KR100399780B1 - Activation method of current collector for lithium secondary battery - Google Patents

Activation method of current collector for lithium secondary battery Download PDF

Info

Publication number
KR100399780B1
KR100399780B1 KR1019960076954A KR19960076954A KR100399780B1 KR 100399780 B1 KR100399780 B1 KR 100399780B1 KR 1019960076954 A KR1019960076954 A KR 1019960076954A KR 19960076954 A KR19960076954 A KR 19960076954A KR 100399780 B1 KR100399780 B1 KR 100399780B1
Authority
KR
South Korea
Prior art keywords
current collector
lithium secondary
secondary battery
drying
tank
Prior art date
Application number
KR1019960076954A
Other languages
Korean (ko)
Other versions
KR19980057655A (en
Inventor
노환진
이하영
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1019960076954A priority Critical patent/KR100399780B1/en
Publication of KR19980057655A publication Critical patent/KR19980057655A/en
Application granted granted Critical
Publication of KR100399780B1 publication Critical patent/KR100399780B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • C23G5/02Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents using organic solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Electrochemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A method for activating the current collector for a lithium secondary battery is provided, to improve the adhesive strength between a current collector and an active material and conductivity, thereby enhancing the lifetime and performance of a battery. CONSTITUTION: The method comprises the steps of removing the oil component on a current collector in an acetone tank(21); removing the oxide layer formed on the current collector in an acid or base solution tank(22); washing the current collector free from an oxide layer with distilled water in a distilled water tank(23); drying the washed one in a drying furnace(24); and coating a polymer matrix composition comprising a conducting agent, a binder and a solvent on both surfaces of a current collector and drying it in a drying furnace(26). Preferably the conducting agent is carbon black or graphite; and the binder is polyvinylidene fluoride or polytetrafluoroethylene.

Description

리튬 2차전지용 집전체의 활성화방법Activation method of current collector for lithium secondary battery

본 발명은 리튬 2차전지용 집전체의 활성화방법에 관한 것으로서, 상세하기로는 집전체의 표면을 전처리하여 전극 활물질과의 접착력과 도전성을 향상시키는 동시애 연속적인 처리로 제품의 대량생산시 적용할 수 있는 리튬 2차전지용 집전체의 활성화방법에 관한 것이다.The present invention relates to a method for activating a current collector for a lithium secondary battery. Specifically, the present invention can be applied to mass production of a product by simultaneously treating the surface of the current collector to improve adhesion and conductivity with an electrode active material. The present invention relates to a method for activating a current collector for a lithium secondary battery.

비디오 카메라, 휴대용 전화, 휴대용 PC 등의 휴대용 무선 기기의 경량화 및 고기능화가 진행됨에 따라, 그 구동용 전원으로서 쓰이는 2차 전지에 대해서 많은 연구가 이루어지고 있다. 지금까지 개발된 2차전지는 그 종류가 10여개에 달하지만 가장 많이 사용되고 있는 것으로는 니켈카드뮴전지, 니켈수소전지, 니켈아연전지, 리튬 2차전지 등이 있다. 이중에서 리튬 2차전지는 장수명, 고용량 등의 우수한 특성으로 인하여 차세대 동력원으로서 가장 주목을 받고 있다.As the weight reduction and high functionality of portable wireless devices such as video cameras, portable telephones, and portable PCs have progressed, much research has been conducted on secondary batteries used as driving power sources. The secondary batteries that have been developed so far are about 10 types, but the most used ones are nickel cadmium batteries, nickel hydrogen batteries, nickel zinc batteries, and lithium secondary batteries. Among them, lithium secondary batteries are attracting the most attention as next generation power sources due to their excellent characteristics such as long life and high capacity.

리튬 2차전지의 연구 개발은 1970년대초부터 시작되어 세계 각지의 연구기관들이 치열한 개발 경쟁을 벌여 실용화에 앞장서고 있다. 소니 에너지 테크사는 리튬코발트산화물 활물질을 이용한 리튬 양극과 탄소재 음극으로 구성된 리튬-탄소계 2차전지를 개발하였고, 몰리 에너지사는 리튬니켈산화물 활물질을 이용한 리튬 양극과 탄소재 음극으로 구성된 리튬-탄소계 2차전지를 상품화하였다.The research and development of lithium secondary batteries began in the early 1970s, and research institutes around the world are fiercely competing for development. Sony Energy Tech Co., Ltd. has developed a lithium-carbon secondary battery composed of a lithium positive electrode using a lithium cobalt oxide active material and a carbon-based negative electrode, and Molly Energy Co., Ltd. A commercial battery was commercialized.

리튬 2차전지의 양극 활물질에는 리튬코발트산화물(LiCoO2), 리튬니켈산화물(LiNiO2), 리튬망간산화물(LiMn2O4) 등이 이용되고 있고, 음극 활물질에는 리튬 금속이나 그 합금, 탄소재료 등이 이용된다. 그리고 전해질로는 유기 액체 전해질이나 고체 전해질이 사용된다. 그런데 전해질로서 유기 액체 전해질을 사용하는 경우, 누액에 따른 화재의 위험성 및 기화에 따른 전지의 파손 등과 같은 안전성과 관련한 많은 문제점을 내포하고 있다. 이러한 문제점을 해결하기 위한 노력으로서 전해액의 누출 위험이 없고 가공하기가 용이한 고체 전해질에 대한 연구가 많은 관심속에서 진행되고 있으며, 그 중에서도 특히 고분자 고체 전해질에 대한 연구가 활발히 진행되고 있다.Lithium cobalt oxide (LiCoO2), lithium nickel oxide (LiNiO2), lithium manganese oxide (LiMn2O4), etc. are used for the positive electrode active material of a lithium secondary battery, and lithium metal, its alloy, a carbon material, etc. are used for a negative electrode active material. As the electrolyte, an organic liquid electrolyte or a solid electrolyte is used. However, when the organic liquid electrolyte is used as an electrolyte, there are many problems related to safety, such as a risk of fire due to leakage and breakage of the battery due to vaporization. In an effort to solve this problem, research on a solid electrolyte that is easy to process without an electrolyte leakage risk is proceeding in a lot of interests, and particularly, research on a polymer solid electrolyte is particularly active.

고체 전해질이 이온 전도성을 가지기 위해서는 유기 전해액을 포함하고 있는 것이 바람직하다. 이 때 유기 전해액은 고분자 망상 구조의 빈 공간에 흡수되어 직류전원을 통과시키면 전류의 방향에 따라 리튬 이온을 이동시키는 경로로서 작용하게 된다. 어야 한다. 여기에서 유기전해액은 리튬과의 반응성이 적은 비수용성 유기용매, 예를 들면 에틸렌 카보네이트, 디메틸렌 카보네이트, γ-부티로아세톤, 프로필렌 카보네이트 등과, 이온성 리튬염, 예를 들어 과염소산리튬(LiClO4), 보론플루오로화리튬(LiBF4), 트리플루오로메탄산술폰화리튬(LiCF3SO3) 등으로 구성된다.In order for a solid electrolyte to have ion conductivity, it is preferable to contain the organic electrolyte solution. At this time, the organic electrolyte is absorbed in the empty space of the polymer network structure and passes through the DC power supply to act as a path for moving the lithium ions in the direction of the current. Should be. Herein, the organic electrolyte may be a non-aqueous organic solvent having low reactivity with lithium, such as ethylene carbonate, dimethylene carbonate, γ-butyroacetone, propylene carbonate, etc., an ionic lithium salt such as lithium perchlorate (LiClO 4), Lithium boron fluoride (LiBF 4), lithium trifluoromethane sulfonate (LiCF 3 SO 3), and the like.

도 1은 통상적인 리튬 2차전지의 적층 구조를 개략적으로 나타낸 사시도이다. 이를 참조하면, 리튬 2차전지는 양극 집전체 (11), 양극 조성물층 (12), 고분자 전해질층 (13), 음극 조성물층 (14) 및 음극 집전체 (15)가 순차적으로 적층되어 있는 구조를 갖는다.1 is a perspective view schematically showing a laminated structure of a conventional lithium secondary battery. Referring to this, the lithium secondary battery has a structure in which the positive electrode current collector 11, the positive electrode composition layer 12, the polymer electrolyte layer 13, the negative electrode composition layer 14, and the negative electrode current collector 15 are sequentially stacked. Have

상기 양극 집전체로는 알루미늄 박막(foil) 또는 그리드(grid)를 주로 사용하고, 음극 집전체로는 구리 박막(foil) 또는 그리드(grid)를 주로 사용하고 있다. 그런데 이러한 집전체 표면상에는 산화막이 형성되어 있어서, 후에 그 위에 도포되는 전극 활물질과의 접착력을 약화시키고 도전성을 저하시켜서 결국 전지의 성능을 저하시키는 문제점이 있다.As the cathode current collector, an aluminum thin film or a grid is mainly used, and as the anode current collector, a copper thin film or a grid is mainly used. However, there is a problem that an oxide film is formed on the surface of the current collector, thereby weakening the adhesive strength with the electrode active material applied thereon, lowering the conductivity, and eventually lowering the performance of the battery.

상기 문제점을 해결하기 위하여 집전체를 사용하기 이전에 집전체를 산을 이용하여 세척한 후 폴리비닐리덴플루라이드 등을 포함하는 고분자 매트릭스 조성물을 코팅하는 방법을 사용하고 있다. 그런데 이 방법은 제품의 대량생산시 적용하기가 곤란하다는 문제점이 있다.In order to solve the problem, before using the current collector, the current collector is washed with an acid, and then a method of coating a polymer matrix composition including polyvinylidene fluoride is used. However, this method has a problem that it is difficult to apply during mass production of the product.

본 발명이 이루고자 하는 기술적 과제는 상기 문제점을 해결하여 집전체를 연속적으로 처리하여 제품의 대량생산시 적용할 수 있는 리튬 2차전지용 집전체의 활성화방법을 제공하는 것이다.The technical problem to be achieved by the present invention is to provide a method for activating a current collector for a lithium secondary battery that can be applied to mass production of products by continuously processing the current collector to solve the above problems.

도 1은 통상적인 리튬 2차전지의 적층 구조를 개략적으로 나타낸 사시도이고,1 is a perspective view schematically showing a laminated structure of a conventional lithium secondary battery,

도 2는 본 발명에 따른 리튬 2차전지용 집전체의 활성화공정을 순차적으로 나타낸 도면이다.2 is a view sequentially showing the activation process of the current collector for a lithium secondary battery according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

11. 양극 집전체 12. 양극 조성물층11. Positive electrode current collector 12. Positive electrode composition layer

13. 고분자 전해질층 14. 음극 조성물층13. Polymer electrolyte layer 14. Anode composition layer

15. 음극 집전체 21. 아세톤 탱크15. Anode Collector 21. Acetone Tank

22. 산/염기 용액 탱크23. 증류수 탱크22. Acid / Base Solution Tanks 23. Distilled water tank

24, 26. 건조로25. 코터기24, 26. Drying furnace 25. Cotter

27. 롤러(roller)27. Roller

상기 과제를 이루기 위하여, 본 발명에서는 (a) 아세톤 탱크에서 집전체상의 오일성분을 제거하는 단계; (b) 산 또는 염기 용액 탱크에서 집전체상에 형성된 산화막을 제거하는 단계; (c) 산화막이 제거된 집전체를 증류수로 세척하는 단계; (d) 건조로에서 상기 결과물을 건조하는 단계; (e) 집전체의 양 면에 도전제, 결합제 및 용매를 포함하는 고분자 매트릭스 조성물을 코팅한 후, 건조로에서 건조하는 단계를 포함하는 것을 특징으로 하는 리튬 2차전지용 집전체의 활성화방법을 제공한다.In order to achieve the above object, the present invention (a) removing the oil component on the current collector in the acetone tank; (b) removing the oxide film formed on the current collector in an acid or base solution tank; (c) washing the current collector from which the oxide film has been removed with distilled water; (d) drying the resultant in a drying furnace; (e) coating a polymer matrix composition comprising a conductive agent, a binder and a solvent on both sides of the current collector, and then drying in a drying furnace to provide a method for activating a current collector for a lithium secondary battery. .

본 발명에서는 상기 (d)단계와 (e)단계 사이에 아세톤 탱크에서 세척하는 단계를 더 거침으로써 그 세정효과를 높일 수 있다.In the present invention, the washing effect can be enhanced by further washing the acetone tank between the steps (d) and (e).

이하, 도 2를 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to FIG. 2.

먼저, 집전체가 아세톤 탱크 (21)를 거치면서 그 표면상에 있는 오일 성분들이 제거된다. 그리고 나서, 산 또는 염기 용액 탱크 (22)를 거치면서 집전체상에 형성된 산화막이 제거된다. 이 때 산 용액으로는 0.1 내지 1M 농도의 염산(HCl) 또는 질산(HNO3) 용액을 사용하고, 염기 용액으로서 0.5 내지 2M 농도의 수산화나트륨 또는 수산화칼륨 수용액을 사용한다. 여기에서 집전체의 소재가 알루미늄인 경우에는 염기 용액을 사용하는 것이 효과적이며, 구리 소재인 경우에는 산 용액을 사용하는 것이 바람직하다.First, as the current collector passes through the acetone tank 21, oil components on its surface are removed. Then, the oxide film formed on the current collector is removed while passing through the acid or base solution tank 22. At this time, a hydrochloric acid (HCl) or nitric acid (HNO3) solution at a concentration of 0.1 to 1 M is used as an acid solution, and an aqueous sodium hydroxide or potassium hydroxide solution at a concentration of 0.5 to 2 M is used as a base solution. Here, when the material of the current collector is aluminum, it is effective to use a base solution, and when it is a copper material, it is preferable to use an acid solution.

그 후 집전체 표면상에 사용된 산 또는 염기 용액이 잔류되는 것을 방지하기 위하여 증류수 탱크 (23)를 거쳐 세척한다. 이 때 산 또는 염기 용액이 완전히 제거되지 않고 남아 있게 되면 집전체를 다시 산화시킬 우려가 있으므로 충분하게 서척하는 것이 필수적이다. 그리고 나서 건조로 (24)에서 건조한다. 이러한 건조단계를 실시하기 이전에 아세톤 탱크조를 다시 한 번 거치면 세정효과를 보다 높일 수 있다.It is then washed via distilled water tank 23 to prevent residual acid or base solution used on the current collector surface. At this time, if the acid or base solution is left without being completely removed, there is a risk of oxidizing the current collector again. It is then dried in a drying furnace 24. If the acetone tank tank is once again passed before the drying step, the cleaning effect can be further increased.

건조된 집전체의 양 면에 도전제, 결합제, 용매 등을 포함하는 고분자 매트릭스 조성물을 코팅한다. 조성물 코팅시 코터기로서 도 2에 도시된 바와 같은 코터기 즉, 원형 회전 브러쉬 (25)를 이용하면 집전체 표면상에 상기 고분자 매트릭스 조성물을 연속적으로 코팅할 수 있다. 이렇게 고분자 매트릭스 조성물을 집전체의 양 면상에 코팅처리하게 되면 후에 도포되는 전극 활물질과의 접착력을 향상시킬 수 있는 동시에 도전성을 개선할 수 있는 효과가 있다. 상기 도전제로는 카본블랙, 흑연 등을 사용할 수 있으며, 상기 결합제로는 폴리비닐리덴플로라이드, 폴리테트라플루오로에틸렌 등을 사용할 수 있다.On both sides of the dried current collector is coated with a polymer matrix composition comprising a conductive agent, a binder, a solvent and the like. When coating the composition, a coater as shown in FIG. 2, that is, a circular rotary brush 25, can be used to continuously coat the polymer matrix composition on the surface of the current collector. When the polymer matrix composition is coated on both sides of the current collector in this way, it is possible to improve the adhesion to the electrode active material to be applied later and at the same time improve the conductivity. Carbon black, graphite, and the like may be used as the conductive agent, and polyvinylidene fluoride, polytetrafluoroethylene, and the like may be used as the binder.

고분자 매트릭스 조성물의 코팅이 완료되면 최종적으로 건조로 (26)에서 건조한다.When the coating of the polymer matrix composition is complete, it is finally dried in a furnace 26.

도 2에 도시된 바와 같이, 본 발명의 집전체 활성화방법은 여러개의 롤러 (27)를 이용하여 처음부터 마지막 단계까지 단시간안에 많은 양의 집전체를 효과적으로 활성화시킬 수 있어서 제품의 대량생산에 적용할 수 있는 방법이다.As shown in Fig. 2, the current collector activating method of the present invention can effectively activate a large amount of current collectors in a short time from the first to the last stage by using a plurality of rollers 27 to be applied to mass production of products. That's how it can be.

본 발명에 따르면, 리튬 2차전지용 집전체를 단시간안에 많은 양의 집전체를 연속적으로 활성화시킬 수 있으므로 제품의 대량생산이 가능해진다. 이러한 활성화 처리로 인하여 집전체와 전극 활물질간의 접착력이 높아지고 도전성이 향상되어 결국 전지의 수명 및 성능이 향상된다.According to the present invention, since the current collector for a lithium secondary battery can activate a large amount of current collectors in a short time, mass production of the product becomes possible. Due to such activation treatment, the adhesion between the current collector and the electrode active material is increased, the conductivity is improved, and thus the life and performance of the battery are improved.

Claims (6)

(a) 아세톤 탱크에서 집전체상의 오일성분을 제거하는 단계;(a) removing the oil component on the current collector in the acetone tank; (b) 산 또는 염기 용액 탱크에서 집전체상에 형성된 산화막을 제거하는 단계;(b) removing the oxide film formed on the current collector in an acid or base solution tank; (c) 산화막이 제거된 집전체를 증류수로 세척하는 단계;(c) washing the current collector from which the oxide film has been removed with distilled water; (d) 건조로에서 상기 결과물을 건조하는 단계;(d) drying the resultant in a drying furnace; (e) 집전체의 양 면에 도전제, 결합제 및 용매를 포함하는 고분자 매트릭스 조성물을 코팅한 후, 건조로에서 건조하는 단계를 포함하는 것을 특징으로 하는 리튬 2차전지용 집전체의 활성화방법.(e) coating a polymer matrix composition comprising a conductive agent, a binder and a solvent on both sides of the current collector, followed by drying in a drying furnace. 제1항에 있어서, 상기 (d)단계와 (e)단계 사이에 아세톤 탱크조에서 세척하는 단계가 더 포함되는 것을 특징으로 하는 리튬 2차전지용 집전체의 활성화방법.The method according to claim 1, further comprising the step of washing in an acetone tank between the steps (d) and (e). 제1항에 있어서, 상기 (b) 단계에서 산 용액이 0.1 내지 1M 농도의 염산 및 질산으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 리튬 2차전지용 집전체의 활성화방법.The method of claim 1, wherein the acid solution in step (b) is selected from the group consisting of hydrochloric acid and nitric acid at a concentration of 0.1 to 1 M. 제1항에 있어서, 상기 (b) 단계에서 염기 용액이 0.5 내지 2M 농도의 수산화나트륨 및 수산화칼륨으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 리튬 2차전지용 집전체의 활성화방법.The method of claim 1, wherein the base solution in step (b) is selected from the group consisting of sodium hydroxide and potassium hydroxide at a concentration of 0.5 to 2M. 제1항에 있어서, 상기 도전제가 카본 블랙 및 흑연으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 리튬 2차전지용 집전체의 활성화방법.The method of activating a current collector for a lithium secondary battery according to claim 1, wherein the conductive agent is selected from the group consisting of carbon black and graphite. 제1항에 있어서, 상기 결합제가 폴리비닐리덴플로라이드 및 폴리테트라플루오로에틸렌으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 리튬 2차전지용 집전체의 활성화방법.The method of activating a current collector for a lithium secondary battery according to claim 1, wherein the binder is selected from the group consisting of polyvinylidene fluoride and polytetrafluoroethylene.
KR1019960076954A 1996-12-30 1996-12-30 Activation method of current collector for lithium secondary battery KR100399780B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960076954A KR100399780B1 (en) 1996-12-30 1996-12-30 Activation method of current collector for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960076954A KR100399780B1 (en) 1996-12-30 1996-12-30 Activation method of current collector for lithium secondary battery

Publications (2)

Publication Number Publication Date
KR19980057655A KR19980057655A (en) 1998-09-25
KR100399780B1 true KR100399780B1 (en) 2003-11-14

Family

ID=37422274

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960076954A KR100399780B1 (en) 1996-12-30 1996-12-30 Activation method of current collector for lithium secondary battery

Country Status (1)

Country Link
KR (1) KR100399780B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445416B1 (en) * 1997-07-28 2004-10-14 삼성에스디아이 주식회사 Battery collector capable of preventing short circuit and separation of active materials, and manufacturing method thereof
KR100502319B1 (en) * 1998-12-16 2005-09-26 삼성에스디아이 주식회사 Method for activating electrode and lithium ion battery using thereof
KR100537606B1 (en) * 1999-08-23 2005-12-19 삼성에스디아이 주식회사 Cleaning apparatus for collector of cell
KR100591615B1 (en) * 2000-03-21 2006-06-20 에스케이씨 주식회사 Lithium secondary battery
CN110661004A (en) * 2019-08-23 2020-01-07 河南豫清新能源产业有限公司 Method for removing oxidation film of lithium battery aluminum foil

Also Published As

Publication number Publication date
KR19980057655A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
CN1331252C (en) Positive pole for lithium-sulfur cell, its preparation method and lithium-sulfur cell
CN106784629A (en) A kind of lithium metal battery cathode interface method of modifying
Komaba et al. Polyacrylate modifier for graphite anode of lithium-ion batteries
JP5454692B2 (en) Air electrode, metal air battery, and method of manufacturing air electrode for metal air battery
CN107732293A (en) The preparation method of class sandwich structure solid polymer electrolyte membrane and its application in solid lithium ion battery
CN108232111A (en) A kind of anode composite pole piece of solid state battery and preparation method thereof
JPH1135765A (en) Solid polyelectrolyte and its production
US9397365B2 (en) Solid electrolyte material and all solid-state lithium secondary battery
CN102034981A (en) Collector used for negative pole of lithium ion battery
CN107731542B (en) A kind of solid state battery capacitor
JP6494854B2 (en) Lithium-air battery positive electrode having side reaction prevention film partially introduced with metal catalyst, lithium-air battery including the same, and method for producing the same
CN105047861A (en) Sulfur-carbon composite material and preparation method thereof
CN112038568A (en) Preparation method and continuous production equipment of controllable cathode pre-embedded lithium
JP4544408B2 (en) Secondary battery electrolyte and secondary battery using the same
CN111370791A (en) Formation method of lithium-sulfur battery and lithium-sulfur battery prepared by formation method
CN111952670A (en) Lithium ion battery with wide working temperature range
Ma et al. A strategy associated with conductive binder and 3D current collector for aqueous zinc-ion batteries with high mass loading
JP2006286496A (en) Polymer cell
CN112928343B (en) Water system copper ion battery suitable for large-scale energy storage application
JP4168241B2 (en) Non-aqueous electrolyte battery
KR100399780B1 (en) Activation method of current collector for lithium secondary battery
JP4258711B2 (en) Non-aqueous electrolyte battery
JP2003223899A (en) Manufacturing method of negative electrode plate and lithium secondary battery using the negative electrode plate
JP3664560B2 (en) Lithium secondary battery
JP2007095641A (en) Battery constructing material

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120823

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130827

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee