랑 초파리의 전이효소를 발현하는 헬퍼 벡터를 첨가하여 이를 유효성분으로 함유함을 특징으로 하는 인슐린 의존성 당뇨병 치료용 조성물.A non-virus having the nucleotide sequence of SEQ ID NO: 1 constructed by PCR with an insulin gene primer (I) and a K 14 promoter primer (II) having the following nucleotide sequence and then inserting the amplified insulin gene and the K 14 promoter into pUChsneo A composition for the treatment of insulin-dependent diabetes mellitus, characterized in that a liposome is put into a sex insulin expression vector pUCK14-INS (Accession No. KCTC 0928BP) to make a mixture, and then a helper vector expressing the transferase of yellow fruit flies is added and contained as an active ingredient. . 인슐린 forward :인슐린 reverse :Insulin forward: 5'CCTGCCTGTCTCCCAGAGCTCTGTCCTTCT 3'5'GCAGGGCTGGTTCTAGAGCTTTATTCCATC 3'5'CCTGCCTGTCTCCCAGAGCTCTGTCCTTCT 3'5'GCAGGGCTGGTTCTAGAGCTTTATTCCATC 3 ' ----(I)---- (I) K 14 프로모터 forward :k 14 프로모토 reverse :K 14 promoter forward: k 14 promoter reverse: 5'ATTGCTGAAGTTTTGATCTAGACACCTCCA 3'5'CTGAGTGAAGAGAAGGAGCTCGGGTAAATT 3'5'ATTGCTGAAGTTTTGATCTAGACACCTCCA 3'5'CTGAGTGAAGAGAAGGAGCTCGGGTAAATT 3 ' ----(Ⅱ)---- (Ⅱ)
삭제delete 제 4항 기재의 인슐린 의존성 당뇨병 치료용 조성물을 피부조직에 가압주입법으로 투여함을 특징으로 하는 인간을 제외한 포유류의 인슐린 의존성 당뇨병의 치료방법.A method for treating insulin-dependent diabetes in mammals other than humans, characterized in that the composition for treating insulin-dependent diabetes according to claim 4 is administered to the skin tissue by autoinjection. 제 6항에 있어서, 상기 당뇨병의 치료방법은 인슐린 유전자를 K14 프로모터를 이용해 간세포인 케라틴 세포(Keratinocyte)에서 특이적으로 발현시키는 것을 특징으로 하는 인간을 제외한 포유류의 인슐린 의존성 당뇨병의 치료방법.The method of claim 6, wherein the method for treating diabetes mellitus is characterized in that the insulin gene is specifically expressed in keratinocytes (Keratinocytes) of hepatocytes using a K14 promoter.
KR10-2001-0002229A 2001-01-15 2001-01-15 Gene theraphy and gene therapeutic composition for insulin dependent diabetes mellitus KR100418465B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR10-2001-0002229A KR100418465B1 (en) 2001-01-15 2001-01-15 Gene theraphy and gene therapeutic composition for insulin dependent diabetes mellitus
JP2001019261A JP3538148B2 (en) 2001-01-15 2001-01-26 Vector for gene therapy of insulin dependent diabetes mellitus and therapeutic composition thereof
US09/775,508 US6596515B2 (en) 2001-01-15 2001-02-05 Recombinant vector for use in gene therapy for insulin-dependent diabetes mellitus and therapeutic composition thereof
EP01103348A EP1223221B1 (en) 2001-01-15 2001-02-13 Recombinant vector for use in gene therapy for insulindependent diabetes mellitus and therapeutic composition thereof
DE60111818T DE60111818T2 (en) 2001-01-15 2001-02-13 Recombinant vector for gene therapy for insulin-dependent diabetes mellitus and therapeutic compositions thereof
AT01103348T ATE299186T1 (en) 2001-01-15 2001-02-13 RECOMBINANT VECTOR FOR GENE THERAPY FOR INSULIN-DEPENDENT DIABETES MELLITUS AND THERAPEUTIC COMPOSITIONS THEREOF
CNB011043709A CN1202257C (en) 2001-01-15 2001-02-28 Recombination carrier and treating composition used in insulin dependent diabetes gene curing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0002229A KR100418465B1 (en) 2001-01-15 2001-01-15 Gene theraphy and gene therapeutic composition for insulin dependent diabetes mellitus

Publications (2)

Publication Number Publication Date
KR20020061270A KR20020061270A (en) 2002-07-24
KR100418465B1 true KR100418465B1 (en) 2004-02-14

Family

ID=36120927

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0002229A KR100418465B1 (en) 2001-01-15 2001-01-15 Gene theraphy and gene therapeutic composition for insulin dependent diabetes mellitus

Country Status (7)

Country Link
US (1) US6596515B2 (en)
EP (1) EP1223221B1 (en)
JP (1) JP3538148B2 (en)
KR (1) KR100418465B1 (en)
CN (1) CN1202257C (en)
AT (1) ATE299186T1 (en)
DE (1) DE60111818T2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2205249B1 (en) 2007-09-28 2018-11-07 Intrexon Corporation Therapeutic gene-switch constructs and bioreactors for the expression of biotherapeutic molecules, and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225121B1 (en) * 1992-09-14 2001-05-01 Institute Of Molecular Biology And Biotechnology/Forth Eukaryotic transposable element
US6770460B1 (en) * 1998-01-29 2004-08-03 Wallac Oy Fusion protein and its use in an immunoassay for the simultaneous detection of autoantibodies related to insulin-dependent diabetes mellitus
US6506600B2 (en) * 2000-03-22 2003-01-14 University Of Arkansas Secreting products from skin by adeno-associated virus (AAV) gene transfer

Also Published As

Publication number Publication date
US6596515B2 (en) 2003-07-22
EP1223221A2 (en) 2002-07-17
DE60111818D1 (en) 2005-08-11
EP1223221B1 (en) 2005-07-06
KR20020061270A (en) 2002-07-24
ATE299186T1 (en) 2005-07-15
CN1366062A (en) 2002-08-28
CN1202257C (en) 2005-05-18
US20030054498A1 (en) 2003-03-20
EP1223221A3 (en) 2002-09-04
DE60111818T2 (en) 2006-04-20
JP2002218987A (en) 2002-08-06
JP3538148B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
JP2703893B2 (en) Epithelial cells expressing foreign genetic material
Huguet et al. Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue
KR100524262B1 (en) Methods and compositions for inducing tumor-specific cytotoxicity
CN108430480A (en) A composition for preventing or treating inflammatory diseases comprising stem cells overexpressing SOD3 as an active ingredient
EA024878B1 (en) Gene encoding human glucokinase mutant characterized by enhanced stability, and use thereof for controlling blood glucose or for preventing and treating disturbances of carbonydrate metabolism
CN102209784B (en) Periostin-induced pancreatic regeneration
KR20180091101A (en) Induced cardiac pacemaker from adult stem cells and furcine cells
KR20030022094A (en) Novel keratinocyte growth factor-2 analogue in hair follicle
KR20010071601A (en) Ependymal neural stem cells and method for their isolation
KR100418465B1 (en) Gene theraphy and gene therapeutic composition for insulin dependent diabetes mellitus
WO2002020036A1 (en) Medicament comprising a dna sequence, which codes for the rna-binding koc protein, and comprising a koc protein or a dna sequence of the koc promoter
KR102187371B1 (en) adipose-derived stem cell overexpressing FoxQ1 and uses thereof
KR20200132740A (en) Composition for preventing or treating Gout comprising stem cells overexpressing Uricase
WO2023087548A1 (en) Application of cpe in preparation of drug for promoting in-situ neurogenesis and treating aging-related neurodegenerative diseases
RU2737487C1 (en) Genetic engineering structure for angiogenesis stimulation
US20240060083A1 (en) Gene therapy DNA vector based on gene therapy DNA vector VTvaf17 carrying the therapeutic gene selected from the group of SHH, CTNNB1, NOG, and WNT7A genes for increasing the expression level of these therapeutic genes, method of its production and use, Escherichia coli strain SCS110-AF/VTvaf17-SHH, or Escherichia coli strain SCS110-AF/VTvaf17-CTNNB1, or Escherichia coli strain SCS110-AF/VTvaf17-NOG, or Escherichia coli strain SCS110-AF/VTvaf17-WNT7A carrying the gene therapy DNA vector, method
KR100710550B1 (en) Cancer cell-growth inhibition drugs comprising POH 1 gene or POH 1 protein, preparation method thereof and use thereof
CN117904193A (en) Exosome hair-growing preparation loaded with miRNAs and application thereof
CN113425742A (en) Application of endometrial stem cells over-expressing CTLA-4Ig/PD-L1 in preparation of drugs for treating pulmonary fibrosis
CN116870197A (en) Protissue cell proliferation reprogramming factor preparation and application
US20040053878A1 (en) Zipper protein kindase and uses thereof
KR20060113496A (en) Human neural stem cell secreting a trail, preparation method and use thereof
KR20020089855A (en) Transgenic mouse with disrupted calcium ion channel alpha1D gene and production method thereof
JPH11199A (en) New screening of physiologically active substance
DE10106829A1 (en) Medicines with a DNA sequence coding for the RNA-binding KOC protein, a KOC protein or a DNA sequence from the KOC promoter

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120131

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee