KR100444761B1 - rechargeable Li/S cell improved of the cycle life at normal temperature - Google Patents

rechargeable Li/S cell improved of the cycle life at normal temperature Download PDF

Info

Publication number
KR100444761B1
KR100444761B1 KR10-2002-0024532A KR20020024532A KR100444761B1 KR 100444761 B1 KR100444761 B1 KR 100444761B1 KR 20020024532 A KR20020024532 A KR 20020024532A KR 100444761 B1 KR100444761 B1 KR 100444761B1
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium
sulfur secondary
lithium sulfur
sulfur
Prior art date
Application number
KR10-2002-0024532A
Other languages
Korean (ko)
Other versions
KR20030086151A (en
Inventor
이재영
송민상
한상철
김현석
이호
김진호
안효준
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR10-2002-0024532A priority Critical patent/KR100444761B1/en
Publication of KR20030086151A publication Critical patent/KR20030086151A/en
Application granted granted Critical
Publication of KR100444761B1 publication Critical patent/KR100444761B1/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬유황이차전지에 관한 것으로서 보다 상세하게는 상온에서 수명이 향상된 리튬유황이차전지에 관한 것이다.The present invention relates to a lithium sulfur secondary battery, and more particularly, to a lithium sulfur secondary battery having an improved life at room temperature.

본 발명은 전해질로 0.1∼1M의 리튬염(LiTFSI)을 첨가한 PEGDME(평균분자량 500∼750)을 사용하고 유황양극의 전류집전체로서 메쉬(mesh) 형태의 구조를 갖는 금속 또는 폼(foam) 형태의 구조를 갖는 금속을 사용하여 상온에서의 전지수명을 향상시킨 리튬유황이차전지의 제공을 목적으로 한다.The present invention uses PEGDME (average molecular weight 500-750) to which 0.1 to 1 M lithium salt (LiTFSI) is added as an electrolyte, and a metal or foam having a mesh-like structure as a current collector of a sulfur anode. An object of the present invention is to provide a lithium-sulfur secondary battery that has improved battery life at room temperature by using a metal having a form structure.

본 발명은 상온에서 리튬유황이차전지의 가장 큰 문제점으로 지적되고 있는 급격한 전지 수명의 퇴화를 개선시켜 앞으로 리튬유황이차전지의 상용화에 있어서 상당한 기여를 할 수 있을 것으로 기대된다.The present invention is expected to contribute significantly to the commercialization of lithium sulfur secondary batteries by improving the deterioration of the rapid battery life, which is pointed out as the biggest problem of lithium sulfur secondary batteries at room temperature.

Description

상온에서 수명이 향상된 리튬유황이차전지{rechargeable Li/S cell improved of the cycle life at normal temperature}Rechargeable Li / S cell improved of the cycle life at normal temperature

본 발명은 리튬유황이차전지에 관한 것으로서 보다 상세하게는 상온에서 수명이 향상된 리튬유황이차전지에 관한 것이다.The present invention relates to a lithium sulfur secondary battery, and more particularly, to a lithium sulfur secondary battery having an improved life at room temperature.

전기 및 전자에 대한 기술이 급속도로 발전하면서 노트북, 캠코더, 핸드폰, 소형 녹음기와 같은 휴대용 전기 기기가 점차 대중화되고 이에 대한 상품도 기하급수적으로 시중에 유통되고 있다. 이러한 휴대용 전기 기기의 수요가 점차로 증가함에 따라 이의 에너지원인 전지가 점차 중요한 문제로 대두되고 있는데 전지중에서 재사용이 가능한 2차 전지의 수요는 급속히 증가하고 있으며, 특히 이러한 2차 전지 중 리튬이차전지는 높은 에너지 밀도 및 방전전압으로 인해 가장 많이 연구되고 있으며 또한 상용화되고 있다.With the rapid development of technologies for electrical and electronics, portable electric devices such as laptops, camcorders, mobile phones, and handheld recorders are becoming more popular, and their products are exponentially distributed on the market. As the demand for such portable electric devices gradually increases, the battery, an energy source thereof, is becoming an important problem. The demand for reusable secondary batteries among batteries is rapidly increasing. In particular, among the secondary batteries, lithium secondary batteries have high Energy density and discharge voltage are the most studied and commercialized.

리튬이차전지 뿐만 아니라 전지에서 가장 중요한 부분은 음극 및 양극을 구성하고 있는 물질이며, 특히 리튬이차전지 양극에 사용되는 물질로는 (1)높은 방전용량을 가지고 있어야 하며, (2)활물질의 가격이 저렴하여야 하며, (3)오랫동안 사용하기 위하여 전극수명이 우수하여야 한다.The most important part of the battery as well as the lithium secondary battery is the material constituting the negative electrode and the positive electrode. Especially, the material used for the positive electrode of the lithium secondary battery should have (1) high discharge capacity, and (2) It should be inexpensive and (3) should have good electrode life for long use.

리튬이차전지에 있어서, 리튬유황이차전지의 양극전극은 이론용량이 1,675mAh/g 으로서 매우 높은 방전용량을 가지고 있으며, 활물질인 유황의 가격이 매우 저렴하며, 중금속을 사용하지 않아 환경친화적인 장점을 가지고 있다. 그러나, 리튬유황이차전지는 상온에서 초기에 급격히 퇴화되어 50 사이클(cycle) 이후에 전지 용량이 초기 용량의 절반 이하로 떨어지는 매우 나쁜 단점을 가지고 있다.In the lithium secondary battery, the positive electrode of the lithium sulfur secondary battery has a very high discharge capacity with a theoretical capacity of 1,675 mAh / g, the price of sulfur as an active material is very low, and it does not use heavy metals, thereby improving the environment-friendly advantages. Have. However, the lithium sulfur secondary battery has a very bad disadvantage that the battery capacity is rapidly deteriorated at an initial temperature at room temperature and drops to less than half of the initial capacity after 50 cycles.

최근에 미국 버클리 대학교의 E.J. Cairns 교수 그룹(Journal of Power Sources 89 (2000) 219-226)은 리튬유황이차전지의 전극수명을 향상시키기 위하여 고체전해질을 PEO(Polyethylene-oxide)에서 PEGDME(평균분자량 250), PEMO(Poly(ethylene-methylene oxide))로 바꾸어서 실험을 하였으나, 방전용량이 크게 감소하였으며, 사이클 수명(Cycle Life)의 향상도 미미한 수준이다.Recently, E.J. The Cairns Professor's Group (Journal of Power Sources 89 (2000) 219-226) reported that solid electrolytes were converted from PEO (Polyethylene-oxide) to PEGDME (PEO 250) and PEMO (Poly (ethylene) to improve the electrode life of lithium sulfur secondary batteries. -methylene oxide)), but the discharge capacity is greatly reduced, and the cycle life (Cycle Life) improvement is insignificant.

또한, 아직까지 리튬유황이차전지의 퇴화기구는 정확히 규명되지 않은 상태이며, 또한 전지 수명향상의 구체적인 방법도 제시되지 않은 상태이다.In addition, the degeneration mechanism of the lithium sulfur secondary battery has not yet been precisely identified, and a specific method for improving battery life has not been presented.

본 발명자들은 상기의 문제점을 해결하기 위해 노력하던 중 리튬유황이차전지의 전해질을 0.1∼1M의 리튬염(Trifluoro-methane-sulfonate imide, LiTFSI)를 첨가한 PEGDME(평균분자량 500∼750)을 사용하고, 유황양극의 전류집전체(current collector)를 메쉬(mesh) 또는 폼(foam) 형태의 구조를 갖는 금속을 사용함으로써 상온에서의 전지 수명이 개선되어 진다는 사실을 알아내었다.The present inventors used PEGDME (average molecular weight 500-750) to which the electrolyte of a lithium sulfur secondary battery added 0.1-1 M of lithium salt (Trifluoro-methane-sulfonate imide, LiTFSI) while trying to solve the said problem, It has been found that battery life at room temperature can be improved by using a metal having a mesh or foam structure as a current collector of the sulfur anode.

따라서 본 발명은 전해질로 0.1∼1M의 리튬염(LiTFSI)을 첨가한 PEGDME(평균분자량 500∼750)을 사용하고 유황양극의 전류집전체로서 메쉬(mesh) 형태의 구조틀 갖는 금속 또는 폼(foam) 형태의 구조를 갖는 금속을 사용하여 상온에서의 전지수명을 향상시킨 리튬유황이차전지의 제공을 목적으로 한다.Therefore, the present invention uses PEGDME (average molecular weight 500 to 750) to which lithium salt (LiTFSI) of 0.1 to 1 M is added as an electrolyte, and a metal or foam having a mesh-shaped structure as a current collector of a sulfur anode. An object of the present invention is to provide a lithium-sulfur secondary battery that has improved battery life at room temperature by using a metal having a form structure.

도 1 은 비교예, 실시예 1 및 실시예 2의 리튬유황이차전지의 수명을 나타낸 그래프이다.1 is a graph showing the life of the lithium sulfur secondary battery of Comparative Example, Example 1 and Example 2.

도 2 는 본 발명에서 양극전류집전체로 사용하는 mesh 형태의 니켈 구조를 나타낸 사진이다.Figure 2 is a photograph showing a nickel structure of the mesh type used as a positive electrode current collector in the present invention.

도 3 은 본 발명에서 양극전류집전체로 사용하는 foam 형태의 니켈 구조를 나타낸 사진이다.Figure 3 is a photograph showing the nickel structure of the foam form used as a positive electrode current collector in the present invention.

본 발명의 리튬유황이차전지는 공지의 리튬유황이차전지에 있어서,Lithium sulfur secondary battery of the present invention is a known lithium sulfur secondary battery,

전해질로 평균 분자량이 500∼750인 폴리(에틸렌글리콜)디메틸 에테르(Poly(ethyleneglycol)dimethyl ether, PEGDME)를 사용하고, 양극의 전류집전체로서 메쉬(mesh) 또는 폼(foam) 형태의 구조를 갖는 금속을 사용하는 것을 특징으로 한다.Poly (ethyleneglycol) dimethyl ether (PEGDME) having an average molecular weight of 500 to 750 is used as an electrolyte, and has a mesh or foam structure as a current collector of the positive electrode. It is characterized by using a metal.

본 발명에서 전해질로 사용하는 폴리(에틸렌글리콜)디메틸 에테르의 평균 분자량이 500 미만이면 전지의 충/방전 곡선의 형태가 매우 불안정한 문제가 있고, 750 초과하면 전해질의 점도가 너무 높아 이온전도도(ionic conductivity)가 매우 낮고 또한 전해질 제조상의 어려움이 많기 때문에 본 발명에서 전해질로 사용하는 폴리(에틸렌글리콜)디메틸 에테르의 평균 분자량은 500∼750을 사용하는 것이 좋다.If the average molecular weight of the poly (ethylene glycol) dimethyl ether used as an electrolyte in the present invention is less than 500, there is a problem that the shape of the charge / discharge curve of the battery is very unstable, and if it exceeds 750, the viscosity of the electrolyte is too high, and thus the ionic conductivity ) Is very low and there are many difficulties in the preparation of the electrolyte, the average molecular weight of the poly (ethylene glycol) dimethyl ether used as the electrolyte in the present invention is preferably used 500 to 750.

또한 유황의 용해도(solubility)를 낮추어 전해질내로 양극전극의 활물질인 유황의 손실(loss)을 방지하며 또한 화학적 열적 안정성이 우수한 리튬염으로서 0.1∼1M의 트리플루오르 메탄 설포네이트 이미드(trifluoro methane sulfonate imide, LiTFSI)를 첨가할 수 있는데, 트리플루오르 메탄 설포네이트 이미드의 농도가 0.1M 미만이면 전해질의 이온전도도가 전지를 구동하는데 요구되는 값보다 낮은 문제가 있고, 1M 초과하면 전지의 사이클링(cycling) 특성이 상대적으로 떨어지는 문제가 있어 본 발명의 리튬유황이차전지는 0.1∼1M의 트리플루오르 메탄 설포네이트 이미드를 전해질 내에 첨가하는 것이 좋다.In addition, sulfur solubility is lowered to prevent the loss of sulfur, the active material of the positive electrode, into the electrolyte, and also has excellent chemical and thermal stability. LiTFSI) can be added. If the concentration of trifluoromethane sulfonate imide is less than 0.1 M, the ion conductivity of the electrolyte is lower than the value required to drive the battery. In the lithium sulfur secondary battery of the present invention, it is preferable to add 0.1 to 1 M trifluoromethane sulfonate imide into the electrolyte.

한편 일반적인 리튬유황이차전지에서는 양극의 전류집전체로 알루미늄 포일(Al foil)을 사용하는데 본 발명의 리튬유황이차전지는 양극의 전류집전체로서는 양극의 활물질인 유황(sulfur)과 반응성이 없고 리튬유황이차전지의 구동 포텐셜(potential) 환경하에서도 부식이나 용해(dissolution)되지 않는 금속으로서 mesh 또는 foam 형태의 구조를 갖는 금속을 사용할 수 있는데 이러한 금속으로서니켈 또는 알루미늄을 이용할 수 있다.Meanwhile, in a typical lithium sulfur secondary battery, aluminum foil is used as a current collector of a positive electrode. The lithium sulfur secondary battery of the present invention is not reactive with sulfur, which is an active material of a positive electrode, as a current collector of a positive electrode, and lithium sulfur. As a metal that does not corrode or dissolve even under a driving potential environment of a secondary battery, a metal having a mesh or foam structure may be used, and nickel or aluminum may be used as the metal.

본 발명에서 양극전극의 전류집전체로 사용하는 mesh 또는 foam 형태의 구조를 갖는 금속을 보다 상세히 설명하면, mesh 형태의 구조는 2차원 그물구조를 갖는 형태이고(도 2 참조), foam 형태의 구조는 3차원 망목구조를 갖는 형태이다(도 3 참조).In more detail the metal having a mesh or foam structure used as a current collector of the anode electrode in the present invention in more detail, the structure of the mesh form is a form having a two-dimensional mesh structure (see Fig. 2), the structure of the foam form Is a form having a three-dimensional network structure (see Fig. 3).

이하 본 발명을 아래의 비교예, 실시예 및 시험예에 의하여 설명하고자 한다. 그러나 이들은 본 발명의 일예에 불과한 것으로 이들이 본 발명의 권리범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described by the following Comparative Examples, Examples and Test Examples. However, these are only examples of the present invention and they do not limit the scope of the present invention.

<비교예> 종래의 리튬유황이차전지의 제조Comparative Example Fabrication of Conventional Lithium Sulfur Secondary Battery

유황 0.12g(30wt%), 카본 0.24g(60wt%)을 칭량한 후 45분 동안 아르곤 분위기에서 볼밀링(ball milling)을 실시하여 유황과 카본을 고루 혼합하였다.After weighing 0.12 g (30 wt%) of sulfur and 0.24 g (60 wt%) of carbon, ball milling was performed in an argon atmosphere for 45 minutes to uniformly mix sulfur and carbon.

볼밀한 유황과 카본의 혼합물을 폴리비닐리덴플루오라이드 (polyvinylidenefluoride, PVDF) 0.04g(10wt%)을 녹인 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone) 용액에 넣고 균일하게 교반시켜 슬러리를 제조하였다.A mixture of ballistic sulfur and carbon was added to a solution of N-methyl-2-pyrrolidone dissolved in 0.04 g (10 wt%) of polyvinylidene fluoride (PVDF) and stirred uniformly. To prepare a slurry.

전기와 같이 제조한 슬러리를 1cm2넓이로 알루미늄 포일(Al foil)에 10㎛의 두께로 도포한 후 60℃의 온도에서 24시간 동안 진공건조 시킨 후 유압프레저(presser)로 압착하여 양극전극을 제조하였다.The positive electrode of aluminum to a slurry prepared by 1cm 2 area the foil (Al foil) was applied to a thickness in 10㎛ at a temperature of 60 ℃ for 24 hours, then vacuum-dried to squeeze the hydraulic Fraser (presser), such as electric Prepared.

위의 유황양극과 0.1M LiTFSI가 첨가된 PEGDME(평균 분자량 250) 전해질 그리고 리튬 포일(Li foil) 음극을 사용하여 아르곤 분위기의 글로브 박스(glove box)에서 코인셀(coin cell) 형태의 리튬유황이차전지를 제조하였다.Using a sulfur anode, PEGDME (average molecular weight 250) electrolyte with 0.1 M LiTFSI, and a lithium foil anode, lithium sulfur in the form of a coin cell was formed in a glove box in an argon atmosphere. A secondary battery was manufactured.

<실시예 1> 리튬유황이차전지의 제조Example 1 Fabrication of Lithium Sulfur Secondary Battery

유황 0.12g(30wt%), 카본 0.24g(60wt%)을 칭량한 후 45분 동안 아르곤 분위기에서 볼밀링을 실시하여 유황과 카본을 고루 혼합하였다.After weighing 0.12 g (30 wt%) of sulfur and 0.24 g (60 wt%) of carbon, ball milling was performed for 45 minutes in an argon atmosphere to uniformly mix sulfur and carbon.

볼밀한 유황과 카본의 혼합물을 폴리비닐리덴플루오라이드(PVDF) 0.04g(10wt%)을 녹인 N-메틸-2-피롤리돈 용액에 넣고 균일하게 교반시켜 슬러리를 제조하였다.A slurry was prepared by adding a mixture of ballistic sulfur and carbon to an N-methyl-2-pyrrolidone solution in which 0.04 g (10 wt%) of polyvinylidene fluoride (PVDF) was dissolved.

전기와 같이 제조한 슬러리를 1cm2넓이로 도 2와 같이 2차원 그물구조를 갖는 메쉬(mesh) 형태의 니켈에 10㎛의 두께로 도포한 후 60℃의 온도에서 24시간 동안 진공건조 시킨 후 유압 프레저(presser)로 압착하여 유황양극을 제조하였다.The slurry prepared as described above was coated with a thickness of 10 μm to a mesh of nickel having a two-dimensional mesh structure with a width of 1 cm 2 as shown in FIG. 2, and then vacuum-dried at a temperature of 60 ° C. for 24 hours, and then hydraulically applied. The sulfur anode was manufactured by pressing with a press.

위의 유황양극과 0.1M LiTFSI가 첨가된 PEGDME(평균 분자량 500) 전해질 그리고 리튬 포일(Li foil) 음극을 사용하여 아르곤 분위기의 글로브 박스(glove box)에서 코인셀(coin cell) 형태의 리튬유황이차전지를 제조하였다.Using a sulfur anode, PEGDME (average molecular weight 500) electrolyte added with 0.1 M LiTFSI, and a lithium foil anode, lithium sulfur in the form of coin cells was formed in a glove box in an argon atmosphere. A secondary battery was manufactured.

<실시예 2> 리튬유황이차전지의 제조Example 2 Fabrication of Lithium Sulfur Secondary Battery

유황 0.12g(30wt%), 카본 0.24g(60wt%)을 칭량한 후 45분 동안 아르곤 분위기에서 볼밀링을 실시하여 유황과 카본을 고루 혼합하였다.After weighing 0.12 g (30 wt%) of sulfur and 0.24 g (60 wt%) of carbon, ball milling was performed for 45 minutes in an argon atmosphere to uniformly mix sulfur and carbon.

볼밀한 유황과 카본의 혼합물을 폴리비닐리덴플루오라이드(PVDF) 0.04g(10wt%)을 녹인 N-메틸-2-피롤리돈 용액에 넣고 균일하게 교반시켜 슬러리를 제조하였다.A slurry was prepared by adding a mixture of ballistic sulfur and carbon to an N-methyl-2-pyrrolidone solution in which 0.04 g (10 wt%) of polyvinylidene fluoride (PVDF) was dissolved.

전기와 같이 제조한 슬러리를 1cm2넓이로 도 3과 같이 3차원 망목구조를 갖는 폼(foam) 형태의 니켈에 10㎛의 두께로 도포한 후 60℃의 온도에서 24시간 동안 진공건조 시킨 후 유압 프레저로 압착하여 유황양극을 제조하였다.The slurry prepared as described above was coated with a thickness of 10 μm to a foam of nickel having a three-dimensional network structure with a width of 1 cm 2 as shown in FIG. 3, and then vacuum dried at a temperature of 60 ° C. for 24 hours, and then hydraulically applied. A sulfur anode was prepared by pressing with a press.

위의 유황양극과 0.1M LiTFSI가 첨가된 PEGDME(평균 분자량 500) 전해질 그리고 리튬 포일 음극을 사용하여 아르곤 분위기의 글로브 박스에서 코인셀 형태의 리튬유황이차전지를 제조하였다.Coin-cell-type lithium-sulfur secondary batteries were prepared in a glove box in an argon atmosphere by using the sulfur anode, PEGDME (average molecular weight 500) electrolyte with 0.1 M LiTFSI, and a lithium foil anode.

<시험예><Test Example>

전기의 비교예, 실시예 1 및 실시예 2 의 방법으로 제조한 리튬유황이차전지의 전극수명을 측정하여 그 결과를 도 1 에 나타내었다.The electrode life of the lithium sulfur secondary battery manufactured by the method of the comparative example, Example 1, and Example 2 was measured, and the result is shown in FIG.

비교예의 리튬유황이차전지는 전지용량이 50 cycle 이내에는 초기상태의 절반 이하로 퇴화되는 것을 나타내고 있으며, 실시예 1 및 실시예 2에 의해 제조한 본 발명의 리튬유황이전전지는 100 cycle때 초기 용량의 88%가 유지되고 있어 종래의 리튬유황이차전지 보다 본 발명에 의한 리튬유황이차전지가 충방전 특성이 향상됨을 알 수 있다.The lithium sulfur secondary battery of the comparative example shows that the battery capacity deteriorates to less than half of the initial state within 50 cycles, and the lithium sulfur rechargeable battery of the present invention prepared by Examples 1 and 2 has an initial capacity at 100 cycles. 88% of the lithium sulfur secondary battery according to the present invention improves the charge and discharge characteristics than the conventional lithium sulfur secondary battery.

전기에서 전극수명의 측정실험은 27℃의 온도에서 1시간 동안 충방전 실험을 한 것으로 충전조건은 50㎂/cm2의 충전속도로 10시간 동안 하였으며, 과충전을 방지하기 위하여 3.5V에서 자동으로 컷 오프(cut off) 되게 하였다. 방전조건은 50㎂/cm2의 방전속도로 1.5V 까지 방전을 하였으며, 충전과 방전사이에 5분간의 휴지시간을 두었다.In the electricity, the measurement of electrode life was carried out for 1 hour at 27 ℃ and the charging condition was 10 hours with charging rate of 50㎂ / cm 2 , and it was automatically cut at 3.5V to prevent overcharge. It was cut off. Discharge conditions were discharged to 1.5V at a discharge rate of 50 mW / cm 2 , and a 5 minute rest period was placed between charging and discharging.

본 발명은 전기의 시험예에서 알 수 있듯이 지금까지 상온형 리튬유황전지의 가장 큰 문제점으로 지적되고 있는 급격한 전지 수명의 퇴화를 개선시켜 앞으로의 리튬유황전지의 상용화를 한발 더 앞당기는 계기를 마련하였다. 리튬유황이차전지는 기존의 리튬이차전지보다 가격이 저렴하고, 용량과 에너지 밀도도 더 높으며, 환경친화적이고 rate capability 특성도 우수하여 기존의 리튬이차전지를 대체할 수 있는 차세대 이차전지이므로 일단 상용화되면 그 파급효과는 매우 클 것으로 예상된다. 따라서, 본 발명은 리튬유황이차전지의 상용화에 있어서 상당한 기여를 할 수 있을 것으로 기대되는 바이다.The present invention, as can be seen in the test example of the previous to improve the deterioration of the rapid battery life which is pointed out as the biggest problem of the room temperature type lithium sulfur battery until now to provide an instrument to advance the commercialization of lithium sulfur battery in the future. . Lithium-sulfur secondary battery is the next-generation secondary battery that can replace the existing lithium secondary battery because it is cheaper than conventional lithium secondary battery, has higher capacity and energy density, and is environmentally friendly and has excellent rate capability characteristics. The ripple effect is expected to be very large. Therefore, the present invention is expected to make a significant contribution in the commercialization of lithium sulfur secondary batteries.

Claims (5)

공지의 리튬유황이차전지에 있어서,In a known lithium sulfur secondary battery, 폴리(에틸렌글리콜)디메틸 에테르를 전해질로 구비하고,Poly (ethylene glycol) dimethyl ether as an electrolyte, 양극의 전류집전체로서 메쉬(mesh) 형태의 구조를 갖는 금속을 포함하는 것을 특징으로 하는 상온에서 수명이 향상된 리튬유황이차전지Lithium sulfur secondary battery with improved lifespan at room temperature, characterized in that it comprises a metal having a mesh-like structure as a current collector of the positive electrode 공지의 리튬유황이차전지에 있어서,In a known lithium sulfur secondary battery, 폴리(에틸렌글리콜)디메틸 에테르를 전해질로 구비하고,Poly (ethylene glycol) dimethyl ether as an electrolyte, 양극의 전류집전체로서 폼(foam) 형태의 구조를 갖는 금속을 포함하는 것을 특징으로 하는 상온에서 수명이 향상된 리튬유황이차전지Lithium sulfur secondary battery with improved lifespan at room temperature, characterized in that it comprises a metal having a foam (foam) structure as a current collector of the positive electrode 제 1 항 또는 제 2 항에 있어서, 폴리(에틸렌글리콜)디메틸 에테르의 평균 분자량은 500∼750 임을 특징으로 하는 상온에서 수명이 향상된 리튬유황이차전지The lithium sulfur secondary battery according to claim 1 or 2, wherein the poly (ethylene glycol) dimethyl ether has an average molecular weight of 500 to 750. 제 1 항 또는 제 2 항에 있어서, 전해질 내에 0.1∼1M의 트리플루오르 메탄 설포네이트 이미드를 포함하는 것을 특징으로 하는 상온에서 수명이 향상된 리튬유황이차전지The lithium sulfur secondary battery according to claim 1 or 2, wherein the electrolyte contains 0.1 to 1 M trifluoromethane sulfonate imide in the electrolyte. 제 1 항 또는 제 2 항에 있어서, 양극의 전류집전체로 사용하는 금속은 니켈또는 알루미늄 임을 특징으로 하는 상온에서 수명이 향상된 리튬유황이차전지The lithium sulfur secondary battery according to claim 1 or 2, wherein the metal used as the current collector of the positive electrode is nickel or aluminum.
KR10-2002-0024532A 2002-05-03 2002-05-03 rechargeable Li/S cell improved of the cycle life at normal temperature KR100444761B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0024532A KR100444761B1 (en) 2002-05-03 2002-05-03 rechargeable Li/S cell improved of the cycle life at normal temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0024532A KR100444761B1 (en) 2002-05-03 2002-05-03 rechargeable Li/S cell improved of the cycle life at normal temperature

Publications (2)

Publication Number Publication Date
KR20030086151A KR20030086151A (en) 2003-11-07
KR100444761B1 true KR100444761B1 (en) 2004-08-16

Family

ID=32381511

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0024532A KR100444761B1 (en) 2002-05-03 2002-05-03 rechargeable Li/S cell improved of the cycle life at normal temperature

Country Status (1)

Country Link
KR (1) KR100444761B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110931752B (en) * 2019-12-09 2021-05-28 华南师范大学 Nitrogen-doped porous carbon loaded metal nickel lithium-sulfur battery positive electrode material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240790A (en) * 1993-03-10 1993-08-31 Alliant Techsystems Inc. Lithium-based polymer electrolyte electrochemical cell
KR100363277B1 (en) * 2000-06-30 2002-11-30 주식회사 뉴턴에너지 Cathode and Energy Storage System Utilizing The Same
KR20030023819A (en) * 2001-09-14 2003-03-20 주승기 Rechargeable Lithium Polymer Battery and Method for Making the Same
KR100404145B1 (en) * 2001-02-13 2003-10-30 임수근 A solid polymer electrolyte for lithium/sulfur battery and it's fabrication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240790A (en) * 1993-03-10 1993-08-31 Alliant Techsystems Inc. Lithium-based polymer electrolyte electrochemical cell
KR100363277B1 (en) * 2000-06-30 2002-11-30 주식회사 뉴턴에너지 Cathode and Energy Storage System Utilizing The Same
KR100404145B1 (en) * 2001-02-13 2003-10-30 임수근 A solid polymer electrolyte for lithium/sulfur battery and it's fabrication method
KR20030023819A (en) * 2001-09-14 2003-03-20 주승기 Rechargeable Lithium Polymer Battery and Method for Making the Same

Also Published As

Publication number Publication date
KR20030086151A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
CN103872293B (en) A kind of new type lithium ion battery electrode material and application thereof
CN103700820B (en) A kind of lithium ion selenium battery with long service life
JP2008034368A (en) Lithium ion storage battery containing contains tio2-b as anode active substance
CN105185958A (en) Novel electrode material of sodium-ion battery and application of electrode material
JP2003242964A (en) Non-aqueous electrolyte secondary battery
KR20180066694A (en) Cathode composite with high power performance and all solid lithium secondary battery comprising the same
CN111934020B (en) High-pressure-resistant all-solid-state lithium battery interface layer and in-situ preparation method and application thereof
CN112054159A (en) Preparation method of integrated all-solid-state lithium ion battery
US20160141611A1 (en) Use of novel compounds as negative electrode active material in a sodium-ion battery
KR20130001631A (en) Lithium secondary battery having high capacity
Carbone et al. A low-cost, high-energy polymer lithium-sulfur cell using a composite electrode and polyethylene oxide (PEO) electrolyte
CN103972580A (en) Lithium sulfur battery
JP4559587B2 (en) Solid lithium polymer battery
JPH087926A (en) Nonaqueous electrolytic secondary cell
Feng et al. Electrochemical property of LiMn2O4 in over-discharged conditions
KR100444761B1 (en) rechargeable Li/S cell improved of the cycle life at normal temperature
KR100406979B1 (en) Fabrication Method of An Electrode for the Lithium Secondary Batteries Using Nickel Sulfide Compound
KR100433702B1 (en) Method of manufacturing a sulfur electrode and electrolyte of atmospheric temperature lithium/sulfur battery having ultra high capacity
KR20040015999A (en) Electrode Composition Based on Vinylidene Fluoride Polymer as A Binder, Lithium/Sulfur Rechargeable Battery Comprising Said Composition and Preparation Method thereof
JP4624589B2 (en) Vanadium-based composite positive electrode for solid-state lithium polymer battery and lithium polymer battery using the same
CN114388878B (en) Composite solid electrolyte and preparation method and application thereof
KR101621783B1 (en) Manufacturing method of mixed electrolyte for lithium-sulfur battery
JP3928167B2 (en) Method for manufacturing electrode plate for lithium secondary battery
KR100370289B1 (en) Lithium-Sulfur batteries
KR20050022567A (en) Lithium/sulfur secondary batteries inserted with graphitic nano fiber membrane

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080728

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee