JPH07335259A - Manufacture of lithium secondary battery - Google Patents

Manufacture of lithium secondary battery

Info

Publication number
JPH07335259A
JPH07335259A JP6122382A JP12238294A JPH07335259A JP H07335259 A JPH07335259 A JP H07335259A JP 6122382 A JP6122382 A JP 6122382A JP 12238294 A JP12238294 A JP 12238294A JP H07335259 A JPH07335259 A JP H07335259A
Authority
JP
Japan
Prior art keywords
battery
voltage
secondary battery
charging
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6122382A
Other languages
Japanese (ja)
Other versions
JP3292777B2 (en
Inventor
Hideaki Nagura
秀哲 名倉
Yoshihisa Hino
義久 日野
Yoshiro Harada
吉郎 原田
Kohei Yamamoto
浩平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP12238294A priority Critical patent/JP3292777B2/en
Publication of JPH07335259A publication Critical patent/JPH07335259A/en
Application granted granted Critical
Publication of JP3292777B2 publication Critical patent/JP3292777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To form a protective film, not relating with battery electrode reaction, on a positive/negative electrode surface by charging a battery at voltage of specific % rated voltage of the secondary battery within a specific number of days after assembling the battery, and thereafter applying or holding charging voltage for a prescribed time or more under the specific % atmosphere. CONSTITUTION:Powder is prepared by mixing respectively 5wt.% graphite and acetylene back as a conducting agent and 5wt.% PVDF as a binder relating to, for instance, 85 pts.wt. LiCoO2 as a positive electrode active material, to add dimethylforumamide and isophorone to the powder as a solvent. A positive electrode substance thus obtained is applied to an Al late and dried to obtain a positive electrode plate. Next by mixing, for instance, 70wt.% pitch cokes capable of doping/dedoping an Li ion, 10wt.% conduction agent acetylene black and 20wt.% fluorine system binder, solvent dimethylforumamide or the like added to be applied to an Ni plate, to obtain a negative electrode plate. After charging at 98 to 100% rated voltage of a secondary battery within three days after assembly, the plate is preserved for two hours or more under the atmosphere of 30 to 70 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a lithium secondary battery.

【0002】[0002]

【従来の技術】リチウム二次電池は、正極と、リチウム
および、またはリチウム吸蔵負極と、これら正、負極間
に介在されるセパレータおよび非水電解液と、これらを
収納するケースとから構成され、このケース内にセパレ
ータを介して正極と負極とを配置し、これに非水電解液
を注液して電池を組立てると、放電状態で製造が完了す
る。
2. Description of the Related Art A lithium secondary battery comprises a positive electrode, lithium and / or a lithium occlusion negative electrode, a separator and a non-aqueous electrolyte interposed between the positive and negative electrodes, and a case for accommodating them. When a positive electrode and a negative electrode are arranged in this case via a separator and a non-aqueous electrolytic solution is poured into the case to assemble a battery, the manufacturing is completed in a discharged state.

【0003】また、正極には、活物質としてLiCoO
2 等のリチウム−金属複合酸化物が用られ、負極には、
Liイオンをドープ,脱ドープが可能な炭素質材料から
なるリチウム担持体が用いられ、放電時においてはLi
イオンが正極側に移行し、充電時においてはLiイオン
が負極側に移行する。
Further, LiCoO 2 is used as an active material for the positive electrode.
Lithium-metal composite oxide such as 2 is used, and the negative electrode is
A lithium carrier made of a carbonaceous material that can be doped with Li ions and dedoped is used.
Ions move to the positive electrode side, and Li ions move to the negative electrode side during charging.

【0004】このリチウム二次電池は、高い電池電圧お
よび高エネルギー密度を得られることから、コンピュー
タのメモリバックアップ用電源など、種々の分野で利用
されている。
Since this lithium secondary battery can obtain a high battery voltage and a high energy density, it is used in various fields such as a power supply for memory backup of a computer.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うなリチウム二次電池にあっては、充放電時において本
来の電池としての電極反応以外にも、正負極表面上でL
iイオンを消費しながら電解液の分解反応が起きて正負
極表面上にある種の皮膜が形成されるなどの副次的な反
応が進行する。このために、充放電サイクルを繰り返す
にしたがって電極反応に関与するLiイオンが減少して
電解液が劣化するとともに、正負極表面上の皮膜が本来
の電極反応を抑制する。したがって、放電容量が低下し
て行くといったサイクル特性劣化の問題があり、特に大
電流を流した場合に顕著となる。
However, in such a lithium secondary battery, in addition to the electrode reaction as the original battery at the time of charging / discharging, L on the surface of the positive and negative electrodes.
While consuming i ions, a decomposition reaction of the electrolytic solution occurs, and a secondary reaction such as formation of a kind of film on the positive and negative electrode surfaces proceeds. For this reason, as the charge / discharge cycle is repeated, the Li ions involved in the electrode reaction decrease and the electrolytic solution deteriorates, and the film on the positive and negative electrode surfaces suppresses the original electrode reaction. Therefore, there is a problem of deterioration of the cycle characteristics such that the discharge capacity decreases, which becomes remarkable especially when a large current is passed.

【0006】また、充放電を行わずに単に保存しておく
だけでも、電解液は正負極間の大きい電位差にさらされ
るために、上述した副次的な反応が進行して放電容量が
低下するといった保存特性劣化の問題もあった。
Further, even if the battery is simply stored without being charged / discharged, the electrolytic solution is exposed to a large potential difference between the positive and negative electrodes, so that the above-mentioned secondary reaction proceeds and the discharge capacity decreases. There was also a problem of deterioration of storage characteristics.

【0007】この発明は上記の問題点に鑑みてなされた
もので、その目的は、サイクル特性および保存特性を向
上することができるリチウム二次電池製造方法を提供す
ることにある。
The present invention has been made in view of the above problems, and an object thereof is to provide a method for manufacturing a lithium secondary battery capable of improving cycle characteristics and storage characteristics.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に本発明は、それぞれリチウムの吸蔵放出可能な正極お
よび負極と非水電解液とを備えたリチウム二次電池の製
造方法において、前記二次電池をその組立後3日以内に
前記二次電池の定格電圧の98%〜100%の電圧で充
電した後に30℃〜70℃の雰囲気下で少なくとも2時
間以上保存するのである。
In order to achieve the above object, the present invention provides a method for producing a lithium secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte, respectively. The secondary battery is charged at a voltage of 98% to 100% of the rated voltage of the secondary battery within 3 days after its assembly, and then stored in an atmosphere of 30 ° C to 70 ° C for at least 2 hours or more.

【0009】さらに、前記目的を達成するため、本発明
は、それぞれリチウムの吸蔵放出可能な正極および負極
と非水電解液とを備えたリチウム二次電池の製造方法に
おいて、前記二次電池をその組立後3日以内に前記二次
電池の定格電圧の98%〜100%の電圧で充電した後
に20℃〜70℃の雰囲気下で少なくとも2時間以上前
記充電電圧を印加して保存するのである。
Further, in order to achieve the above-mentioned object, the present invention provides a method for producing a lithium secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte, respectively. The battery is charged at a voltage of 98% to 100% of the rated voltage of the secondary battery within 3 days after assembly, and then the charging voltage is applied for at least 2 hours and stored in an atmosphere of 20 ° C to 70 ° C.

【0010】[0010]

【作用】本発明の製造方法によるリチウム二次電池で
は、サイクル特性及び保存特性が向上する。特に、前記
充電電圧を印加した状態で前記保存を行うとこれらの特
性がさらに向上する。
In the lithium secondary battery manufactured by the method of the present invention, cycle characteristics and storage characteristics are improved. In particular, these characteristics are further improved when the storage is performed with the charging voltage applied.

【0011】この理由については以下のように推定され
る。
The reason for this is presumed as follows.

【0012】本発明では、電池組立後3日以内に前記二
次電池の定格電圧の98%〜100%の電圧で充電した
後に30℃〜70℃の雰囲気下で少なくとも2時間以
上、前記充電電圧を印加、あるいは印加せずに保存する
と、正負極表面上に電池電極反応に関与しない一種の保
護膜が形成される。したがって、この保護膜が、電極表
面上での電解液の分解反応等、副次的な反応を抑制する
ため、サイクル特性及び保存特性が向上する。
According to the present invention, after charging the battery at a voltage of 98% to 100% of the rated voltage of the secondary battery within 3 days after assembling the battery, the charging voltage is kept for at least 2 hours in an atmosphere of 30 ° C to 70 ° C. When applied or stored without applied, a kind of protective film that does not participate in the battery electrode reaction is formed on the positive and negative electrode surfaces. Therefore, this protective film suppresses secondary reactions such as decomposition reaction of the electrolytic solution on the electrode surface, and thus cycle characteristics and storage characteristics are improved.

【0013】[0013]

【実施例】以下、本発明の好適実施例につき添付図面を
参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

【0014】本実施例のリチウム二次電池の製造方法は
従来の組立工程と後述する後処理工程とからなり、以下
実施例1及び2について説明する。
The method for manufacturing the lithium secondary battery of this embodiment comprises a conventional assembling process and a post-treatment process which will be described later, and Examples 1 and 2 will be described below.

【0015】《実施例1》まず、定格電圧4.2Vのス
パイラル形リチウム二次電池の組立工程を説明する。
Example 1 First, a process for assembling a spiral type lithium secondary battery having a rated voltage of 4.2 V will be described.

【0016】正極板を作製するにあたり、正極活物質と
してのLiCoO2 85重量部に対して、導電剤として
の黒鉛およびアセチレンブラックをそれぞれ5重量%、
バインダーとしてのポリフッ化ビニリデン(PVDF)
を5重量%混合して作製した粉体に、溶媒としてのジメ
チルフォルムアミドおよびイソホロンを1:1の割合で
混合したものを加えて混練した。このようにして得られ
た正極活物質のスラリーを、アルミニウム板(本実施例
にあっては厚さ20μm)に塗布し、乾燥後、圧延して
正極板を作製した。
In producing the positive electrode plate, 5 parts by weight of graphite and acetylene black as the conductive agent were added to 85 parts by weight of LiCoO 2 as the positive electrode active material, respectively.
Polyvinylidene fluoride (PVDF) as binder
Was mixed with dimethylformamide as a solvent and isophorone in a ratio of 1: 1 to the powder prepared by mixing 5% by weight of k. The positive electrode active material slurry thus obtained was applied to an aluminum plate (20 μm in thickness in this example), dried, and rolled to prepare a positive electrode plate.

【0017】次に負極板を作製するにあたり、まずLi
イオンのドープ,脱ドープが可能である炭素質材料とし
てのピッチコークスを70重量%、導電剤としてのアセ
チレンブラックを10重量%、フッ素系バインダーを2
0重量%混合して作製した粉体に、溶媒としてのジメチ
ルフォルムアミドおよびイソホロンを1:1の割合で混
合したものを加えて混練した。このようにして得られた
負極合剤のスラリーをニッケル板(本実施例にあっては
厚さ20μm)に塗布した後、乾燥させて負極板を作製
した。
Next, in producing the negative electrode plate, first, Li
70% by weight of pitch coke as a carbonaceous material capable of ion doping and dedoping, 10% by weight of acetylene black as a conductive agent, and 2% of a fluorine-based binder.
A powder prepared by mixing 0% by weight was mixed with dimethylformamide as a solvent and isophorone in a ratio of 1: 1 and kneaded. The slurry of the negative electrode mixture thus obtained was applied to a nickel plate (20 μm in thickness in this example) and then dried to prepare a negative electrode plate.

【0018】以上のようにして得られた正極板および負
極板の間にポリエチレン多孔膜からなるセパレータを介
装しスパイラル状に巻回して発電要素とし、この発電要
素を負極缶に収装した後、プロピレンカーボネートとエ
チレンカーボネートと炭酸ジエチルとの混合溶媒にLi
PF6 を1mol/l 溶解して得られた非水電解液を含浸さ
せて、スパイラル形リチウム二次電池の組立工程を完了
した。
A separator made of a polyethylene porous film is interposed between the positive electrode plate and the negative electrode plate obtained as described above and spirally wound to form a power generating element. The power generating element is housed in a negative electrode can, and then propylene. Li in a mixed solvent of carbonate, ethylene carbonate and diethyl carbonate
The assembly process of the spiral type lithium secondary battery was completed by impregnating the non-aqueous electrolyte obtained by dissolving 1 mol / l of PF 6 .

【0019】次に、上記組立工程を完了した電池の後処
理工程を説明する。
Next, the post-treatment process of the battery which has completed the above assembling process will be described.

【0020】まず、組立後3時間経過した電池に4.1
5Vで最初の充電(初充電)を行った。その後45℃の
雰囲気下で24時間保存することにより製造完了とし
た。この保存は、電池に電圧を印加することなく無印加
状態で行った。
First, the battery which had been assembled for 3 hours was 4.1.
The first charge (first charge) was performed at 5V. After that, the production was completed by storing it in an atmosphere of 45 ° C. for 24 hours. This storage was performed without applying a voltage to the battery.

【0021】本実施例の製造方法を採用した電池と従来
の電池とのサイクル特性の比較試験を行った。このサイ
クル試験では、組立後3時間経過した電池について保存
条件を変えて後処理工程を行い、保存条件の違う電池そ
れぞれについて10サイクル目と100サイクル目との
容量を測定し、10サイクル目に対する100サイクル
目の容量の比率を容量比(%)として算出した。また従
来同様、組立工程のみで製造完了とした放電状態の電池
についても、保存なしとして容量比を測定した。
A comparison test of the cycle characteristics of the battery adopting the manufacturing method of this embodiment and the conventional battery was conducted. In this cycle test, the post-treatment process is performed by changing the storage conditions for the batteries 3 hours after the assembly, and the capacities at the 10th cycle and the 100th cycle are measured for the batteries having different storage conditions. The capacity ratio at the cycle was calculated as the capacity ratio (%). Further, similarly to the conventional method, the capacity ratio of the battery in the discharged state, which was manufactured only by the assembly process, was measured without storage.

【0022】後処理工程の保存条件については、充電電
圧4.1〜4.25V、保存温度10℃〜80℃、無印
加状態での保存時間2時間〜48時間の範囲でそれぞれ
変化させた。
The storage conditions of the post-treatment process were changed such that the charging voltage was 4.1 to 4.25 V, the storage temperature was 10 ° C. to 80 ° C., and the storage time in the non-application state was 2 hours to 48 hours.

【0023】容量測定時に行う充電の電圧については、
後処理工程を行った電池については後処理工程における
充電電圧と同じ電圧にし、従来の保存なしの電池につい
ては、定格電圧の4.2Vとした。また、充放電終止電
圧は2.5Vとした。
Regarding the voltage of charging performed when measuring the capacity,
The battery subjected to the post-treatment step had the same voltage as the charging voltage in the post-treatment step, and the conventional non-preserved cell had a rated voltage of 4.2V. The charge / discharge end voltage was 2.5V.

【0024】なお、保存時の充電電圧に対する10サイ
クル目の容量を表1に示す。充電電圧が大きいほど10
サイクル目の容量が大きくなっている。
Table 1 shows the capacities at the 10th cycle with respect to the charging voltage during storage. 10 the higher the charging voltage
The capacity at the second cycle is large.

【0025】[0025]

【表1】 上記サイクル特性の比較試験結果を図1(a)〜(d)
に示す。同図において、従来の保存なしのものに比し、
容量比が優れているのは図1(b)及び(c)に示され
る充電電圧が4.15V及び4.2Vの場合で、しかも
保存温度30℃〜70℃の範囲の場合である。これら
4.15V及び4.2Vの充電電圧はそれぞれ定格電圧
4.2Vの98.8%及び100%に相当する。さら
に、保存温度が40℃から60℃までの範囲においては
容量比が更に優れている。
[Table 1] The comparison test results of the above cycle characteristics are shown in FIGS.
Shown in. In the figure, compared to the conventional one without storage,
The capacity ratio is excellent when the charging voltage shown in FIGS. 1B and 1C is 4.15 V and 4.2 V, and when the storage temperature is in the range of 30 ° C. to 70 ° C. These charging voltages of 4.15V and 4.2V correspond to 98.8% and 100% of the rated voltage 4.2V, respectively. Further, the capacity ratio is further excellent in the storage temperature range of 40 ° C to 60 ° C.

【0026】また、図2に示すように組立直後から最初
の充電を行うまでの保存期間を3時間から5日間の範囲
で変えて後処理工程を行った電池についてサイクル試験
を行った。このサイクル試験は、10サイクル目と10
0サイクル目との容量を測定し、10サイクル目に対す
る100サイクル目の容量の比率を容量比(%)として
算出した。後処理工程時の保存条件は充電電圧4.2
V、保存温度50℃、無印加状態での保存時間24時間
とした。図2において、容量比(放電容量比率)が優れ
ているのは、電池組立後3日以内の場合である。
Further, as shown in FIG. 2, a cycle test was conducted on a battery which was subjected to a post-treatment step while changing the storage period from immediately after assembling to the first charging within a range of 3 hours to 5 days. This cycle test includes 10th cycle and 10th cycle.
The capacity at the 0th cycle was measured, and the capacity ratio at the 100th cycle to the 10th cycle was calculated as a capacity ratio (%). The storage condition during the post-treatment process is the charging voltage 4.2.
V, the storage temperature was 50 ° C., and the storage time in the non-application state was 24 hours. In FIG. 2, the capacity ratio (discharge capacity ratio) is excellent when the battery is assembled within 3 days.

【0027】《実施例2》本実施例のスパイラル形リチ
ウム二次電池の組立工程は実施例1と同じであり、後処
理工程のみが異なるため、組立工程の説明は省略して後
処理工程のみ説明する。
Example 2 The assembly process of the spiral type lithium secondary battery of this example is the same as that of Example 1, and only the post-treatment process is different. Therefore, the description of the assembly process is omitted and only the post-treatment process is performed. explain.

【0028】本実施例の後処理工程においては、組立後
3時間経過した電池を4.15Vで充電した。その後4
5℃の雰囲気下で24時間保存することにより製造完了
とした。この保存は、電池に4.15Vの電圧を印加さ
せた状態で行った。
In the post-treatment process of this example, the battery 3 hours after assembly was charged at 4.15V. Then 4
The production was completed by storing in an atmosphere of 5 ° C. for 24 hours. This storage was performed with a voltage of 4.15 V applied to the battery.

【0029】本実施例の製造方法を採用した電池と従来
の電池とのサイクル特性の比較試験を実施例1の場合と
同等の条件で行った。
A comparative test of the cycle characteristics of the battery adopting the manufacturing method of the present embodiment and the conventional battery was conducted under the same conditions as in the case of the first embodiment.

【0030】図3(a)及び(b)に示すように、従来
の保存なしのものに比し、容量比が優れているのは充電
電圧が4.15V及び4.2Vの場合で、しかも保存温
度20℃〜70℃の範囲の場合である。これら4.15
V及び4.2Vの充電電圧はそれぞれ定格電圧4.2V
の98.8%及び100%に相当する。
As shown in FIGS. 3 (a) and 3 (b), the capacity ratio is superior to the conventional one without storage when the charging voltage is 4.15V and 4.2V. This is the case where the storage temperature is in the range of 20 ° C to 70 ° C. These 4.15
V and 4.2V charging voltage is rated voltage 4.2V respectively
Corresponding to 98.8% and 100%.

【0031】また、本実施例の製造方法を採用した電池
と従来の電池との保存特性の比較試験を行った。この比
較試験では、製造直後の各電池に最初の充電を行った
後、20℃、45℃及び60℃の各雰囲気下で1カ月間
保存した場合の容量保存率(残存容量)及び容量回復性
を測定した。この容量回復性については、1カ月間保存
後に再び充電を行い、最初の充電をしたときの容量に対
する再充電したときの容量の割合とした。
Further, a comparison test of the storage characteristics of the battery adopting the manufacturing method of this embodiment and the conventional battery was conducted. In this comparative test, each battery immediately after production was charged for the first time, and then stored for 1 month in each atmosphere of 20 ° C., 45 ° C. and 60 ° C. Was measured. The capacity recoverability was defined as the ratio of the capacity when the battery was recharged after being stored for one month and then recharged to the capacity when the battery was initially charged.

【0032】本実施例の製造方法の電池については、組
立後3時間経過した電池に4.2Vで最初の充電を行
い、その後50℃の雰囲気下で4.2Vの電圧を印加さ
せた状態で24時間保存した電池を用い、従来の電池に
ついては保存なしとして、組立直後、最初の充電を行っ
た電池を用いた。
With respect to the battery of the manufacturing method of this embodiment, the battery 3 hours after the assembly was charged for the first time at 4.2 V, and then a voltage of 4.2 V was applied in an atmosphere of 50 ° C. Batteries stored for 24 hours were used, and conventional batteries were not stored, and batteries charged for the first time immediately after assembly were used.

【0033】試験結果は表2に示すように、残存容量及
び回復性ともに従来の場合に比し、本実施例の場合の方
が明らかに優れている。
The test results, as shown in Table 2, show that the remaining capacity and recoverability of the present example are clearly superior to those of the conventional case.

【0034】なお、最初の充電を行ったときの容量は、
本実施例の場合は406mAhであるのに対して従来の
場合は405mAhとほぼ同じである。
The capacity at the time of first charging is
In the case of the present embodiment, it is 406 mAh, whereas in the conventional case it is almost the same as 405 mAh.

【0035】[0035]

【表2】 以上、実施例1及び2にあっては、従来の組立後に後処
理工程を行わない場合に比し、サイクル特性及び保存特
性に優れている。また、図1(b)及び(c)と図3
(a)及び(b)とを比較すると、実施例1の場合より
実施例2の場合の方がサイクル特性について若干優れて
いる。これは、実施例2の場合においては最初の充電後
の保存中に電圧を印加して自己放電による容量減少を補
償しているためであると考えられる。さらに、最初の充
電後の保存中、実施例2では電圧を印加するのに対して
実施例1では電圧を印加しないため、実施例1の方がコ
スト面で優れる。
[Table 2] As described above, Examples 1 and 2 are excellent in cycle characteristics and storage characteristics as compared with the case where the post-treatment process is not performed after the conventional assembly. Also, FIGS. 1B and 1C and FIG.
Comparing (a) and (b), the cycle characteristics of Example 2 are slightly better than those of Example 1. This is considered to be because in the case of Example 2, a voltage was applied during storage after the first charge to compensate for the capacity decrease due to self-discharge. Further, during storage after the first charging, the voltage is applied in the second embodiment, whereas the voltage is not applied in the first embodiment, and thus the first embodiment is superior in cost.

【0036】[0036]

【発明の効果】以上のように本発明の製造方法によるリ
チウム二次電池では、サイクル特性及び保存特性が向上
する。特に、前記充電電圧を印加した状態で前記保存を
行うとこれらの特性がさらに向上する。
As described above, in the lithium secondary battery manufactured by the manufacturing method of the present invention, the cycle characteristics and the storage characteristics are improved. In particular, these characteristics are further improved when the storage is performed with the charging voltage applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る保存中印加しない電池と従来の電
池とのサイクル特性を比較したグラフであり、(a)〜
(d)は充電電圧がそれぞれ4.1V、4.15V、
4.2V、4.25Vの場合である。
FIG. 1 is a graph comparing the cycle characteristics of a battery according to the present invention which is not applied during storage and a conventional battery.
(D) has charging voltages of 4.1V, 4.15V,
This is the case of 4.2V and 4.25V.

【図2】本発明に係る電池を組立後、最初の充電を行う
までの時間に対するサイクル特性を示したグラフであ
る。
FIG. 2 is a graph showing cycle characteristics with respect to time until the first charging after assembling the battery according to the present invention.

【図3】本発明に係る保存中印加した電池と従来の電池
とのサイクル特性を比較したグラフであり、(a)及び
(b)は充電電圧がそれぞれ4.15V及び4.2Vの
場合である。
FIG. 3 is a graph comparing the cycle characteristics of a battery applied during storage according to the present invention and a conventional battery, and (a) and (b) are charging voltages of 4.15V and 4.2V, respectively. is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 浩平 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kohei Yamamoto 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 それぞれリチウムの吸蔵放出可能な正極
および負極と非水電解液とを備えたリチウム二次電池の
製造方法において、該二次電池をその組立後3日以内に
該二次電池の定格電圧の98%〜100%の電圧で充電
した後に30℃〜70℃の雰囲気下で少なくとも2時間
以上保存することを特徴とするリチウム二次電池の製造
方法。
1. A method of manufacturing a lithium secondary battery, each comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte, wherein the secondary battery is manufactured within 3 days after assembly. A method for producing a lithium secondary battery, which comprises charging the battery at a voltage of 98% to 100% of a rated voltage and then storing the battery in an atmosphere of 30 ° C to 70 ° C for at least 2 hours or more.
【請求項2】 それぞれリチウムの吸蔵放出可能な正極
および負極と非水電解液とを備えたリチウム二次電池の
製造方法において、該二次電池をその組立後3日以内に
該二次電池の定格電圧の98%〜100%の電圧で充電
した後に20℃〜70℃の雰囲気下で少なくとも2時間
以上該充電電圧を印加して保存することを特徴とするリ
チウム二次電池の製造方法。
2. A method for producing a lithium secondary battery, each comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte, the method comprising the steps of: A method for manufacturing a lithium secondary battery, which comprises charging the battery at a voltage of 98% to 100% of a rated voltage and then applying and storing the charging voltage in an atmosphere of 20 ° C. to 70 ° C. for at least 2 hours or more.
JP12238294A 1994-06-03 1994-06-03 Manufacturing method of lithium secondary battery Expired - Fee Related JP3292777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12238294A JP3292777B2 (en) 1994-06-03 1994-06-03 Manufacturing method of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12238294A JP3292777B2 (en) 1994-06-03 1994-06-03 Manufacturing method of lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH07335259A true JPH07335259A (en) 1995-12-22
JP3292777B2 JP3292777B2 (en) 2002-06-17

Family

ID=14834439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12238294A Expired - Fee Related JP3292777B2 (en) 1994-06-03 1994-06-03 Manufacturing method of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3292777B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0832505A1 (en) * 1995-06-07 1998-04-01 Duracell Inc. Process for improving lithium ion cell
WO1998052244A1 (en) * 1997-05-15 1998-11-19 Valence Technology, Inc. Methods of fabricating electrochemical cells
JP2001307771A (en) * 2000-04-21 2001-11-02 Asahi Kasei Corp Nonaqueous secondary battery
JP2002164086A (en) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd Method of manufacturing for nonaqueous secondary battery
JP2009238433A (en) * 2008-03-26 2009-10-15 Toyota Central R&D Labs Inc Method of manufacturing lithium-ion secondary battery, and lithium-ion secondary battery
JP2020527830A (en) * 2017-07-07 2020-09-10 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Electrode binder slurry composition for lithium ion power storage device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0832505A1 (en) * 1995-06-07 1998-04-01 Duracell Inc. Process for improving lithium ion cell
EP0832505A4 (en) * 1995-06-07 1998-11-04 Duracell Inc Process for improving lithium ion cell
WO1998052244A1 (en) * 1997-05-15 1998-11-19 Valence Technology, Inc. Methods of fabricating electrochemical cells
JP2001307771A (en) * 2000-04-21 2001-11-02 Asahi Kasei Corp Nonaqueous secondary battery
JP2002164086A (en) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd Method of manufacturing for nonaqueous secondary battery
JP2009238433A (en) * 2008-03-26 2009-10-15 Toyota Central R&D Labs Inc Method of manufacturing lithium-ion secondary battery, and lithium-ion secondary battery
JP2020527830A (en) * 2017-07-07 2020-09-10 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Electrode binder slurry composition for lithium ion power storage device

Also Published As

Publication number Publication date
JP3292777B2 (en) 2002-06-17

Similar Documents

Publication Publication Date Title
JP2008147015A (en) Electrode for battery, nonaqueous solution based battery, and manufacturing method of nonaqueous solution based battery
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
JP2021510904A (en) Rechargeable metal halide battery
KR20140032577A (en) Silicon negative active material with lithium film, manufacturing method thereof and lithium secondary battery comprising the same
JPH06251764A (en) Lithium secondary battery
WO2000031811A1 (en) Hydrogenated fullerenes as an additive to carbon anode for rechargeable lithium-ion batteries
JPH10223259A (en) Lithium secondary battery and manufacture thereof
JPH087926A (en) Nonaqueous electrolytic secondary cell
US20160322629A1 (en) Hybrid cathodes for li-ion battery cells
KR101520118B1 (en) Method for improving cycle performance of lithium secondary battery
JPH04162357A (en) Nonaqueous secondary battery
JP3292777B2 (en) Manufacturing method of lithium secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP4780361B2 (en) Lithium secondary battery
JP3223051B2 (en) Lithium secondary battery
EP1479118B9 (en) Electrochemical cell comprising carbonaceous material and molybdenum carbide as anode
US20190280294A1 (en) Active material for a positive electrode of a battery cell, positive electrode, and battery cell
KR101302787B1 (en) High energy density lithium secondary battery and method of preparation of the same
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
US11575122B2 (en) Electrode with enhanced state of charge estimation
JP3141818B2 (en) Lithium secondary battery
JPH06349524A (en) Secondary battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP2003109662A (en) Method of manufacturing secondary battery
JPH10112307A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees