KR100406979B1 - Fabrication Method of An Electrode for the Lithium Secondary Batteries Using Nickel Sulfide Compound - Google Patents

Fabrication Method of An Electrode for the Lithium Secondary Batteries Using Nickel Sulfide Compound Download PDF

Info

Publication number
KR100406979B1
KR100406979B1 KR10-2001-0025926A KR20010025926A KR100406979B1 KR 100406979 B1 KR100406979 B1 KR 100406979B1 KR 20010025926 A KR20010025926 A KR 20010025926A KR 100406979 B1 KR100406979 B1 KR 100406979B1
Authority
KR
South Korea
Prior art keywords
electrode
nickel
lithium secondary
sulfur compound
secondary battery
Prior art date
Application number
KR10-2001-0025926A
Other languages
Korean (ko)
Other versions
KR20020086156A (en
Inventor
이재영
김현석
한상철
박성철
강윤선
김승회
김진호
김유민
안효준
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR10-2001-0025926A priority Critical patent/KR100406979B1/en
Publication of KR20020086156A publication Critical patent/KR20020086156A/en
Application granted granted Critical
Publication of KR100406979B1 publication Critical patent/KR100406979B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬이차전지의 전극용 활물질에 관한 것으로, 보다 상세하게는 니켈·황 화합물을 전극용 활물질로 사용하는 리튬이차전지용 전극 및 그 제조방법에 관한 것이다.The present invention relates to an active material for electrodes of a lithium secondary battery, and more particularly, to a lithium secondary battery electrode using a nickel-sulfur compound as an electrode active material and a manufacturing method thereof.

Description

니켈·황 화합물을 이용한 리튬이차전지용 전극의 제조방법{Fabrication Method of An Electrode for the Lithium Secondary Batteries Using Nickel Sulfide Compound}Fabrication Method of An Electrode for Lithium Secondary Battery Using Nickel-Sulfur Compound {Fabrication Method of An Electrode for the Lithium Secondary Batteries Using Nickel Sulfide Compound}

본 발명은 리튬이차전지의 전극용 활물질에 관한 것으로, 특히 니켈·황 화합물을 전극용 활물질로 이용한 리튬이차전지용 전극 및 그 제조방법에 관한 것이다.The present invention relates to an electrode active material for a lithium secondary battery, and more particularly to a lithium secondary battery electrode using a nickel-sulfur compound as an electrode active material and a method of manufacturing the same.

디지털 시대가 도래한 지금 앞으로 더욱 빠른 속도로 발전할 인터넷이나 이동통신 기술과 관련하여 노트북, 캠코더, 핸드폰, 소형 녹음기와 같은 휴대용 전기기기가 급속히 발전하면서 이러한 휴대용 전기기기의 수요가 점차로 증가함에 따라이의 에너지원인 전지가 점차 중요한 문제로 대두되고 있는데 전지중에서 재사용이 가능한 2차 전지의 중요성이 점차 높아지면서 수요는 급속히 증가되고 있으며, 특히 이러한 2차 전지 중 리튬이차전지는 높은 에너지 밀도 및 방전전압으로 인해 가장 많이 연구되고 있으며 또한 상용화되고 있다.With the advent of the digital era, as the rapid development of portable electronic devices such as laptops, camcorders, mobile phones, and handheld recorders with respect to the Internet and mobile communication technologies that will be developed at a faster pace in the future, the demand for these portable electronic devices is gradually increasing. Batteries, which are the energy source, are emerging as an important problem. As the importance of rechargeable batteries, which are reusable, increases, the demand is rapidly increasing. In particular, lithium secondary batteries of such secondary batteries are due to high energy density and discharge voltage. Most researched and commercialized.

리튬이차전지 뿐만 아니라 전지에서 가장 중요한 부분은 음극 및 양극을 구성하고 있는 물질이며, 특히 리튬이차전지 전극에 사용되는 물질로는 (1) 높은 방전용량을 가지고 있어야 하며, (2) 활물질의 가격이 저렴하여야 하며, (3) 오랫동안 사용하기 위하여 전극수명이 우수하여야 한다.The most important part of the battery as well as the lithium secondary battery is the material constituting the negative electrode and the positive electrode. Especially, the material used for the lithium secondary battery electrode should have (1) a high discharge capacity, and (2) the price of the active material It should be inexpensive and (3) have a good electrode life for long life.

이에, 본 발명자들은 지속적인 연구를 통하여 리튬유황계 이차전지의 활물질로 사용되는 유황에 니켈을 첨가하여 방전용량의 감소없이 전극수명을 크게 향상시킨 것을 한국특허로 출원한 바 있다(10-2000-50503).Accordingly, the present inventors have applied for a Korean patent that greatly improves the electrode life without reducing the discharge capacity by adding nickel to sulfur used as an active material of a lithium sulfur secondary battery through continuous research (10-2000-50503). ).

아울러, 매년 규모가 50%씩 늘어나는 초고속 성장 제품으로 많은 수요가 예상되는 리튬이차전지에 주로 사용되는 전극 활물질은 리튬코발트산화물과 유황 등에 그치고 있는 실정이다.In addition, the electrode active material mainly used for the lithium secondary battery, which is expected to be in high demand as the ultra-fast growth product that is increased by 50% every year, is limited to lithium cobalt oxide and sulfur.

본 발명은 상술한 바와 같은 사정을 감안하여 안출된 것으로, 본 발명자들은 상기의 문제점을 검토한 후, 이에 관하여 예의 연구를 거듭한 결과 리튬이차전지의 전극재료의 활물질로 지금까지는 사용할 수 없다고 생각되었던 니켈·황 화합물(NiS, NiS2)을 이용하여 실험한 결과, 그 이론용량이 각각 591mAh/g, 874mAh/g으로서 충방전이 가능하고, 기존의 리튬코발트산화물 양극에 비해 높은 방전용량을 가지고 있으면서도 활물질인 니켈·유황화합물의 가격이 리튬코발트산화물에 비해 저렴한 장점을 가지고 있다는 것을 발견하여 본 발명을 완성하였다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and the present inventors have studied the above problems and, after thorough research, have not been able to use them as active materials for electrode materials of lithium secondary batteries. Experiments using nickel-sulfur compounds (NiS, NiS 2 ) show that the theoretical capacities are 591 mAh / g and 874 mAh / g, respectively, which can be charged and discharged, while having a higher discharge capacity than the conventional lithium cobalt oxide anode. The present invention was completed by discovering that the price of the nickel-sulfur compound as an active material has an inexpensive advantage over lithium cobalt oxide.

따라서, 본 발명은 리튬이차전지의 전극 활물질로 니켈·황 화합물을 이용한 리튬이차전지용 전극 및 그 제조방법을 제공하는 것을 그 목적으로 한다.Therefore, an object of the present invention is to provide an electrode for a lithium secondary battery using a nickel sulfur compound as an electrode active material of a lithium secondary battery, and a manufacturing method thereof.

도 1 은 고온(80℃)에서 니켈·황 화합물(NiS, NiS2)을 양극으로 사용한 리튬이차전지의 충·방전시 전극수명(Cycling)그래프이고,1 is an electrode cycle graph of charging and discharging of a lithium secondary battery using nickel sulfur compounds (NiS and NiS 2 ) as a positive electrode at high temperature (80 ° C.).

도 2 는 상온(25℃)에서 니켈·황 화합물(NiS, NiS2)을 양극으로 사용한 리튬이차전지의 충·방전시 전극수명(Cycling)그래프이다.FIG. 2 is a graph illustrating electrode life during charge and discharge of a lithium secondary battery using nickel sulfur compounds (NiS and NiS 2 ) as positive electrodes at room temperature (25 ° C.).

이와 같은 목적을 달성하기 위하여, 본 발명에 따르면, 활물질로서 니켈·황 화합물과, 전기전도체로서 카본분말과, 이온전도체 및 바인더를 칭량한 후 솔벤트에서 교반하여 슬러리를 제조하는 단계, 및 상기 슬러리를 건조하여 양극전극을 얻는 단계를 포함하는 니켈·황 화합물을 이용한 리튬이차전지용 전극의 제조방법이 제공된다.In order to achieve the above object, according to the present invention, a nickel sulfur compound as an active material, a carbon powder as an electric conductor, an ion conductor and a binder are weighed to prepare a slurry by stirring in a solvent, and the slurry Provided is a method of manufacturing an electrode for a lithium secondary battery using a nickel-sulfur compound, which comprises drying to obtain a positive electrode.

또한 본 발명에 따르면, 상기 방법에 의해 제조되는 니켈·황 화합물을 이용한 리튬이차전지용 전극이 제공된다.Moreover, according to this invention, the electrode for lithium secondary batteries using the nickel-sulfur compound manufactured by the said method is provided.

본 발명에서 리튬이차전지의 양극전극용 활물질로 쓰이는 니켈·황화합물의 종류로는 NiS, NiS2,Ni7S6, Ni3S4, Ni3S2에서 선택된 적어도 1종을 사용할 수 있다. 이러한 상들은 상태도로부터 열역학적으로 안정한 상인 것으로 확인되었다.In the present invention, at least one selected from NiS, NiS 2, Ni 7 S 6 , Ni 3 S 4 , and Ni 3 S 2 may be used as the kind of the nickel sulfur compound used as an active material for a positive electrode of a lithium secondary battery. These phases were identified from thermograms as thermodynamically stable phases.

고온(80℃)용 양극 제조시에는 이온전도체 및 바인더로서 폴리에틸렌옥사이드(Polyethylene-oxide)를, 전기전도체로서 카본(Carbon)을, 솔벤트는 아세토니트릴을 사용하고, 바람직하기로는 소량의 리튬염을 첨가한다.When manufacturing a cathode for high temperature (80 ° C), polyethylene oxide is used as an ion conductor and a binder, carbon is used as an electrical conductor, and acetonitrile is used as a solvent, and a small amount of lithium salt is preferably added. do.

그리고, 상온(25℃)용 양극 제조시에는 바인더로서 폴리비닐리덴플루오라이드(PVdF)를 사용하고, 전기전도체로서 카본(Carbon)을 사용하여 제조하였다.In addition, polyvinylidene fluoride (PVdF) was used as a binder and carbon was used as an electrical conductor in the production of a positive electrode for room temperature (25 ° C).

아울러, 상기 슬러리는 알루미늄 호일 위에 얇게 펼쳐서 공기중에 건조시킨 후 진공분위기에서 다시 진공건조하여 양극전극을 제조하였다.In addition, the slurry was spread thinly on aluminum foil, dried in air, and then vacuum dried again in a vacuum atmosphere to prepare a cathode electrode.

전기전도체로서 카본을 첨가하였는데, 카본과 니켈·황 화합물은 양극내에서 전자의 전기전도도를 향상시키는 역할을 한다. 본 발명자들의 연구에 의하면, 니켈·황 화합물은 황과 리튬의 전극반응시에 촉매역할을 함으로써 전극의 수명을 향상시키는 것으로 예상된다.Carbon was added as an electrical conductor, and carbon and nickel-sulfur compounds serve to improve the electrical conductivity of electrons in the anode. According to the researches of the present inventors, it is expected that the nickel sulfur compound improves the life of the electrode by acting as a catalyst during the electrode reaction between sulfur and lithium.

본 발명에 따라 첨가되는 니켈·황 화합물의 함량은, 전극의 전체 조성물의 중량에 대하여 10~70%의 범위가 적당하다. 니켈·황 화합물의 함량이 10%미만으로 될 경우에는 활물질의 양이 너무 적어서 전체 양극을 제조하였을 때 양극방전용량이 줄어들게 되고, 그 양이 70%를 초과하면 전기전도체의 양이 감소하는 결과를 초래하게 되어 바람직하지 않다.The content of the nickel sulfur compound added according to the present invention is preferably in the range of 10% to 70% by weight of the total composition of the electrode. If the content of the nickel-sulfur compound is less than 10%, the amount of active material is so small that the amount of positive electrode discharge is reduced when the entire positive electrode is manufactured. If the amount exceeds 70%, the amount of electric conductor decreases. It is not desirable to cause.

한편, 본 발명에 따라 활물질로 사용되는 니켈·황 화합물은 200㎛ 이하, 바람직하기로는 10 ~ 100㎛의 크기를 갖는 것이 좋다. 그 이유는 양극 슬러리를 Al 극판에 페이스팅(pasting)할 때 균일하게 도포하기가 용이하기 때문이다.On the other hand, the nickel-sulfur compound used as the active material according to the present invention preferably has a size of 200 µm or less, preferably 10 to 100 µm. This is because the anode slurry is easy to apply uniformly when pasting on the Al electrode plate.

그리고, 상기 리튬염은 1~10%의 범위로 소량 더 포함할 수 있는데, 이러한 리튬염은 양극내에서의 리튬이온의 전도도를 향상시키기 위하여 첨가한다. 이러한 리튬염의 대표적인 것으로는 LiN(CF3SO2)2가 있다.In addition, the lithium salt may further include a small amount in the range of 1 to 10%, such lithium salt is added to improve the conductivity of lithium ions in the positive electrode. Representative of such a lithium salt is LiN (CF 3 SO 2 ) 2 .

이하, 실시예를 통하여 본 발명을 더욱 자세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예 1)(Example 1)

고온(80℃)용 니켈·황화합물(NiS, NiSNickel and sulfur compounds for high temperature (80 ℃) (NiS, NiS 2 ,2 , Nickel Sulfide)양극의 제조Nickel Sulfide)

니켈·황화합물 0.2g(17.4wt%), 카본 0.27g(23.5wt%), 폴리에틸렌옥사이드 0.6g(52.2wt%)과 리튬염 0.08g(7wt%)을 칭량한 후 아세토니트릴(30ml)에 넣어서 2일동안 교반시켰다. 교반된 양극 슬러리는 알루미늄호일(Al foil)위에 얇게 펼쳐서 하루동안 건조 시켰다. 이때 니켈·황화합물전극의 두께는 35㎛ 이었다. 건조된 양극은 다시 60℃의 온도에서 24시간동안 진공건조 시켰다.Weigh 0.2 g (17.4 wt%) of nickel and sulfur compounds, 0.27 g (23.5 wt%) of carbon, 0.6 g (52.2 wt%) of polyethylene oxide, and 0.08 g (7 wt%) of lithium salt, and place in acetonitrile (30 ml). Stir for days. The stirred anode slurry was spread thinly on aluminum foil (Al foil) and dried for one day. At this time, the thickness of the nickel-sulfur compound electrode was 35 μm. The dried anode was again vacuum dried for 24 hours at a temperature of 60 ℃.

(실시예 2)(Example 2)

상온(25℃)용 니켈·황화합물(NiS, NiSNickel and sulfur compounds for room temperature (25 ℃) (NiS, NiS 2 ,2 , Nickel Sulfide)양극의 제조Nickel Sulfide)

니켈·황화합물 0.2g(40wt%), 카본 0.25g(50wt%)을 칭량한 후 바인더인 폴리비닐리덴플루오라이드(PVdF) 0.05g(10wt%)과 함께 유기용매인 NMP에 녹인후 교반한다. 그후 알루미늄 호일(Al Foil)에 바른후 24시간동안 건조시킨후 다시 60℃의 온도에서 24시간동안 진공건조 시켰다.0.2 g (40 wt%) of nickel and sulfur compounds and 0.25 g (50 wt%) of carbon are weighed, and then dissolved in 0.05 g (10 wt%) of polyvinylidene fluoride (PVdF) as a binder and dissolved in NMP, an organic solvent. Then, it was applied to aluminum foil (Al Foil), dried for 24 hours, and then vacuum dried at a temperature of 60 ℃ for 24 hours.

고온용(80℃) 양극으로 제조된 니켈·황화합물양극은 전해질로서 폴리에틸렌 옥사이드(Polyethylene-oxide)를 사용하였고, 음극으로는 리튬포일(Lithium Foil)을 사용하였다. 전해질로 사용되는 폴리에틸렌옥사이드(Polyethylene-oxide)는 30㎛ 두께의 필름을 사용하였으며, 3장 겹쳐서 사용하였다.The nickel-sulfur compound anode prepared as a high temperature (80 ° C.) anode used polyethylene oxide as an electrolyte and lithium foil as a cathode. Polyethylene oxide (polyethylene-oxide) used as an electrolyte was used a film of 30㎛ thickness, overlapping three sheets were used.

상온용(25℃) 양극으로 제조된 니켈·황화합물양극은 전해질로서 유기용액 전해질인 LiPF61mol in EC:DEC=1:1을, 세퍼레이터(separator)로 Celgard 社의 모델넘버 2200을 사용하였고, 음극으로는 리튬 포일(Lithium Foil)을 사용하였다.Nickel and sulfur compound anodes prepared as anodes at room temperature (25 ° C) used an organic solution electrolyte, LiPF 6 1 mol in EC: DEC = 1: 1, as a electrolyte, and a model number 2200 from Celgard as a separator. As a lithium foil (Lithium Foil) was used.

고온(80℃)용 양극으로 제조된 리튬/니켈·황전지는 측정온도 80℃의 온도에서 측정을 하였다. 제조된 전지를 80℃의 온도에서 1시간동안 유지시킨 후에 충방전 실험을 하였다. 충전조건은 150㎂/cm2의 충전속도로 하였으며, 과충전을 방지하기 위하여 4.5V에서 자동으로 Cut off 하게 하였다. 방전조건은 100㎂/cm2의 방전속도로 1.0V 까지 방전을 하였다. 충전과 방전사이에 휴지시간은 5분을 주었다.A lithium / nickel / sulfur battery prepared as a positive electrode for high temperature (80 ° C.) was measured at a temperature of 80 ° C. Charged and discharged experiments were carried out after maintaining the prepared battery at a temperature of 80 ℃ for 1 hour. The charging condition was a charge rate of 150 충전 / cm 2 , it was automatically cut off at 4.5V to prevent overcharge. The discharge conditions were discharged to 1.0V at a discharge rate of 100 mA / cm 2 . There was a 5 minute pause between charge and discharge.

상온(25℃)용 양극으로 제조된 리튬/니켈·황전지는 상온(25℃)에서 1시간 유지 후 측정하였으며, 나머지 조건은 위의 고온용과 제조된 전지와 같이 하였다.The lithium / nickel-sulfur battery prepared as a positive electrode for room temperature (25 ° C.) was measured after 1 hour of maintenance at room temperature (25 ° C.), and the rest of the conditions were the same as those for the high temperature battery prepared above.

도 1은 고온(80℃)에서 고체폴리머전해질(PEO)를 사용하였을 경우의 전극수명 그래프를 나타내고 있다. 이 그래프에서 고온(80℃)에서 니켈·황화합물(NiS, NiS2)이 충분히 전극활물질로 사용가능함을 알 수 있다.1 shows a graph of electrode life when solid polymer electrolyte (PEO) is used at high temperature (80 ° C). In this graph, it can be seen that at high temperature (80 ° C), nickel and sulfur compounds (NiS and NiS 2 ) can be sufficiently used as electrode active materials.

도 2는 상온(25℃)에서 액체 유기 전해질을 사용한 전지의 전극 수명 그래프를 나타내고 있다. 이 그래프에서 니켈·황화합물이 상온(25℃)에서 역시 전극활물질로 사용가능함을 알 수 있다.2 shows an electrode life graph of a battery using a liquid organic electrolyte at room temperature (25 ° C.). The graph shows that nickel and sulfur compounds can be used as electrode active materials at room temperature (25 ℃).

본 발명은 저가의 고용량 리튬이차전지의 전극재료 개발에 관한 것으로서 특히 고체전해질을 사용할 경우, 양극, 전해질, 음극이 모두 고체로 이루어진 리튬폴리머전지이기 때문에 모양의 변형이 자유롭고, 전해질의 누액의 염려가 없고, 전지의 내압이 발생하지 않기 때문에 두꺼운 알루미늄(Al) 용기를 사용할 필요도 없다.그러므로, 환경친화적이며, 폭발의 위험성이 없는 매우 안전한 차세대 리튬이차전지라고 할 수 있다.The present invention relates to the development of an electrode material of a low-cost, high-capacity lithium secondary battery. Particularly, in the case of using a solid electrolyte, since the positive electrode, the electrolyte, and the negative electrode are all made of a solid lithium polymer battery, deformation of the shape is free, and there is a fear of leakage of the electrolyte. There is no need to use a thick aluminum (Al) container because no internal pressure of the battery is generated. Therefore, it can be said to be a very safe next-generation lithium secondary battery that is environmentally friendly and has no risk of explosion.

따라서 휴대폰, 캠코더, 및 노트북 컴퓨터와 같은 가전제품에 쓰이는 이차전지 시장에서의 리튬이차전지의 비중을 더욱 높이며 저가의 고성능 2차 전지가 주요 성능인자인 전기자동차의 개발을 앞당길 수 있다. 특히, 엔진과 모터를 함께 사용하는 하이브리드카(Hybride Car)의 경우 엔진룸의 온도가 80℃이상이 충분히 확보되기 때문에 백업(Back Up)용 전지로서 매우 유망하다.Therefore, the proportion of lithium secondary batteries in the secondary battery market used in home appliances such as mobile phones, camcorders, and notebook computers can be further increased, and low-cost, high-performance secondary batteries can accelerate the development of electric vehicles, a key performance factor. In particular, a hybrid car using an engine and a motor together is very promising as a backup battery because the temperature of the engine room is sufficiently secured over 80 ° C.

Claims (12)

활물질로서 전체 조성물에 대하여 10∼70중량%의 니켈·황 화합물과, 전기전도체로서 카본분말과, 이온전도체 및 바인더를 칭량한 후 솔벤트에서 교반하여 슬러리를 제조하는 단계, 및Preparing a slurry by weighing 10 to 70% by weight of a nickel / sulfur compound as an active material, a carbon powder as an electric conductor, an ion conductor and a binder, and then stirring in a solvent; and 상기 슬러리를 건조하여 양극전극을 얻는 단계를 포함하는 니켈·황 화합물을 이용한 리튬이차전지용 전극의 제조방법.Method of manufacturing a lithium secondary battery electrode using a nickel-sulfur compound comprising the step of drying the slurry to obtain a positive electrode. 제 1항에 있어서, 상기 니켈·황 화합물은 NiS, NiS2,Ni7S6, Ni3S4, Ni3S2에서 선택된 적어도 1종인 것을 특징으로 하는 니켈·황 화합물을 이용한 리튬이차전지용 전극의 제조방법.The electrode for a lithium secondary battery using a nickel sulfur compound according to claim 1, wherein the nickel sulfur compound is at least one selected from NiS, NiS 2, Ni 7 S 6 , Ni 3 S 4 , and Ni 3 S 2 . Manufacturing method. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제 1항에 있어서, 상기 니켈·황 화합물은 200㎛ 이하의 크기를 갖는 것을 특징으로 하는 니켈·황 화합물을 이용한 리튬이차전지용 전극의 제조방법.The method of manufacturing an electrode for a lithium secondary battery using a nickel sulfur compound according to claim 1, wherein the nickel sulfur compound has a size of 200 µm or less. 삭제delete 삭제delete 삭제delete 삭제delete
KR10-2001-0025926A 2001-05-11 2001-05-11 Fabrication Method of An Electrode for the Lithium Secondary Batteries Using Nickel Sulfide Compound KR100406979B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0025926A KR100406979B1 (en) 2001-05-11 2001-05-11 Fabrication Method of An Electrode for the Lithium Secondary Batteries Using Nickel Sulfide Compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0025926A KR100406979B1 (en) 2001-05-11 2001-05-11 Fabrication Method of An Electrode for the Lithium Secondary Batteries Using Nickel Sulfide Compound

Publications (2)

Publication Number Publication Date
KR20020086156A KR20020086156A (en) 2002-11-18
KR100406979B1 true KR100406979B1 (en) 2003-11-28

Family

ID=27704650

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0025926A KR100406979B1 (en) 2001-05-11 2001-05-11 Fabrication Method of An Electrode for the Lithium Secondary Batteries Using Nickel Sulfide Compound

Country Status (1)

Country Link
KR (1) KR100406979B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046667A (en) * 2002-11-28 2004-06-05 삼성에스디아이 주식회사 Positive electrode for rechargeable lithium battery and rechargeable lithium battery comprising same
CN104124438B (en) * 2014-08-12 2016-06-08 温州大学 A kind of flower-shaped nickelous sulfide-tellurium matrix material, preparation method and its usage
CN105883940B (en) * 2016-04-18 2017-05-10 中南大学 Preparation method of block NiS2 and application of block NiS2 to sodium-ion battery
CN108039468B (en) * 2017-12-06 2020-01-31 贵州梅岭电源有限公司 composite anode materials suitable for long-time terminal heavy-current discharge thermal battery
CN110538663A (en) * 2019-09-03 2019-12-06 国电新能源技术研究院有限公司 Preparation method of porous NiS2 nanosheet and NiS2 material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849309A (en) * 1988-08-01 1989-07-18 The United States Of America As Represented By The United States Department Of Energy Overcharge tolerant high-temperature cells and batteries
US5601947A (en) * 1995-06-07 1997-02-11 Moltech Corporation Electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same
JPH11214007A (en) * 1998-01-26 1999-08-06 Fujikura Ltd Electrode composition
KR20000074102A (en) * 1999-05-18 2000-12-05 박준일 High capacity sulfur positive electrode for lithium battery, it's fabrication method and lithium battery using sulfur electrode
US6210831B1 (en) * 1997-12-19 2001-04-03 Moltech Corporation Cathodes comprising electroactive sulfur materials and secondary batteries using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849309A (en) * 1988-08-01 1989-07-18 The United States Of America As Represented By The United States Department Of Energy Overcharge tolerant high-temperature cells and batteries
US5601947A (en) * 1995-06-07 1997-02-11 Moltech Corporation Electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same
US6210831B1 (en) * 1997-12-19 2001-04-03 Moltech Corporation Cathodes comprising electroactive sulfur materials and secondary batteries using same
JPH11214007A (en) * 1998-01-26 1999-08-06 Fujikura Ltd Electrode composition
KR20000074102A (en) * 1999-05-18 2000-12-05 박준일 High capacity sulfur positive electrode for lithium battery, it's fabrication method and lithium battery using sulfur electrode
KR100316587B1 (en) * 1999-05-18 2001-12-12 대한민국 (관리청:특허청장, 승계청:경상대학교 총장) High capacity sulfur positive electrode for lithium battery, it's fabrication method and lithium battery using sulfur electrode

Also Published As

Publication number Publication date
KR20020086156A (en) 2002-11-18

Similar Documents

Publication Publication Date Title
JP3736045B2 (en) All solid lithium battery
KR101454372B1 (en) Silicon Negative Active Material with lithium film, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same
KR101939142B1 (en) ALL SOLID LITHIUM SECONDARY BATTERY INCLUDING Ga-DOPED LLZO SOLID ELECTROLYTE AND MANUFACTURING METHOD FOR THE SAME
JP2005340165A (en) Positive electrode material for lithium secondary cell
KR101454380B1 (en) Silicon Compound Based Negative Active Material, Manufacturing Method thereof And Lithium Secondary Battery Comprising The Same
JP2003242964A (en) Non-aqueous electrolyte secondary battery
KR100406979B1 (en) Fabrication Method of An Electrode for the Lithium Secondary Batteries Using Nickel Sulfide Compound
US20210175504A1 (en) Method and system for sulfur and sulfur-containing chemicals as cathode additives for silicon anode-based lithium ion batteries
JP5818689B2 (en) Lithium ion secondary battery
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
CN108539151B (en) Electrode material for secondary battery and secondary battery
JP5176130B2 (en) Polyradical compounds, electrode active materials and batteries
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
KR101302787B1 (en) High energy density lithium secondary battery and method of preparation of the same
KR100379249B1 (en) Sulfur Positive Electrodes in the Lithium Secondary Batteries and Method for Preparing the Same
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
JP2004193052A (en) Nonaqueous electrolyte secondary battery
JPH07335259A (en) Manufacture of lithium secondary battery
US11848418B2 (en) Single lithium-ion conductive polymer electrolytes for Si anode-based lithium-ion batteries
KR100370289B1 (en) Lithium-Sulfur batteries
US11909058B2 (en) Method and system for formation of cylindrical and prismatic can cells
KR100444761B1 (en) rechargeable Li/S cell improved of the cycle life at normal temperature
WO2020105452A1 (en) Lithium secondary battery
KR100381612B1 (en) Method for Enhancing the Cycling Efficiency of Lithium-Sulfur Batteries

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081031

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee