KR100401981B1 - 내피쉬스케일성이우수한양면법랑용열연강판제조방법 - Google Patents

내피쉬스케일성이우수한양면법랑용열연강판제조방법 Download PDF

Info

Publication number
KR100401981B1
KR100401981B1 KR10-1998-0038056A KR19980038056A KR100401981B1 KR 100401981 B1 KR100401981 B1 KR 100401981B1 KR 19980038056 A KR19980038056 A KR 19980038056A KR 100401981 B1 KR100401981 B1 KR 100401981B1
Authority
KR
South Korea
Prior art keywords
steel sheet
rolled steel
fish scale
hot rolled
hot
Prior art date
Application number
KR10-1998-0038056A
Other languages
English (en)
Other versions
KR20000019786A (ko
Inventor
류재화
윤정봉
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0038056A priority Critical patent/KR100401981B1/ko
Publication of KR20000019786A publication Critical patent/KR20000019786A/ko
Application granted granted Critical
Publication of KR100401981B1 publication Critical patent/KR100401981B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 내피쉬스케일성이 우수한 양면 법랑용 열연강판 제조방법에 관한 것이며, 본 발명이 목적하는 바는 열연강판의 흑연화에 영향을 미치는 제반합금원소의 함량과 소둔 등의 제조조건을 적절히 제어하여 흑연입자를 석출시키므로서 내피쉬스케일성이 우수한 열연강판을 제조하는 방법을 제공함에 있다.
상기의 목적을 달성하기 위한 본 발명은 중량비로 C: 0.2~0.8%, Si: 0.1~1.5%, Mn: 0.1~0.5%, Al: 0.01~0.1%, N: 0.001~0.015%, B: 0.0005~0.005%, Cr: 0.10% 이하, 잔부 Fe 및 기타 불순물로 이루어진 강재를 통상의 조건으로 열간압연하여 열연강판을 제조하고, 제조된 열연강판을 페라이트기지내에 미세한 흑연입자가 석출되도록 600~720℃온도범위에서 소둔을 행하는 내피쉬스케일성이 우수한 양면 법랑용 열연강판 제조방법을 그 요지로 한다.

Description

내피쉬스케일성이 우수한 양면 법랑용 열연강판 제조방법{A METHOD FOR MANUFACTURING TWO-SIDES ENAMELED AND HOT-ROLLED STEEL SHEETS HAVING SUPERIOR FISH SCALE RESISTANCE}
본 발명은 두께가 비교적 두꺼우면서 내부식성이 요구되는 온수탱크, 화학공업용 탱크, 저수조 등에 사용되는 양면 법랑용 열연강판의 제조방법에 관한 것으로써, 보다 상세하게는, 일정한 조성의 열연강판을 적절한 조건으로 소둔하여 흑연입자를 미세하게 석출시키므로서 피쉬스케일의 발생을 방지할 수 있는 내피쉬스케일성이 우수한 양면 법랑용 열연강판의 제조방법에 관한 것이다.
현재 법랑용 열연강판은 두께가 비교적 두꺼우면서 내부식성이 요구되는 온수탱크, 화학공업용 탱크, 저수조 등에 사용되고 있는데, 이러한 법랑용 강판으로서 가장 중요하게 요구되는 성질은 내피쉬스케일성이다.
피쉬스케일(Fish Scale)은 법랑처리후에 법랑층이 강판표면에서 고기비늘과 같이 떨어지는 현상으로 피쉬스케일이 발생하면 외관상으로 불량일 뿐만 아니라 강판기지가 외부로 노출되므로 내부식성이 치명적으로 나빠지기 때문에 법랑강판에서는 내피쉬스케일성이 가장 중요하게 요구되는 성질이다.
이와같은 피쉬스케일 결함은 수소에 의해 발생되는 결함으로서 법랑소성처리시에 강판의 온도가 높기 때문에 수소의 고용도가 증가되지만 소성처리후에는 온도가 낮기 때문에 강판에 고용된 수소가 강판의 표면으로 확산되어 법랑층을 파괴하고 대기중으로 빠져나가기 때문에 발생한다.
이러한 피쉬스케일 결함을 방지하기 위해서는 강판중에 수소가 모일 수 있는 공공이나 석출물과 기지의 계면을 많이 만들어 주는 방법등이 있으나, 열연강판의 경우에는 공공을 만들어 주는 것이 불가능하기 때문에 주로 석출물을 이용하고 있다.
미세한 석출물을 석출시켜 피쉬스케일 발생을 방지하기 위한 방법의 예로서는 일본 공개특허공보(소)56-51553호를 들 수 있는데, 이 방법에서는 미세한 석출물로서 티타늄황화물(TiS)을 이용하고 있다. 따라서, 이 방법에 있어서는 피쉬스케일의 발생을 방지하기 위하여 티타늄을 0.2%이상, 황을 0.03%이상 첨가해야 한다. 그러나, 티타늄은 산화성이 매우 강한 원소이므로 많은 양의 티타늄 첨가시에는 연속주조작업시 산화물의 생성으로 노즐막힘이 자주 발생하여 연속주조 작업성이 떨어지고, 또한 산화물에 의해 발생하는 표면결함으로 법랑처리후 기포결함이 많이 발생하는 문제점이 있었다.
이러한 문제점을 해결하기 위하여 고온석출물인 망간황화물(MnS)을 이용하는 방법이 대한민국 특허출원 제93-21363호에 제시되어 있다. 그러나, 이 방법은 다량의 망간황화물을 만들어주기 위해 황이 0.05%이상 첨가되어야 하는데, 이와같이 강중에 황이 많으면 연속주조시나 열간압연시 열간가공성저하에 의해 균열이 많이 발생하는 문제점이 있다.
이러한 점에서 연속주조 생산성 저하 및 강판의 표면결함 발생이 없으면서 내피쉬스케일성이 우수한 법량용 열연강판이 요구되고 있다.
본 발명은 상기의 문제점을 해결하기 위하여 안출된 것으로서, 강의 조성을 적절히 선정하고 열연강판의 소둔조건등을 적절히 제어하여 강판내에 흑연을 미세하게 석출시키므로서 연속주조의 생산성 저하를 초래하지 않을 뿐만 아니라 강판의 표면결함 발생이 없으면서도 법랑처리 후 피쉬스케일 발생이 방지되는 내피쉬스케일성이 우수한 양면 법랑용 열연강판의 제조방법을 제공하고자 하는데, 그 목적이 있다.
도 1은 법랑소성처리중 공공의 생성 및 수소흡착과정을 도시하는 그림이다.
이하, 본 발명에 대하여 설명한다.
본 발명은 양면 법랑용 열연강판을 제조하는 방법에 있어서,
중량%로, C: 0.2~0.8%, Si: 0.1~1.5%, Mn: 0.1~0.5%, Al: 0.01~0.1%, N: 0.001~0.015%, B: 0.0005~0.005%, Cr: 0.10% 이하, 잔부 Fe 및 불가피한 불순물로 이루어진 강재를 통상의 조건으로 열간압연하여 열연강판을 제조하고, 제조된 열연강판을 페라이트기지내에 미세한 흑연입자가 석출 되도록 600~720℃온도범위에서 소둔을 행하여 내피쉬스케일성이 우수한 양면 법랑용 열연강판을 제조하는 방법에관한 것이다.
본 발명자들은 열연강판의 흑연화에 미치는 강중의 C, Si, Al, B, Mn 및 Cr등의 작용과 열간압연 및 소둔등의 제조조건을 종합적으로 연구한 결과, 합금원소들의 함량 및 제조조건(소둔조건)을 적절히 제어하므로서 내피쉬스케일성이 우수한 법랑용 열연강판의 제조가 가능함을 인식하고, 이에 근거하여 본 발명을 완성하게 이른 것이다.
즉, 본 발명에서는 흑연화 촉진원소인 C와 Si량을 적절히 조절하고, 흑연화핵생성 위치로 작용하는 극소량의 보론(B)을 첨가하고, 흑연화 억제원소인 Mn과 Cr량을 억제하여 강재를 조성하고, 그리고 열간압연조건과 소둔열처리조건을 적절히 제어하여 미세한 흑연입자를 석출시키므로서 내피쉬스케일성을 향상시키게 되는데, 이에 대하여 설명하면 다음과 같다.
본 발명에 따라 조성되는 열연강판을 600~720℃온도범위에서 소둔을 행하면 세멘타이트가 흑연입자로 변화되어 석출되게 되며, 본 발명에 따라 흑연입자가 석출되어 있는 열연강판을 이용하여 법랑소성처리를 행하는 경우 흑연입자중의 탄소가 오스테나이트에 재고용되어 이전의 흑연입자가 존재하던 자리는 수소가 저장될 수 있는 공공으로 되면서 법랑소성처리후 내피쉬스케일성이 매우 우수해 진다.
다시 말하면, 도 1에 도시된 바와같이, 본 발명에 따르는 조성을 갖는 열연강판을 본 발명에 따라 소둔하여 강중에 흑연입자를 미세하게 석출시키므로서, 법랑소성처리중에 흑연입자에 모여있던 탄소가 기지로 확산되면서 흑연입자가 존재하던 자리는 공공이 되어 수소가 저장될 수 있는 공간을 제공하므로써 법랑소성처리후 내피쉬스케일성이 매우 우수해지는 것이다.
이하, 본 발명 강재의 성분 및 그 함량과 제조조건의 제한사유를 설명한다.
탄소(C)는 세멘타이트의 흑연화에 가장 중요한 원소로서 그 함량을 0.2~0.8%범위로 한다. 탄소량이 적으면 흑연화하는데 많은 시간이 소요되므로 그 하한을 0.2%이상으로 제한한다. 그러나 탄소량이 많을수록 흑연화가 촉진되고 흑연입자수가 증가하여 법랑소성처리후 공공의 수가 증가하지만, 용접성이 크게 저하되어 그 상한을 0.8%이하로 제한한다.
규소(Si)는 흑연화를 촉진시키는 가장 중요한 원소로서 그 함량을 0.1~1.5%범위로 한다. 규소량이 너무 적으면 흑연화에 장시간이 소요되기 때문에 그 하한을 0.1%이상으로 제한한다. 그러나 규소량이 너무 많으면 흑연화는 상당히 촉진되지만 적스케일이 많이 발생하여 강판의 표면품질이 저하되기 때문에 그 상한을 1.5%이하로 제한한다.
망간(Mn)은 흑연화를 억제하는 원소로서 그 함량을 0.1~0.5%범위로 한다. 망간량이 적을수록 흑연화에는 유리하지만, 망간량이 너무 적으면 강도가 낮고 열간가공성이 나빠지기 때문에 그 하한을 0.1%이상으로 제한한다. 그러나 그 함량이 너무 많으면 흑연화가 억제되기 때문에 그 상한은 0.5%이하로 제한한다.
알루미늄(Al)은 탈산제이면서 흑연화를 촉진하는 원소이지만 첨가량이 0.01%이하에서는 흑연화를 촉진시키는 효과가 거의 없기 때문에 0.01%이상 함유한다. 그러나 0.1%를 초과하는 경우 흑연화촉진효과는 거의 포화되고, 강중의 개재물량이 증가하여 강판의 가공성이 저하될 염려가 있기 때문에 그 함량을 0.01~0.1%범위로제한한다.
질소(N)는 보론과 반응하여 보론나이트라이드(BN)를 형성하게 되며, BN은 흑연의 핵생성위치로서 가장 효과적으로 작용한다. 이 때문에 N량이 너무 적으면 BN의 형성이 어렵기 때문에 0.001%이상 함유시킨다. 그러나 N의 함량이 너무 많으면 강판의 연성이 저하되기 때문에 N량을 0.02%이하로 제한한다.
보론(B)은 흑연의 핵생성위치로 작용하기 때문에 흑연화속도를 높이고 흑연을 미세하게 분포시키는데 중요한 원소로서, 보론의 첨가효과를 얻기 위해서는 최소 0.0005%이상은 함유해야 된다. 그러나 보론이 너무 많이 첨가되면 슬라브제조시 균열이 발생될 염려도 있고, 흑연의 핵생성위치인 BN이 너무 조대화되어 흑연을 미세하게 분산시키기 어렵기 때문에 보론(B)의 량을 0.005%이하로 제한한다.
크롬(Cr)은 세멘타이트를 안정화시키는 원소로서 많이 첨가되면 흑연화가 어렵고 흑연화에 장시간이 소요되기 때문에 Cr량을 0.1%이하로 제한한다.
본 발명에서는 상기와 같이 조성된 강재를 통상의 조건으로 열간압연하여 열연강판을 제조하고, 제조된 열연강판을 600~720℃의 온도범위에서 소둔을 행하여 미세한 흑연입자를 석출시키게 된다.
고탄소강의 흑연화는 조직이 미세할수록 촉진되기 때문에 열간압연공정에서는 조직을 미세화시키는 것이 중요하지만, 통상의 열간압연조건인 마무리 압연온도 800~950℃, 및 권취온도 500~700℃의 온도범위에서 열간압연하더라도 본 발명의 목적을 달성할 수 있다.
즉, 본 발명에서는 통상의 방법으로 열간압연하더라도 열연강판을 본 발명에따라 소둔하므로서 피쉬스케일 발생을 억제하는데 필요한 충분한 흑연입자를 확보할 수 있기 때문에 열간압연조건은 통상조건으로 해도 무방하다. 한편, 흑연화 소둔조건은 온도가 너무 낮으면 탄소의 확산속도가 느려 흑연화 진행속도가 느리고, 온도가 너무 높으면 탄소가 오스테나이트에 고용되어 흑연화가 일어나지 않기 때문에 소둔온도는 600~720℃로 선정함이 바람직하다.
본 발명에 있어 소둔시간은 1시간 이상, 바람직하게는 5시간 이상, 보다 바람직하게는 5 - 30시간이다. 소둔시간이 너무 짧은 경우에는 흑연화가 충분히 일어나지 않으므로 그 하한은 1시간으로 선정하고, 소둔시간이 길어도 본 발명의 효과가 얻어질 수 있으나, 생산성을 고려하여 그 상한은 30시간으로 선정하는 것이 바람직하다.
또한, 상기 소둔은 흑연입자의 분율은 바람직하게는 전체 상(phase)에 대하여 0.1vol% 이상, 보다 바람직하게는 0.1 - 2.5 vol% 이 되도록 행하는 것이다.
또한, 상기 소둔은 흑연입자의 크기가 바람직하게는 10㎛이하, 보다 바람직하게는 5㎛이하가 되도록 행하는 것이다.
상기 흑연입자의 크기가 너무 큰 경우에는 가공성이 열화되므로, 흑연입자크기의 상한은 10㎛로 선정하는 것이 바람직하다.
상기와 같이 제조된 강판을 이용하여 법랑부품을 가공한후, 통상의 법랑소성처리온도인 800~850℃에서 적당한 시간동안 소성처리하면 피쉬스케일 발생이 없는 제품을 얻을 수 있다.
이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.
(실시예1)
실시예1에서는 합금성분이 흑연입자 발생과 내피쉬스케일성에 미치는 영향에 대해 살펴보았다.
아래의 표1은 시험재의 화학성분을 나타내고 있는데, 1~5번강은 본 발명에서 규정하는 화학성분범위내의 강이고, 6~10번강은 본 발명과의 비교를 위해 용해한 비교강(1)이다. 그리고 11번강은 냉연법랑용강이며, 12와13번강은 각각 냉연용 저탄소강과 저탄소강에 Ti를 첨가한 강이다.
발명강과 비교강의 화학성분
강종 화학성분(wt%) 비고
C Si Mn Al N B Cr Ti
발명강 1 0.5 0.2 0.2 0.054 0.005 0.0018 - - 기본성분
2 0.3 0.2 0.2 0.050 0.0048 0.002 - - C 효과
3 0.5 0.6 0.2 0.048 0.005 0.0021 - - Si 효과
4 0.5 1.0 0.3 0.049 0.005 0.0018 - -
5 0.5 0.2 0.2 0.05 0.005 0.0041 - - B 효과
비교강(1) 6 0.5 0.2 0.7 0.054 0.005 - - - Mn 효과
7 0.5 0 0.2 0.05 0.005 0.0020 - - Si 효과
8 0.5 0.2 0.2 0.05 0.005 0 - - B 효과
9 0.5 0.2 0.2 0.05 0.005 0.002 0.2 - Cr 효과
10 0.1 0.2 0.2 0.05 0.005 0.0017 - - C 효과
비교강(2) 11 0.005 0 0.2 0.04 0.007 - - 0.12 냉연법랑강판
12 0.02 0 0.17 0.04 0.005 - - - 저탄소강
13 0.02 0 0.2 0.04 0.005 - - 0.04 Ti첨가 저탄소강
우선 모든 강종을 1200℃로 가열하여 2시간동안 유지한 후 마무리 열간압연온도를 900℃, 권취온도를 600℃로 하여 두께 3.2mm의 열연압연강판을 제조하였다.이와같이 제조된 열연강판중 발명강과 비교강(1)은 비산화성 분위기에서 680℃에서 20시간동안 흑연화소둔을 행하였다. 비교강(2)는 소둔을 행하여도 흑연이 생성되지 않기 때문에 소둔을 행하지 않았다.
이상과 같이 제조된 강중 발명강과 비교강(1)을 절단하여 흑연분율 및 흑연밀도를 측정하였다. 그리고 피쉬스케일 발생정도를 살펴보기 위해 열간압연된 시편을 염산으로 산세하여 표면의 산화철을 완전히 제거한 후 70℃, 10%황산용액에서 5분간 침적하여 산세를 실시하고, 온수로 세척한 후 85℃, 36g/ℓ탄산소다 + 1.2g/ℓ붕사수용액에 5분간 침적하여 중화처리 하였다. 전처리를 완료한 시편은 유약을 강판의 양면에 도포한 후 200℃에서 10분간 건조하였고, 뒤이어 830℃에서 5분간 소성처리를 실시한 후 공냉하여 법랑처리를 완료하였다.
발명강과 비교강의 흑연분율 및 흑연밀도와 피쉬스케일 발생정도
강종 흑연분율(vol%) 흑연밀도(갯수/mm2) 피쉬스케일 결함발생수
발명강 1 2 2000 0
2 0.8 1300 0
3 2.2 2200 0
4 2.5 2300 0
5 2.1 2100 0
비교강(1) 6 0 0 170개
7 0 0 140개
8 0 0 160개
9 0.03 20 110개
10 0 0 150개
비교강(2) 11 - 350개
12 - 250개
13 - 230개
* 피쉬스케일 결함조사 강판크기: 150mm × 70mm
이때 소성로 분위기의 노점은 30℃로 피쉬스케일이 발생하기 쉬운 가혹한 조건이다. 법랑처리가 끝난 시편은 200℃유지로에서 20시간동안 유지하여 피쉬스케일 가속처리후 폭 70mm, 길이 150mm에서 발생한 피쉬스케일 결함수를 육안으로 조사하고 그 결과를 상기 표2에 나타내었다.
표2에 나타난 바와같이 발명강(No.1~5)은 흑연분율(흑연밀도)이 높아 소성처리후 충분한 공공을 확보할 수 있어 피쉬스케일이 전혀 발생하지 않았다. 그러나 비교강(1)의 경우는 9번강을 제외하고는 흑연입자가 전혀 생성되지 않았고, 이에따라 소성처리동안 수소를 흡수할 공공이 거의 없기 때문에 피쉬스케일이 많이 발생하였다. 그리고 9번강은 피쉬스케일 발생량은 다른 비교강에 비해 적지만 흑연입자가 아주 적게 존재하여 피쉬스케일을 완전하게 방지하지는 못하였다.
다음으로 비교강(2)중 11번강은 냉연용 극저법랑판의 열연강판으로 냉연상태에서는 피쉬스케일 발생이 없었으나 열간압연판에서는 상당히 많은 피쉬스케일이 발생함을 보이고 있다. 또한 12와 13번강은 저탄소강판과 이것에 Ti를 소량 첨가한 열간압연판으로 피쉬스케일의 발생이 많음을 나타내고 있으며, Ti첨가량이 소량이기 때문에 Ti첨가효과도 거의 없음을 보이고 있다.
상기에서와 같이, 열연강판에서 내피쉬스케일성을 확보하기 위해서는 공공이 많이 존재해야 하는데, 발명강의 경우에는 소둔후에 발생된 흑연이 법랑소성처리시 수소를 흡착하는 유효한 위치로 작용하여 피쉬스케일 발생을 방지함을 알 수 있다.
(실시예2)
실시예2에서는 소둔온도가 흑연분율(흑연밀도)과 내피쉬스케일성에 미치는 영향에 대하여 살펴보았다. 상기 표1의 발명강중 1번강을 1200℃로 가열하여 2시간동안 유지한 후 마무리 압연온도를 900℃로 하고, 권취온도를 600℃로 하여 두께 3.2mm의 열간압연강판을 제조하였다. 이와같이 제조된 열연강판을 산세하고, 비산화성 분위기에서 소둔온도 560,590,620,650,680,710,740℃에서 20시간동안 소둔을 행하였다. 또한 이와같이 제조된 열연강판을 실시예1에서의 전처리 및 법랑처리를 행하였으며, 이에따른 내피쉬스케일 발생정도를 아래의 표3에 나타내었다.
1번강의 소둔온도에 따른 흑연분율 및 흑연밀도와 피쉬스케일 발생정도
소둔온도(℃) 흑연분율(vol%) 흑연밀도(갯수/mm2) 피쉬스케일 결함발생수
발명조건 620 0.7 1300 0
650 2.0 2000 0
680 2.1 2100 0
710 1.2 1000 0
비교조건 560 0.01 50 60개
590 0.05 300 20개
740 0 0 150개
*피쉬스케일결함 조사강판 크기: 150mm × 70mm
표3에 나타난 바와같이, 소둔온도가 600℃이하로 낮은 경우에는 석출되는 흑연입자수가 적기 때문에 피쉬스케일이 발생하고, 소둔온도가 720℃이상에서는 탄소가 오스테나이트에 고용되어 흑연이 석출되지 않기 때문에 피쉬스케일이 많이 발생함을 알 수 있다.
상기한 바와 같이 본 발명은 탄소함량이 비교적 높은 강에 적정 합금원소를 첨가한 후 적정온도범위에서 소둔처리함으로써 흑연입자를 미세하게 석출시켜 법랑소성처리시 쉽게 공공을 확보할 수 있어, 법랑제품에서 가장 큰 문제점인 피쉬스케일 발생을 완전하게 방지할 수 있어 온수보일러 탱크 및 화학공업용 탱크 등의 안정성을 크게 향상시킬 뿐만아니라 열연법랑강판의 수요확대에도 기여하는 등의 유용한 효과가 있는 것이다.

Claims (3)

  1. 중량비로 C: 0.2~0.8%, Si: 0.1~1.5%, Mn: 0.1~0.5%, Al: 0.01~0.1%, N: 0.001~0.015%, B: 0.0005~0.005%, Cr: 0.10% 이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어진 강재를 통상의 조건으로 열간압연하여 열연강판을 제조하고, 제조된 열연강판을 페라이트기지내에 미세한 흑연입자가 석출되도록 600~720℃의 온도범위에서 소둔을 행하는 것을 특징으로 하는 내피쉬스케일성이 우수한 양면 법랑용 열연강판 제조방법.
  2. 제1항에 있어서, 소둔시간이 1~30시간인 것을 특징으로 하는 내피쉬스케일성이 우수한 양면 법랑용 열연강판 제조방법.
  3. 제1항에서 제2항중의 어느 한 항에 있어서, 흑연입자의 분율이 전체 상에 대하여 0.1~2.5vol%이고, 그리고 흑연입자의 크기가 0초과 10㎛ 이하인 것을 특징으로 하는 내피쉬스케일성이 우수한 양면 법랑용 열연강판 제조방법.
KR10-1998-0038056A 1998-09-15 1998-09-15 내피쉬스케일성이우수한양면법랑용열연강판제조방법 KR100401981B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0038056A KR100401981B1 (ko) 1998-09-15 1998-09-15 내피쉬스케일성이우수한양면법랑용열연강판제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0038056A KR100401981B1 (ko) 1998-09-15 1998-09-15 내피쉬스케일성이우수한양면법랑용열연강판제조방법

Publications (2)

Publication Number Publication Date
KR20000019786A KR20000019786A (ko) 2000-04-15
KR100401981B1 true KR100401981B1 (ko) 2003-12-18

Family

ID=19550675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0038056A KR100401981B1 (ko) 1998-09-15 1998-09-15 내피쉬스케일성이우수한양면법랑용열연강판제조방법

Country Status (1)

Country Link
KR (1) KR100401981B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020044652A (ko) * 2000-12-06 2002-06-19 이구택 용접성과 내피쉬스케일성이 우수한 고강도 법랑용열연강판의 제조방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595499B (zh) * 2022-08-29 2023-10-31 邯郸钢铁集团有限责任公司 抗鳞爆性能优异的高强热轧酸洗搪瓷钢带及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104051A (ja) * 1984-10-24 1986-05-22 Kawasaki Steel Corp ほうろう用冷延鋼板およびその製造方法
US5152846A (en) * 1989-07-19 1992-10-06 Kawasaki Steel Corporation Method of producing steel sheets for porcelain enameling having improved enamel adhesion property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104051A (ja) * 1984-10-24 1986-05-22 Kawasaki Steel Corp ほうろう用冷延鋼板およびその製造方法
US5152846A (en) * 1989-07-19 1992-10-06 Kawasaki Steel Corporation Method of producing steel sheets for porcelain enameling having improved enamel adhesion property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020044652A (ko) * 2000-12-06 2002-06-19 이구택 용접성과 내피쉬스케일성이 우수한 고강도 법랑용열연강판의 제조방법

Also Published As

Publication number Publication date
KR20000019786A (ko) 2000-04-15

Similar Documents

Publication Publication Date Title
MX2010010989A (es) Chapas de acero de alta resistencia que son excelentes en el equilibrio entre facilidad de trabajo en la desbastacion de metales y ductilidad, y excelentes en resistencia a la fatiga, chapas de acero recubiertas de zinc y procesos para la produccion
KR101289415B1 (ko) 표면 결함이 없는 법랑용 강판 및 그 제조방법
JPH0310048A (ja) 耐つまとび性、耐泡・黒点欠陥性及びプレス成形性に優れたほうろう用鋼板並びにその製造方法
CN111349847B (zh) 一种耐海水腐蚀钢及其制造方法
KR100401981B1 (ko) 내피쉬스케일성이우수한양면법랑용열연강판제조방법
KR20060085939A (ko) 화성 처리성이 우수한 열연 강판 및 그 제조 방법
CN113166886A (zh) 耐鳞爆优秀的搪瓷用冷轧钢板及其制造方法
KR970011629B1 (ko) 법랑밀착성이 우수한 고가공용 냉연강판의 제조방법
JP3965792B2 (ja) 表面性状に優れた鋼板の製造方法
JPH0147530B2 (ko)
KR102179214B1 (ko) 법랑용 냉연 강판 및 그 제조방법
KR20000015390A (ko) 성형성이 우수한 고밀착 법랑강판의 제조방법
KR101380407B1 (ko) 표면 결함이 없는 법랑용 강판 및 그 제조방법
KR100470669B1 (ko) 내피쉬스케일성이 우수한 고강도 냉연법랑강판의 제조방법
KR100470056B1 (ko) 법랑 밀착성이 우수한 직접 법랑용 냉연강판
JPS63203721A (ja) 耐水素誘起割れ性及び耐応力腐食割れ性にすぐれる熱延鋼板の製造方法
KR100402009B1 (ko) 양면 법랑용 열연강판의 제조방법
KR102220740B1 (ko) 내부식성이 우수한 오스테나이트계 고망간강 및 그 제조방법
JP3874146B2 (ja) 表面性状に優れた鋼板の製造方法
KR100544506B1 (ko) 내황산 부식특성이 우수한 고강도 냉연강판과 그 제조방법
KR100361753B1 (ko) 박슬라브 직접압연법을 이용한 열연법랑강판 제조방법
KR20030053834A (ko) 도금 부착성이 우수한 고강도 용융아연 도금강판의 제조방법
JPH02156043A (ja) ほうろう用Alキルド鋼板およびその製造方法
KR100244659B1 (ko) 기포발생이 없는 고가공용 법랑용 냉연강판의 제조방법
KR100402001B1 (ko) 직접 법랑용 냉연강판의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee