KR100418134B1 - Tunnel Excavation Method Using Blasting Rock Classification - Google Patents

Tunnel Excavation Method Using Blasting Rock Classification Download PDF

Info

Publication number
KR100418134B1
KR100418134B1 KR10-2001-0009536A KR20010009536A KR100418134B1 KR 100418134 B1 KR100418134 B1 KR 100418134B1 KR 20010009536 A KR20010009536 A KR 20010009536A KR 100418134 B1 KR100418134 B1 KR 100418134B1
Authority
KR
South Korea
Prior art keywords
blasting
tunnel
mining
section
relaxation
Prior art date
Application number
KR10-2001-0009536A
Other languages
Korean (ko)
Other versions
KR20020069330A (en
Inventor
이동윤
Original Assignee
에스케이건설 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이건설 주식회사 filed Critical 에스케이건설 주식회사
Priority to KR10-2001-0009536A priority Critical patent/KR100418134B1/en
Publication of KR20020069330A publication Critical patent/KR20020069330A/en
Application granted granted Critical
Publication of KR100418134B1 publication Critical patent/KR100418134B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/006Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries by making use of blasting methods
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D3/00Particular applications of blasting techniques
    • F42D3/04Particular applications of blasting techniques for rock blasting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

본 발명은 터널을 NATM(New Austrian Tunnelling Method)공법으로 발파하여 굴착할 때 그 발파로 인한 주변 원지반의 손상을 최대한 억제하여 터널의 안정성을 유지할 수 있는 터널굴착방법으로서, 특히 굴착 대상인 막장 암반이 원래 가지고 있는 지지력을 적극적으로 활용하기 위하여 심발부 발파에 의한 막장 주변 암반의 변위를 계측하여 그 계측결과에 따라 굴착하는 터널굴착방법에 관한 것이다.The present invention is a tunnel excavation method that can maintain the stability of the tunnel by maximally suppressing damage to the surrounding ground due to the blasting when the tunnel is blasted and excavated by NATM (New Austrian Tunnelling Method) method, in particular, the rock bed as the excavation target The present invention relates to a tunnel excavation method in which the displacement of rock masses near the membrane due to blasting of the heart is measured and excavated according to the measurement result in order to actively use the bearing capacity.

이를 위하여 본 발명은, 터널의 굴착 막장면을 심발부(1)와 주변부(2)로 단면 분할하여 천공하는 단계, 상기 분할 단면 중 심발부를 먼저 장약하여 발파하는 단계, 상기 심발부 발파 결과로 천공 막장의 변위를 계측하는 단계, 상기 계측결과를 피드백(Feed-back)하여 다음 막장 심발부 천공장을 결정한후 굴착하는 단계로 이루어 진 것을 특징으로 한다. 이에 의해, 본 발명은 원지반의 손상을 최대한 억제 할 수 있고, 또한 과장약을 방지하여 화약류의 절감을 기 할 수 있으며, 발파 효율 및 굴진 능률을 향상시킬 수 있다.To this end, the present invention comprises the steps of perforating the excavated membrane surface of the tunnel into the cardiac section 1 and the periphery section 2, blasting the cardiac section of the divided section first, and blasting as a result of the cardiac section blasting Measuring the displacement of the membrane, the feedback of the measurement results (Feed-back) is characterized in that the step was made after the excavation after determining the next plant head mill fabrication. As a result, the present invention can suppress the damage to the base material as much as possible, and also prevent the exaggeration to reduce the explosives, and improve the blasting efficiency and the drilling efficiency.

Description

발파암반 분류방법을 이용한 터널굴착방법{omitted}Tunnel excavation method using blast rock mass classification method

본 발명은 터널을 NATM(New Austrian Tunnelling Method)공법으로 발파하여 굴착할 때 발파로 인한 주변 원지반의 손상을 최대한 억제하여 터널의 안정성을 유지할 수 있는 터널굴착방법으로서, 특히 굴착 대상 막장 주변 암반이 원래 가지고 있는 지지력을 적극적으로 활용하기 위하여 발파에 의한 막장 주변 암반의 변위를 계측하여 그 계측결과에 따라 터널을 굴착하는 터널굴착방법에 관한 것이다.The present invention is a tunnel excavation method that can maintain the stability of the tunnel by maximally suppressing damage to the surrounding ground due to blasting when the tunnel is blasted by NATM (New Austrian Tunnelling Method) method, in particular, the rock surrounding the digging target The present invention relates to a tunnel excavation method in which the displacement of rock masses near the membrane due to blasting is measured in order to actively use the bearing capacity, and the tunnel is excavated according to the measurement result.

NATM의 설계 개념은 사전 설계, 예비적 설계, 미확정 설계 또는 피드백(Feed-back)을 전제로 한 설계이며, 그 설계 방법으로는 통계적 개념에 의한 방법과 물성치에 의한 이론식이 적용되고 있다.The design concept of NATM is based on preliminary design, preliminary design, indeterminate design, or feedback (Feed-back). The design method is based on statistical concepts and physical formulas.

그러나, 이러한 설계 개념으로 설계된 지보 패턴(Pattern) 및 발파 패턴을 결정하는 분류 인자들은 실제 터널 굴착 막장 암반 상태와 상당한 차이가 있다. 이 차이를 극복하기 위하여 굴착 막장에서 계측한 결과를 시공 단계에 피드백하여야 한다. 그러나 종래의 암반 분류 방법은 1972∼1973년 사이에 베니아스키(Beniawski)에 의하여 개발된 RMR(Rock Mass Rating)법이 주로 사용되고 있으나, 이 방법은 암반을 몇개의 인자로 분류하고 각각의 인자들에 배당된 숫자를 합하여 RMR 값이라고 하는 수치를 얻게 된다.However, the classification factors that determine the pattern and blasting patterns designed with this design concept are quite different from the actual tunnel excavation bedrock conditions. To overcome this difference, the results of the excavation membrane should be fed back to the construction stage. The conventional rock classification method, however, is mainly used by the Rock Mass Rating (RMR) method developed by Beniawski between 1972 and 1973, but this method classifies the rock into several factors and assigns them to each factor. The numbers allocated will be added together to obtain a number called the RMR value.

이 RMR값은 0∼100사이의 값을 갖게 되고 이에 따라 5개의 등급으로 구분된다. 이 등급과 RMR값에 따라 암반에 굴착된 터널의 자립 시간과 보강방법을 결정하게 된다. 그러나 이 방법은 사물을 수치로 전환 할 수 있는 능력이 있은 사람에 한 하여 사용이 가능 할 뿐 아니라 취급하는 사람에 따라 현격한 차이가 있어 신뢰 도상에 문제가 야기된다.This RMR value has a value between 0 and 100 and is thus divided into five grades. The grade and RMR values determine the independence time and reinforcement methods for the excavated tunnel. However, this method is not only available to those who have the ability to convert things into numerical values, but also differs greatly depending on the person handling, causing problems in trust.

더구나, 발파에 의한 주변 지반 이완으로 인한 소성 영역 확대 현상은 예측이 거의 불확실하며, 일반적으로 시공현장은 설계 지보 패턴에 따른 획일적인 발파 설계 패턴을 적용하고 있는 실정이다. 이런한 결과는 여굴 또는 붕괴 현상을 초래하여 터널의 안정성 유지에 좋지 않은 영향을 주어 터널의 수명이 단축되는 문제점이 발생하게 되는 것이다.In addition, the plastic zone expansion phenomenon due to the blasting of the surrounding ground due to blasting is almost unpredictable, and in general, the construction site applies a uniform blasting design pattern according to the design support pattern. Such a result may result in overcasting or collapse, which adversely affects the stability of the tunnel, resulting in shortening the life of the tunnel.

본 발명은, 상기와 같은 문제점을 해소하기 위해, 터널의 분할 단면 중 심발부를 먼저 발파하여 주변 암반의 변위를 계측하고 그 계측결과를 주변부 발파를 위한 장약량 결정에 반영하여 터널을 굴착함으로써, 터널 주변 원지반의 손상을 최대한 억제하도록 하는데 목적이 있다.The present invention, in order to solve the above problems, by blasting the cardiac part of the divided section of the tunnel first to measure the displacement of the surrounding rock mass and reflect the measurement result in the determination of the amount of dose for peripheral blasting to excavate the tunnel, The purpose is to minimize damage to the ground.

도1a는 심발 선진 단면 분할 및 굴착장을 예시한 터널의 단면도.1A is a cross-sectional view of a tunnel illustrating a cardiac advanced cross-sectional segmentation and excavation site;

도1b는 심발 선진 발파 결과에 의한 채굴적 이완 계측 방법을 설명하기 위한 터널의 단면도.1B is a cross-sectional view of a tunnel for explaining a mining relaxation measurement method based on an advanced blasting result.

도2a는 심발 선진 2지보구간에 의한 발파 패턴을 예시한 터널의 단면도.Fig. 2A is a sectional view of the tunnel illustrating the blasting pattern by the heart advance advanced two supporting section;

도2b는 도2a의 발파 패턴에 의한 천공 및 심발부 장약방법을 예시한 터널의 단면도.FIG. 2B is a cross-sectional view of the tunnel illustrating the method of puncturing and heart-burst by the blasting pattern of FIG. 2A; FIG.

도2c는 도2a의 발파 패턴에 의한 심발부 발파후 조정된 1지보구간의 주변부 장약방법을 예시한 터널의 단면도.FIG. 2C is a cross-sectional view of a tunnel illustrating a method of charging peripheral portions of one support section adjusted after blasting the heart portion by the blasting pattern of FIG. 2A; FIG.

도2d는 도2a의 발파 패턴에 의한 심발부와 1지보구간 발파후 조정된 2지보구간의 주변부 장약방법을 예시한 터널의 단면도.FIG. 2D is a cross-sectional view of the tunnel illustrating the method of charging the peripheral portion of the second support section adjusted after the blasting of the heart section and the first support section by the blasting pattern of FIG. 2A; FIG.

<도면 주요 부분에 대한 부호 설명)<Explanation of symbols on the main parts of the drawing)

1 : 심발부 2 : 주변부1: Heart part 2: Peripheral part

3 : 심발선진 1지보 구간 4 : 심발선진 2지보 구간3: Heart advance stage 1 support section 4: Heart advance stage 2 support section

5 : 심발선진 3지보 구간 6 : 심발부 외곽 장약선5: heart foot advanced 3rd section 6: heart foot outside Jang Yaksun

7 : 천반부 이완폭 8 : 좌 측벽부 이완폭7: Relaxation Width at Top Section 8: Relaxation Width at Left Side Wall

9 : 우 측벽부 이완폭 10 : 굴착 막장 이완폭9: Right side wall loosening width 10: Excavation membrane loosening width

11 : 심발부 천공장11: heart hair mill cloth factory

이하, 본 발명을 첨부된 도면에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by the accompanying drawings.

일반적으로 NATM의 Type별 지보 간격은 아래와 같이 설계된다.In general, the support interval by type of NATM is designed as follows.

6Type : 1.0 m(강재 지보), 5Type : 1.2 m(강재 지보),6 Type: 1.0 m (steel support), 5 Type: 1.2 m (steel support),

4Type : 1.5 m (강재 지보), 3Type : 2.0 m (무지보)4Type: 1.5 m (steel support), 3Type: 2.0 m (solid support)

2Type : 2.5 m (무지보), 1Type : 3.5 m (무지보)2Type: 2.5 m (Muzibo), 1Type: 3.5 m (Muzibo)

도1a의 (가)는, 본 발명의 터널 분할 굴착 방법을 설명하기 위한 횡단면도를 도시한 것이다.도면중, (1)은 심발부를 표시한 것으로서, 심발부 발파 효과를 충분히 발휘할 수 있고, 또한 이 심발부 발파로 인해 발생되는 채굴적 이완 영역이 터널 주변암반의 손상에 영향이 없도록 그 심발부의 분할단면을 4m×4m 범위내로 결정하였다.Fig. 1A shows a cross-sectional view for explaining the tunnel splitting excavation method of the present invention. In the drawing, (1) shows the heart portion, and the heart portion blasting effect can be sufficiently exhibited. The dividing section of the core was determined to be within the range of 4m x 4m so that the mining relaxation region caused by the blasting of the core did not affect the damage of the rock around the tunnel.

도1a의 (나)는, 본 발명의 터널 분할 굴착 방법을 설명하기 위한 종단면도로서, (3)은 1지보구간, (4)는 2지보구간, (5)는 3지보구간의 심발 선진 천공장을 도시한 것이다.Figure 1a (b) is a longitudinal cross-sectional view illustrating the tunnel splitting excavation method of the present invention, where (3) is one support section, (4) is a two-support section, (5) is a three-pronged advanced fabric The factory is shown.

여기서, 각 지보 패턴별 굴착장의 1지보 구간을, 설계된 천공 패턴에 의해 전막장 천공한다. 그 후, 심발부를 먼저 장약 발파하여 주변부에 발생하는 채굴적 이완 영역을 계측하고, 그 계측결과를 다음 막장 심발부 천공장 결정을 위해 피드백한다.Here, one support section of the excavation site for each support pattern is perforated by the designed perforation pattern. After that, the heart blast is first blasted to measure the mining relaxation region occurring in the periphery, and the measurement results are fed back for determination of the next membrane heart blast mill.

상기 심발부 천공장 결정은 채굴적 이완상태의 계측에 의해 다음과 같은 수식으로 표현되는 채굴적 이완지수를 산출함으로써 이루어진다.(여기서, Wr : 심발부의 최대이완폭, Ld : 심발부의 천공장)이를, 도1b에 의해 상세히 설명하면, 심발부 채굴적의 이완 영역이 심발부 외곽 장약선(6)으로부터 천공장(11) 보다 넓게 확장된 부분이 있으면, 1 지보구간만 심발 선진 굴착한다, 이 경우에는, 주변 암반의 자립이 문제시 되므로 반드시 보조 공법의 시행과 지보 및 발파 패턴의 상향 변경을 검토해야 한다.Determination of the heart mill fabric factory is made by calculating the mining relaxation index expressed by the following equation by measuring the mining relaxation state. (Wr: maximum relaxation width of the core of the heart, Ld: fabric of the heart of the heart) This will be described in detail with reference to FIG. 1B. If there is a wider area, only one support section will be advanced drilled. In this case, the independence of the surrounding rock will be an issue.

그러나, 심발부 채굴적 이완 영역이 심발부 외곽 장약선(6)으로 부터 천공장(11) 보다 적게 확장 된 경우는, 2 지보구간을 심발 선진 굴착한다.또한, 심발부 채굴적 이완 영역이 외곽 장약선(6)으로 부터 천공장의 1/2보다 적게 확장된 경우는, 3지보구간을 심발 선진 굴착하며, 0.3m 이내인 경우는 지보 및 발파 패턴의 하향 변경을 검토한다.However, in the case where the cardiac mining relaxation region extends less than the fabric mill 11 from the cardiac outer periphery of the medicinal plant 11, the second support section is excavated in advance. If it extends less than half of the fabrication plant (6), the three-pronged section is drilled deeply, and if it is within 0.3m, the downward change of the support and blasting pattern is considered.

이를 상기 수식에 근거하여 보다 구체적으로 설명하면,In more detail based on the above formula,

1) 채굴적 이완지수가 1 이상이면, 다음 막장 심발부 천공장은 1지보구간으로 한다.1) If the mining relaxation index is 1 or more, the next Maksimbu Tiencheon Plant will be the 1st section.

2) 채굴적 이완지수가 1∼0.5 사이이면, 다음 막장 심발부 천공장은 2지보구간으로 한다.2) If the mining relaxation index is between 1 and 0.5, the next mill's heart-weaving mill shall be the 2nd section.

3) 채굴적 이완지수가 0.5∼0.3 사이이면, 다음 막장 심발부 천공장은 3지보구간으로 한다.3) If the mining relaxation index is between 0.5 and 0.3, the next Maksimbu Tiencheon Plant shall be a three-pronged section.

4) 채굴적 이완지수가 0.3 이하이면, 지보 패턴의 하향 변경 또는 무지보를 검토해야 한다.4) If the mining relaxation index is less than 0.3, the downward change or non-support of the support pattern should be considered.

이와같이, 본 발명은 심발부를 먼저 발파하기 때문에, 심발 선진 발파 결과는, 발파 영향에 의한 주변 암반의 이완 상태와 막장 및 주변 암반의 거동 상태를 축소하여 보여주게 된다.따라서, 주변부 발파가 터널 원지반에 미치는 손상권을 누구나 육안 계측에 의해 정확하게 판단 할 수 있으며, 심발 선진 발파 결과를 피드백하여 주변부 및 다음 막장의 설계 지보 패턴 및 발파 패턴의 변경 또는 조절에 활용한다.Thus, since the present invention blasts the heart portion first, the advanced heart blasting results show that the relaxation state of the surrounding rock and the behavior of the membrane and the surrounding rock due to the blasting effect are reduced. Thus, the peripheral blasting is performed on the tunnel base. Anyone can accurately determine the damage area by visual measurement and feed back the result of advanced blasting of heart and use it to change or adjust the design support pattern and blasting pattern of the periphery and the next stage.

특히, 본 발명을 시공에 적용할 때 유의할 사항은, 심발부(1)를 천공할 때 주변부(2) 1지보 간격을 반드시 함께 천공해야 한다. 그 이유는, 암반의 절리 발달 또는 지지력 약화로 인해 심발부(1)를 발파할 때 발파 충격으로 주변 암반이 이완되어 소성 영역이 확장되는 것을 주변부(2) 무장약공들이 차단하는 역할을 하기 때문이다. 또한, 육안 관찰 및 천공작업 결과 파쇄대, 구조대, 풍화대 및 연질암이 감지되는 방향의 연장 외곽공 사이에는 천공을 촘촘히 추가 천공하여 소성 영역의 확장을 차단한다.In particular, the matters to be noted when applying the present invention to the construction, the perforations of the periphery (2) should be perforated together when the perforated heart part (1). The reason is that when the blasting the heart part 1 due to the joint development or weakening of the rock, the armed pharmacists of the peripheral part 2 block the expansion of the plastic region by the blast shock and the expansion of the plastic area. . In addition, as a result of visual observation and drilling, the drilling zone is closely interposed between the crushing zone, the rescue team, the weathering zone, and the outer periphery in the direction in which the soft rock is detected to block the expansion of the plastic region.

이상과 같은 본 발명의 굴착공법을 철도 터널 현장 시공에 적용한 일실시 예를 첨부된 도면에 의해 상세히 설명하면,도2a는 이하의 표1에 나타난 바와 같이 갱구에서 200m 지점에 위치한 민가의 민원을 고려하여 최대 지발당 장약량을 0.88Kg으로 제한하여 설계한 발파 패턴이다. 이 설계 장약량은 굴착량 104.6㎥ (52.3×2), 설계장약량 78.69Kg(28.24+25.225×2)으로 비장약량은 0.752Kg/㎥ (78.69/104.6)로써 종래 발파 설계로는 적정 설계로 볼 수 있다. One embodiment in which the excavation method of the present invention is applied to the construction of a railway tunnel site as described above is described in detail with reference to the accompanying drawings. FIG. 2A considers a civil complaint of a private house located at a 200 m point in a shaft as shown in Table 1 below. This is a blasting pattern designed by limiting the maximum amount of charge per delay to 0.88Kg. This design dose is 104.6㎥ (52.3 × 2) excavation, 78.69Kg (28.24 + 25.225 × 2), and 0.752Kg / ㎥ (78.69 / 104.6) specific dose. have.

그러나, 본 발명의 적용과정을 살펴보면, 도2b와 같이 지보 패턴이 6Type이므로, 심발부는 2지보구간 2m, 주변부는 1m로 도1a 천공 패턴에 따라 천공하여 도 2b와 같이 장약하여 1차 발파하였다.However, looking at the application process of the present invention, since the support pattern is 6Type as shown in Figure 2b, the heart girder 2m, 2m periphery perforated according to Figure 1a perforation pattern 1m and the first blasting as shown in Figure 2b.

이 발파의 결과를 도1b에 의해 설명하면, 채굴적 이완이 심발부 장약선(6) 경계면에서 좌측벽부로는 최대 1.0m, 우측벽부로는 최대 0.8m, 천반부로는 최대 1.8m까지 이완되었다. 이때, 상기 발파에 의해, 천공장은 2m, 최대 이완폭은 천반부 1.8m이므로 이를 기준으로 채굴적 이완지수를 산출하면 0.9가 된다.따라서, 발파 패턴의 변경 없이 현재의 방법으로 굴착 할 수 있다. 이 현장은 천단 안정 대책 공법으로 이미 포어 필링(Fore Pilling)공법인 보조공법이 시공되어 있다.그러므로 2차 발파는 도2c와 같이 천반부는 소성 영역의 확장을 차단하기 위해 외곽공 사이에 무장약공을 10공 추가 천공하고 외곽 보조공은 2공당 1공을 무장약공으로 조절하여 발파한 결과 원지반의 이완 없이 발과 효율을 100% 달성하였다. 3차 2지보 구간 주변부 발파는 2차 발파 결과를 토대로 하여 도2d와 같이 조절 발파를 시행하였다.The results of this blasting are explained with reference to Fig. 1B, and the mining relaxation relaxes up to 1.0m for the left wall, up to 0.8m for the right wall, and up to 1.8m for the top wall at the boundary of the heart-loading line 6. It became. At this time, by the blasting, the mill is 2m, the maximum relaxation width is 1.8m in the top half, so if the mining relaxation index is calculated based on this, it can be 0.9. Thus, it can be excavated by the current method without changing the blasting pattern. The site is already equipped with a secondary method, a fore-pilling method, as a method of stabilizing stabilization. Therefore, the secondary blasting is carried out with armed chemicals between the outer holes to block the expansion of the plastic area, as shown in Figure 2c. Ten additional holes were drilled and the auxiliary assistant blasted by adjusting one hole per two holes to armed medicine and achieved 100% foot and efficiency without loosening of the ground. The blasting around the 3rd secondary support section was controlled blasting as shown in FIG. 2d based on the 2nd blasting result.

이상과 같은 본 발명의 시험 발파 결과를 도2a와 표2의 발파 설계와 비교하면, 심발부는 설계와 동일하나 주변부 2차 및 3차 발파는 심발부 발파 결과를 피드백하여 천공 및 장약량을 조절한 결과, 비장약량 0.559kg/㎥( 58.53/104.6 ), 사용뇌관49개[(38+82×2)-153]의 절감효과를 얻었다.일반적으로, 터널시공 현장의 발파는 설계 패턴을 기준으로 굴착 단면을 일시에 발파함으로써, 발파결과에 대한 검정 과정이 생략되어 있을 뿐만 아니라, 검정 기준 및 방법이 없어 발파 효율 위주로 운영되므로 통상 주변 공이 과장약으로 발파된다. 이로 인해 터널 주변 원지반의 이완을 초래하고 비경제적인 시공이 되고 있는바, 본 발명은 이를 개전 할 수 있는 방법인 것이다.Comparing the test blasting results of the present invention as described above with the blasting design shown in FIGS. 2A and 2, the heart blasting part is the same as the design, but the peripheral secondary and third blasting are fed back the blasting blasting result to adjust the puncture and dose. , Spleen dose 0.559kg / ㎥ (58.53 / 104.6), 49 primers [(38 + 82 × 2) -153] were saved. In general, the blasting at the tunnel construction site blasts the excavation cross section based on the design pattern at once, not only eliminating the test procedure for the blasting results, but also focusing on the blasting efficiency because there is no test standard and method. Blasting with medicine As a result, the loosening of the base around the tunnel is caused, and the construction is economically inconvenient, and the present invention is a method to improve it.

이상에서 상술 한 바와 같이, 본 발명은 굴착 대상 암반에 발파로 인해 파생되는 소성 영역의 확장 및 암반의 변위를 정확하게 현장에서 육안 계측할 수 있는 방법으로서, 굴착 단면을 심발부(1)와 주변부(2)로 단면 분할하고, 심발부를 먼저 발파하고, 이 발파 결과를 계측하여 주변부 및 다음 막장 천공 패턴 및 장약방법 결정에 피드백함으로써 표준 발파를 달성하여 원지반 이완이 방지되고 터널의 시공이 안정적이며 수명이 연장된다. 특히, 본 발명이 제시하는 계측 방법은 누구나 쉽게 정확한 판단을 할 수 있는 쉬운 방법이므로 적용성이 좋다.As described above, the present invention is a method that can accurately measure the expansion and the displacement of the rock area derived from blasting on the rock to be excavated precisely in the field, the excavation cross-section to the heart part (1) and the periphery ( Section 2) is divided into sections, blasting the heart part first, measuring the blasting results and feeding back to the periphery and the next membrane puncturing pattern and the charging method decision to achieve the standard blasting to prevent loosening of the ground and to ensure the stable construction of the tunnel Is extended. In particular, the measuring method proposed by the present invention is an easy method that anyone can make an accurate judgment easily, so the applicability is good.

또한, 본 발명은 심발부(1)의 1회 굴착장을 1지보 구간, 2지보구간, 3지보 구간으로 하는 안정적인 결정방법을 제시함으로써 작업 사이클(Cycle) 조절이 가능하고 굴진 능률이 향상된다.In addition, the present invention is to provide a stable determination method for the one-time excavation site of the cardiac part 1 as one support section, two support section, three support section can be adjusted the work cycle (Cycle) and the excavation efficiency is improved.

또한 본 발명은 전단면 굴착 공법과 분할 단면 굴착 공법에 모두 적용 할 수 있으며 심발부의 1회 굴착장이 2지보 구간 및 3지보 구간을 적용할 때는, 심발부의 기폭 뇌관이 절감되며 주변부의 과장약이 방지되므로 화약류 절감에 따른 시공 원가가 절감된다.In addition, the present invention can be applied to both the shear surface excavation method and the split-section excavation method, and when the one-time excavation site of the heart is applied to the two-finger section and the three-finger section, the detonation primer of the heart is reduced and the exaggeration of the periphery This prevents the construction cost due to the reduction of explosives.

Claims (4)

삭제delete 삭제delete 삭제delete 굴착 막장면을 심발부(1)와 주변부(2)로 단면 분할하여 천공하는 단계,Drilling and dividing the excavated membrane into cross sections into the core part 1 and the periphery part 2; 상기 분할 단면 중 심발부(1)를 먼저 장약 하여 발파하는 단계,Blasting by first charging the heart portion 1 of the divided section, 심발부(1)의 발파 결과 주변부(2)에 나타나는 채굴적 이완영역의 최대 이완폭을 계측하는 단계,Measuring the maximum relaxation width of the mining relaxation region appearing in the peripheral portion 2 as a result of the blasting of the heart portion 1, 상기 심발부의 채굴적 이완영역의 최대 이완폭의 계측에 따라 하기식의 채굴적 이완지수(Ir)를 산출하는 단계,Calculating a mining relaxation index (Ir) of the following equation according to the measurement of the maximum relaxation width of the mining relaxation region of the heart portion; (여기서, Wr : 심발부의 최대이완폭, Ld : 심발부의 천공장)(Wr: maximum relaxation width of the cardiac section, Ld: fabric mill of the cardiac section) 상기 채굴적 이완지수(Ir)를 다음 막장 심발부 천공장 결정을 위해 피드백하여 터널을 굴착하는 단계를 포함하되,And digging a tunnel by feeding back the mining relaxation index (Ir) to determine the next plant head planter. 상기 채굴적 이완지수(Ir)가 1 이상이면, 다음 막장 심발부 천공장은 1지보구간으로, 채굴적 이완지수(Ir)가 1∼0.5 사이이면, 다음 막장 심발부 천공장은 2지보구간으로, 채굴적 이완지수(Ir)가 0.5∼0.3 사이이면, 다음 막장 심발부 천공장은 3지보구간으로 결정되는 것을 특징으로 하는 발파암반 분류방법을 이용한 터널굴착공법.If the mining loosening index (Ir) is 1 or more, the next membrane deep-season fabric mill is 1 zone, and if the mining loosening index (Ir) is 1-0.5, the next deep-season fabric mill is 2 zone, mining. If the enemy relaxation index (Ir) is between 0.5 and 0.3, tunnel digging method using the blast rock mass classification method, characterized in that the next makjeombalcheon mill is determined by three support intervals.
KR10-2001-0009536A 2001-02-24 2001-02-24 Tunnel Excavation Method Using Blasting Rock Classification KR100418134B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0009536A KR100418134B1 (en) 2001-02-24 2001-02-24 Tunnel Excavation Method Using Blasting Rock Classification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0009536A KR100418134B1 (en) 2001-02-24 2001-02-24 Tunnel Excavation Method Using Blasting Rock Classification

Publications (2)

Publication Number Publication Date
KR20020069330A KR20020069330A (en) 2002-08-30
KR100418134B1 true KR100418134B1 (en) 2004-02-19

Family

ID=27695481

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0009536A KR100418134B1 (en) 2001-02-24 2001-02-24 Tunnel Excavation Method Using Blasting Rock Classification

Country Status (1)

Country Link
KR (1) KR100418134B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050024001A (en) * 2003-09-04 2005-03-10 코오롱건설주식회사 Drilling patterns with rock mass rating for reducing overbreak of tunnel
KR101131421B1 (en) 2010-04-27 2012-04-03 한국지질자원연구원 Blasting design method suited to given specific charge
KR101722934B1 (en) 2016-09-26 2017-04-06 충북대학교 산학협력단 Engineering geological rock classification method of disintegrated rock
KR101722933B1 (en) 2016-09-26 2017-04-06 충북대학교 산학협력단 Engineering geological rock classification method of decomposed rock
KR102609923B1 (en) * 2022-10-14 2023-12-07 디엘이앤씨 주식회사 Automatic design system of tunnel blast patterns for selecting dominated safety facility using critical object index based on geometric and geographic information, and method for the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166082B (en) * 2021-12-10 2023-09-15 中铁七局集团有限公司 Tunnel advanced drilling hole combination accurate control blasting structure and construction process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050024001A (en) * 2003-09-04 2005-03-10 코오롱건설주식회사 Drilling patterns with rock mass rating for reducing overbreak of tunnel
KR101131421B1 (en) 2010-04-27 2012-04-03 한국지질자원연구원 Blasting design method suited to given specific charge
KR101722934B1 (en) 2016-09-26 2017-04-06 충북대학교 산학협력단 Engineering geological rock classification method of disintegrated rock
KR101722933B1 (en) 2016-09-26 2017-04-06 충북대학교 산학협력단 Engineering geological rock classification method of decomposed rock
KR102609923B1 (en) * 2022-10-14 2023-12-07 디엘이앤씨 주식회사 Automatic design system of tunnel blast patterns for selecting dominated safety facility using critical object index based on geometric and geographic information, and method for the same

Also Published As

Publication number Publication date
KR20020069330A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
CN105781560B (en) A kind of construction method of the remote base tunnel look-ahead explosion in super low coverage superimposing thread tunnel
CN109101775B (en) Shallow shield tunnel stratum uplift limit analysis method considering partial damage of excavation face
KR101148331B1 (en) Excavation method for pre-nailed tunneling
CN103016027B (en) Tunnel or roadway excavating method under weak and broken complicated geological conditions
KR100418134B1 (en) Tunnel Excavation Method Using Blasting Rock Classification
CN109209392A (en) Loopful excavation method suitable for IV-V grade of country rock of large cross-section tunnel
CN105971630A (en) Method for controlling caving of roof of short distance coal bed roadway
CN102383813A (en) Construction method for ultralong loess accumulative roc tunnel
CN104141500B (en) One hardens sand and gravel stratum cavern con struction method
CN108458634A (en) A kind of equidistant fan transfer blasting construction method in the areas tunnel Tao Kuocao
CN109505654A (en) The anti-risk topmast maintaining method in tunnel under the influence of a kind of repeated mining
KR101077067B1 (en) The blasting method of tunnel under stopping by vertical &amp; horizental bench drilling : tvh - bench
CN107356167B (en) A kind of equidistant fan transfer blasting construction method in the area tunnel Tao Kuocao
CN115235417A (en) Monitoring point setting method based on angle between stacked tunnels
KR101048072B1 (en) Method for Forming Long-Earth Heart Pattern by Using the Depilation Effect of Inclined and Parallel Holes
CN110924398B (en) High-strength rock slope widening excavation construction method under condition of traffic protection
KR19980016610A (en) Blasting Rock Classification Technology, Blasting Design and Tunnel Blasting Method Considering Discontinuities in Rock
CN109341451A (en) A kind of damped blasting of tunnels structure and construction
KR100443578B1 (en) blasting method relaxation before hand cut core hole for long hole blasting
CN209295800U (en) A kind of damped blasting of tunnels structure
CN106201993B (en) Compound roof suspension roof support angle determination method
CN114109396B (en) Super-long deep-buried tunnel excavation method applying three-arm rock drilling trolley and smooth blasting
CN107798163A (en) The anti-dislocation combination seam design method of Tunnel Passing active fault
Horichi et al. The behavior during construction of an existing tunnel that lies between two large vertically parallel shield tunnels adjacent to each other
Georgiou et al. Use of the tunnel face stability factor in unsupported and supported tunnel faces

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130108

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131231

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151228

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 17