JP2007095641A - Battery constructing material - Google Patents

Battery constructing material Download PDF

Info

Publication number
JP2007095641A
JP2007095641A JP2005307760A JP2005307760A JP2007095641A JP 2007095641 A JP2007095641 A JP 2007095641A JP 2005307760 A JP2005307760 A JP 2005307760A JP 2005307760 A JP2005307760 A JP 2005307760A JP 2007095641 A JP2007095641 A JP 2007095641A
Authority
JP
Japan
Prior art keywords
active material
coating agent
electrode active
lithium ion
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005307760A
Other languages
Japanese (ja)
Inventor
Masaru Sugita
勝 杉田
Masayuki Yoshio
真幸 芳尾
Hirokichi Nakamura
博吉 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005307760A priority Critical patent/JP2007095641A/en
Publication of JP2007095641A publication Critical patent/JP2007095641A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode active material coating agent capable of improving charge and discharge characteristics of a lithium ion secondary battery and increasing its capacity, by preventing decomposition of an electrolyte caused by charge and discharge for a long time. <P>SOLUTION: When manufacturing an electrode acting as the constituent material of the lithium ion battery, a high polymer solution having a kind of carboxymethylcellose sodium salt obtained by making graphite based carbon acting as an electrode active material dissolved and dispersed in water is used for electrode active material carbon as a coating agent to constitute a nonaqueous electrolyte lithium ion secondary battery. Thereby, since decomposition of the nonaqueous electrolyte can be prevented for a long time, a more excellent lithium ion secondary battery capable of keeping stable and good charge and discharge characteristics for a long time can be manufactured, in comparison with a nonaqueous electrolyte lithium ion secondary battery in which a carbon electrode is not coated with this coating agent, or a nonaqueous electrolyte lithium ion secondary battery using a coating agent containing no coating agent pertinent to this invention as the electrode active material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムイオン二次電池、リチウム電池、およびその他の電池構造を有するものであって、被覆材料が使用される分野、ここに、電解液は、電解質と溶剤からなりたっているか、若しくは、電解質と高分子、若しくは電解液と高分子と溶剤からなりたっている。電極材料とは、被覆剤により被覆された活物質を含む材料と導電剤および結着剤からなりたっている。  The present invention has a lithium ion secondary battery, a lithium battery, and other battery structures, where a coating material is used, where the electrolyte is composed of an electrolyte and a solvent, or It consists of electrolyte and polymer, or electrolyte, polymer and solvent. The electrode material includes a material containing an active material coated with a coating agent, a conductive agent, and a binder.

近年、電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型軽量で、高エネルギー密度を要する二次電池への要望が高い。このような点で、非水系二次電池、特にリチウムイオン二次電池は、とりわけ高電圧、高エネルギー密度を有する電池として期待が大きい。2. Description of the Related Art In recent years, electronic devices have become rapidly portable and cordless, and there is a strong demand for secondary batteries that are compact and lightweight and require high energy density as power sources for driving these devices. In this respect, non-aqueous secondary batteries, particularly lithium ion secondary batteries, are particularly expected as batteries having high voltage and high energy density.

特に、最近LiCoO2,LiNiO2などのリチウム複合酸化物を正極活物質とし、負極物質に炭素材料を用いた電池系が、高エネルギー密度のリチウムイオン二次電池として注目を集めている。この電池系の特徴は、電池電圧がたかいことと、正負極ともにインターカーレーション反応を利用していることである。すでに、LiCoO2を正極に、炭素材料を負極に用いた電池が商品化されている。このようなリチウムイオン二次電池の場合には、充放電反応を均一に行なうことが重要な要素であるため、おおくの場合、正極も負極も金属箔の集電体に活物質を含む合剤層を塗布したシート状の極板を用いている。また集電体の素材は、電池に使用される場合の各々の作動電位で電気化学的に安定であるという理由で正極の集電用金属箔にはアルミニウム、負極の金属箔には銅などが使用されている。  In particular, a battery system using a lithium composite oxide such as LiCoO 2 or LiNiO 2 as a positive electrode active material and a carbon material as a negative electrode material has recently attracted attention as a high energy density lithium ion secondary battery. The characteristics of this battery system are that the battery voltage is high and that both positive and negative electrodes use an intercalation reaction. Batteries using LiCoO 2 as a positive electrode and a carbon material as a negative electrode have already been commercialized. In the case of such a lithium ion secondary battery, since it is an important factor to perform the charge / discharge reaction uniformly, in most cases, a mixture in which both the positive electrode and the negative electrode include an active material in the current collector of the metal foil A sheet-like electrode plate coated with a layer is used. In addition, the current collector material is made of aluminum for the current collector metal foil for the current collector of the positive electrode and copper for the metal foil of the negative electrode because it is electrochemically stable at each operating potential when used in a battery. in use.

今までにもリチウムイオン二次電池に使用される非水系非プロトン系溶剤の充電放電にともなう分解を防止するために、技術的な工夫がなされてきた。
電解液にある種の有機物を添加することにより、負極界面におけるプロピレンカーボネート(PC)やエチレンカーボネート(EC)の還元分解を防止する方法、負極活物質である黒鉛表面をCVD法によりトルエンやエチレンを熱分解してある種の炭素構造にすることにより従来黒鉛に接触することによるPC等の分解を防止する方法、負極活物質である黒鉛表面の一部を酸化させてまたは酸化エッチングさせてPC等の非プロトン溶剤の分解を防止する方法、あるいは負極活物質である黒鉛をアクリル系樹脂の放射線重合やエチレンオキサイドの重合物を表面に塗布する等の方法により非プロトン溶剤の分解を防止する方法が提案されており、負極活物質である黒鉛製造企業や電解液製造企業での添加剤含有電解液の実施がなされている。
In the past, technical ingenuity has been made in order to prevent decomposition due to charging and discharging of nonaqueous aprotic solvents used in lithium ion secondary batteries.
A method of preventing the reductive decomposition of propylene carbonate (PC) and ethylene carbonate (EC) at the negative electrode interface by adding a certain organic substance to the electrolytic solution, and the graphite surface which is the negative electrode active material with toluene or ethylene by the CVD method. Conventionally, a method of preventing decomposition of PC or the like by contacting with graphite by making a certain carbon structure by pyrolysis, PC or the like by oxidizing a part of the graphite surface as the negative electrode active material or oxidizing etching There is a method for preventing decomposition of the aprotic solvent, or a method for preventing decomposition of the aprotic solvent by a method such as radiation polymerization of acrylic resin or application of ethylene oxide polymer to the surface of graphite, which is a negative electrode active material. Proposed and electrolyte-containing electrolytes have been implemented in graphite and electrolyte manufacturing companies that are negative electrode active materials

しかし、被覆剤を使用してリチウムイオン電池負極を作製するに際し、環境的に検討されて改善されしかも作製されたリチウムイオン電池の高性能化と高容量化が維持されていることを内容とした特許は少ない。
しかも使用される被覆剤が極めて通常の薬品であれば好ましい。従って、リチウムイオン電池に使用される非水電解液である非プロトン系溶剤の充電放電による分解を長期的に防止することが出来、リチウムイオン電池の長期的充電放電特性の改善がなされ、さらに製造されたリチウムイオン電池が高性能であり、高容量であれば好ましい。
さらに、通常の電解液を使用することが出来、あるいは通常の負極活物質である黒鉛を使用することが出来れば、リチウム電池製造に関わる製造コストを低減させることが可能である。
However, when producing a negative electrode for a lithium ion battery using a coating agent, the content is that the improved lithium ion battery that has been studied and improved environmentally has been maintained and has a higher capacity. There are few patents.
Moreover, it is preferable if the coating agent used is a very ordinary chemical. Therefore, it is possible to prevent the long-term decomposition of the aprotic solvent, which is a non-aqueous electrolyte used in the lithium-ion battery, by charging and discharging, and the long-term charging and discharging characteristics of the lithium-ion battery are improved. It is preferable if the lithium ion battery has high performance and high capacity.
Furthermore, if a normal electrolyte solution can be used or graphite, which is a normal negative electrode active material, can be used, it is possible to reduce manufacturing costs related to lithium battery manufacturing.

リチウムイオン二次電池は正極および負極および電解液および分離膜より構成されており、正極は正極活物質、導電剤、結着剤および集電体金属箔膜より構成されており、負極は負極活物質特に黒鉛などの炭素、結着剤、導電剤および集電体金属箔膜より構成されており、電解液は非水系非プロトン系溶剤と電解質から構成されており、これらでリチウムイオン二次電池を構成して成る電池の充放電にともなう非プロトン溶剤の分解を長期的に防止することが出来、したがって高容量化を安定化させることが可能であれば望ましい。発明者等は、鋭意研究した結果、炭素負極活物質を予め本発明のカルボキシメチルセルロースアルカリ塩類で被覆し、この被覆された炭素負極活物質を集電体金属薄膜に塗布して構成されるリチウムイオン二次電池が、使用されるプロピレンカーボネート(PC)等非プロトン溶剤の充電放電にともなう分解を長期的に防止することが出来ることを発見し、非プロトン溶剤の分解から派生する電解質の分解や電池特性に悪影響を与える分解性生物の発生を長期的に防止することが可能となり、本発明の被覆剤を使用したリチウムイオン二次電池の充電放電特性の飛躍的な改良に成功した。さらに、本発明のカルボキシメチルセルロースアルカリ塩類被覆剤およびそれらとポリアニリンスルホン酸類混合物系被覆剤は環境面でも優れている水溶解系高分子の結着剤でもあり、したがって負極集電体である金属薄膜直接に塗布することも容易である。A lithium ion secondary battery is composed of a positive electrode and a negative electrode, an electrolyte solution, and a separation membrane. The positive electrode is composed of a positive electrode active material, a conductive agent, a binder, and a current collector metal foil film, and the negative electrode is a negative electrode active material. The material is composed of carbon such as graphite, binder, conductive agent and current collector metal foil film, and the electrolyte is composed of non-aqueous aprotic solvent and electrolyte. It is desirable if it is possible to prevent the aprotic solvent from being decomposed in the long term due to charging / discharging of the battery comprising the above, and thus to stabilize the increase in capacity. As a result of earnest research, the inventors have previously coated a carbon negative electrode active material with the carboxymethylcellulose alkali salt of the present invention, and applied the coated carbon negative electrode active material to a current collector metal thin film to form a lithium ion It was discovered that secondary batteries can prevent long-term degradation associated with charge and discharge of aprotic solvents such as propylene carbonate (PC) used, and electrolytes and batteries derived from the decomposition of aprotic solvents Generation of degradable organisms that adversely affect the characteristics can be prevented for a long period of time, and the charge-discharge characteristics of the lithium ion secondary battery using the coating agent of the present invention have been dramatically improved. Furthermore, the carboxymethylcellulose alkali salt coating agents and the polyaniline sulfonic acid mixture coating agents of the present invention are also water-soluble polymer binders that are excellent in terms of the environment, and therefore the metal thin film directly serving as the negative electrode current collector. It is also easy to apply to.

ここに、ポリアニリンスルホン酸類を使用したリチウムイオン電池正極を作製することは、米国電気化学会(Electrochemical Society)にて、逐次発表を重ねてきた。その成果として、従来結着剤用樹脂としてポリフッ化ビニリデン(PVDF)を使用し、その溶剤として、N−メチルピロリドン(NMP)等の毒性の強い溶剤が使用されてきていた製造方法を、結着剤用樹脂としてポリアニリンスルホン酸類を使用し、その溶剤として水を使用できることが判明した。このポリアニリンスルホン酸類を使用した場合には、充電放電サイクル試験において、ポリフッ化ビニリデンを使用して作製したリチウムイオンになんら劣ることが無く、しかも結着剤の添加量は、ポリフッ化ビニリデン(PVDF)を使用した場合には多い添加量が必要であるため、単位容積あたりの正極活物質の添加量が減少しておりそのために単位容積あたりの容量が制限されるのに対し、ポリアニリンスルホン酸類を使用した場合には、少ない添加量で済むために、単位容積あたりの正極活物質の添加量が増加しておりそのために単位容積あたりの容量が相対的に増加することになる。
そのような従来の研究と公開特許公報(特開2003−142104)に記載された発明内容をさらに黒鉛等負極活物質の被覆剤に応用し鋭意研究した結果、電池の高性能化と電池製造時の環境面に配慮された電極被覆剤を見出した。
Here, production of a lithium ion battery positive electrode using polyaniline sulfonic acids has been successively presented at the American Electrochemical Society. As a result, a conventional manufacturing method in which polyvinylidene fluoride (PVDF) has been used as a binder resin, and a highly toxic solvent such as N-methylpyrrolidone (NMP) has been used as the solvent. It was found that polyaniline sulfonic acids can be used as the resin for the agent and water can be used as the solvent. When these polyaniline sulfonic acids are used, in the charge / discharge cycle test, there is no inferiority to lithium ions produced using polyvinylidene fluoride, and the amount of binder added is polyvinylidene fluoride (PVDF). The amount of positive electrode active material added per unit volume is reduced due to the large amount of addition required, so that the capacity per unit volume is limited, whereas polyaniline sulfonic acids are used. In this case, since the addition amount is small, the addition amount of the positive electrode active material per unit volume is increased, so that the capacity per unit volume is relatively increased.
As a result of diligent research by applying such conventional research and the invention described in the published patent publication (Japanese Patent Application Laid-Open No. 2003-142104) to a coating material for a negative electrode active material such as graphite, the performance of the battery is improved and the battery is manufactured. The electrode coating agent in consideration of the environmental aspect was found.

次に好ましい実施の形態を列挙して、本発明を更に詳細に説明する。本発明の非水電解液二次電池用電解液は負極材料を集電材料上に構成する方法とその方法により選定された負極材料を特徴としている。Next, preferred embodiments will be listed to describe the present invention in more detail. The electrolyte for non-aqueous electrolyte secondary batteries of the present invention is characterized by a method for forming a negative electrode material on a current collecting material and a negative electrode material selected by the method.

本発明に使用される集電体としては、例えばアルミニウム、銅等の金属箔が挙げられる。金属箔の厚さとしては、10から30ミクロンメートル程度のものを用いる。Examples of the current collector used in the present invention include metal foils such as aluminum and copper. The thickness of the metal foil is about 10 to 30 microns.

本発明の金属箔集電体に塗布した負極層の乾燥厚みとしては、0.001から5ミクロンメートルの範囲が好ましい。The dry thickness of the negative electrode layer applied to the metal foil current collector of the present invention is preferably in the range of 0.001 to 5 microns.

本発明で用いられる正極活物質としては、例えば、LiCoO2,LiNiO2,LiMn2O4等のリチウム酸化物、TiO2,MnO2,MoO3,V2O5等のカルコゲン化合物のうちの一種、あるいは複数種が組み合わせて用いられる。一方、負極活物質としては天然黒鉛、合成黒鉛、その他多層芳香族炭素等の炭素材料が用いられる。特に、LiCoO2を正極活物質として、そして黒鉛系活物質を負極材料として用いることにより4V程度の高い放電電圧のリチウム系二次電池が得られる。Examples of the positive electrode active material used in the present invention include lithium oxides such as LiCoO2, LiNiO2, and LiMn2O4, and one or more kinds of chalcogen compounds such as TiO2, MnO2, MoO3, and V2O5. On the other hand, as the negative electrode active material, natural graphite, synthetic graphite, and other carbon materials such as multilayer aromatic carbon are used. In particular, a lithium secondary battery having a high discharge voltage of about 4 V can be obtained by using LiCoO 2 as a positive electrode active material and a graphite-based active material as a negative electrode material.

特に本発明においては、上記の集電体として銅箔等金属箔を用い、負極活物質として炭素を用いる場合には、当該炭素活物質を高分子で被覆することにより充電放電時に非水電解液を分解することを防止することができ長期的に安定した電池特性を持つ非水系電解液二次電池用電極板を提供することが出来る。In particular, in the present invention, when a metal foil such as a copper foil is used as the current collector and carbon is used as the negative electrode active material, the carbon active material is coated with a polymer so that the non-aqueous electrolyte is used during charge and discharge. It is possible to provide an electrode plate for a non-aqueous electrolyte secondary battery having stable battery characteristics over a long period of time.

これらの活物質は形成される塗布層中に均一に分散されることが好ましい。上記活物質を含む塗布液の調整に用いられる被覆剤は、本発明の方法により選定されるカルボキシメチルセルロースアルカリ塩等または当該高分子とその他の高分子との混合物を使用することが出来る。These active materials are preferably dispersed uniformly in the coating layer to be formed. As the coating agent used for the preparation of the coating liquid containing the active material, a carboxymethyl cellulose alkali salt selected by the method of the present invention or a mixture of the polymer and other polymers can be used.

本発明で使用する活物質が含有された塗布液の具体的な調整方法について説明する。先ず、上記に挙げたような材料から適宜に選定された被覆剤溶液と粉末状負極活物質とを水、軽溶剤等の溶媒からなる分散媒体中に入れ更に必要に応じて導電剤を混合させた組成物を、従来公知のホモジナイザー、ボールミル、サンドミル、ロールミル等の分散機を用いて混合分散することにより調製する。A specific method for adjusting the coating solution containing the active material used in the present invention will be described. First, a coating solution appropriately selected from the materials listed above and a powdered negative electrode active material are placed in a dispersion medium composed of a solvent such as water or a light solvent, and a conductive agent is mixed as necessary. The above composition is prepared by mixing and dispersing using a conventional dispersing machine such as a homogenizer, a ball mill, a sand mill, or a roll mill.

この活物質塗布液を前記金属箔集電体の面上に、各種塗布方法を用いて、乾燥厚みで10−200ミクロンメートル、好ましくは50−180ミクロンメートルの範囲で塗布した後、加熱乾燥させる。This active material coating solution is applied on the surface of the metal foil current collector by various coating methods in a dry thickness range of 10-200 microns, preferably 50-180 microns, and then dried by heating. .

更に、上記のようにして塗布および乾燥処理により形成された塗布層の均質性をより向上させるために、当該塗布層に金属ロール、加熱ロール、シートプレス機等を用いてプレス処理を施し、本発明の電極板を形成することが好ましい。更に、上記の電極板を用いて電池の組み立て工程に移る前に、電極板の活物質層中の水分を除去するために、更に加熱処理や減圧処理等を行なうことが好ましい。Further, in order to further improve the homogeneity of the coating layer formed by coating and drying as described above, the coating layer is subjected to a press treatment using a metal roll, a heating roll, a sheet press machine, etc. It is preferable to form the electrode plate of the invention. Furthermore, before the battery assembly process using the above electrode plate, in order to remove moisture in the active material layer of the electrode plate, it is preferable to further perform heat treatment, decompression treatment, or the like.

以上のようにして作製した本発明の負極の非水電解液二次電池用電極板を用いて、例えば、リチウム系二次電池を作製する場合には、電解液として、溶質のリチウム塩を有機溶剤に溶解させた非水電解液が用いられる。非水電解液を形成する溶質のリチウム塩としては、例えば、LiCLO4,LiBF4,LiPF6,LiAsF6,LiCl,LiBr等の無機リチウム塩、およびLiB(C6H5)4,LiN(SO2CF3)2,LiC(SO2CF3)3,LiOSO2CF3,LiOSO2C2F5,LiOSO2C3F7,LiOSO2C4F9,LiOSO2C5F11,LiOSO2C6F13,LiOSO2C7F15等の有機リチウム塩が使用される。When, for example, a lithium-based secondary battery is produced using the negative electrode nonaqueous electrolyte secondary battery electrode plate of the present invention produced as described above, a solute lithium salt is used as the electrolyte. A nonaqueous electrolytic solution dissolved in a solvent is used. Examples of the solute lithium salt that forms the non-aqueous electrolyte include inorganic lithium salts such as LiCLO4, LiBF4, LiPF6, LiAsF6, LiCl, LiBr, and LiB (C6H5) 4, LiN (SO2CF3) 2, LiC (SO2CF3). Organolithium salts such as 3, LiOSO2CF3, LiOSO2C2F5, LiOSO2C3F7, LiOSO2C4F9, LiOSO2C5F11, LiOSO2C6F13, LiOSO2C7F15 are used.

この際に使用される有機溶媒としては、環状エステル類、鎖状エステル類、環状エーテル類、鎖状エーテル類等挙げられる。環状エステル類としては、例えば、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチルーガンマブチロラクトン、アセチルーガンマブチロラクトン、ガンマバレロラクトン等挙げられる。Examples of the organic solvent used in this case include cyclic esters, chain esters, cyclic ethers, chain ethers and the like. Examples of the cyclic esters include propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone.

鎖状エステル類としては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカ−ボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等が挙げられる。Examples of chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester.

環状エーテル類としては、例えばテトラハイドロキノン、アルキルテトラハイドロフラン、ジアルキルアルキルテトラハイドロフラン、アルコキシテトラハイドロフラン、ジアルコキシテトラハイドロフラン、1,3−ジオキソラン、アルキルー1,3−ジオキソラン、1,4−ジオキソラン等が挙げられる。鎖状エーテル類としては、例えば、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、エチレングリコールジアルキルエ−テル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル等が挙げられる。Examples of cyclic ethers include tetrahydroquinone, alkyltetrahydrofuran, dialkylalkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane. Etc. Examples of chain ethers include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, tetraethylene glycol dialkyl ether, and the like. Is mentioned.

当該実施例を説明する。The embodiment will be described.

当該実施例1を説明する。
実施例1) 電池構造の構成材料を先ず以下に決めこれらの構成材料で電池を構成し充放電試験を行った。
作用極:活物質MCMB6−28(大阪ガス製),導電剤:アセチレンブラック、
被覆剤かつ結着剤:カルボキシメチルセルロースナトリウム塩
対極 :リチウム金属
セパレーター:ガラスウール
電解液:PC(プロピレンカーボネート)/DMC(ジメチルカーボネート)
:1L(容積比率:1/3)に、電解質LiPF6(6フッ化燐
酸リチウムの1モルを配合の溶液
集電体:作用極:銅箔、対極:SUSメッシュ
The first embodiment will be described.
Example 1) The constituent materials of the battery structure were first determined as follows, and a battery was configured with these constituent materials and a charge / discharge test was performed.
Working electrode: Active material MCMB6-28 (Osaka Gas), Conductive agent: Acetylene black,
Coating agent and binder: Carboxymethylcellulose sodium salt Counter electrode: Lithium metal Separator: Glass wool Electrolyte: PC (propylene carbonate) / DMC (dimethyl carbonate)
: 1L (volume ratio: 1/3), electrolyte LiPF6 (phosphorus hexafluoride)
A solution containing 1 mol of lithium oxide Current collector: Working electrode: Copper foil, Counter electrode: SUS mesh

当該実施例2を説明する。
実施例2)作用極被覆剤を除き上記の実施例1)と同じ構成材料で電池を構成し、充放電試験を行った。
作用極:活物質MCMB6−28(大阪ガス製)、導電剤: アセチレンブラック、
被覆剤かつ結着剤:カルボキシメチルセルロースナトリウム塩とポリアニリン
スルホン酸
対極 :リチウム金属
セパレーター:ガラスウール
電解液:PC(プロピレンカーボネート)/DMC(ジメチルカーボネート)
:1L(容積比率:1/3)に電解質LiPF6(6フッ化燐
酸リチウムの1モルを配合の溶液
集電体:作用極:銅箔 対極: SUSメッシュ
The second embodiment will be described.
Example 2 A battery was composed of the same constituent materials as in Example 1) except for the working electrode coating agent, and a charge / discharge test was conducted.
Working electrode: Active material MCMB6-28 (manufactured by Osaka Gas), conductive agent: acetylene black,
Coating agent and binder: carboxymethylcellulose sodium salt and polyaniline
Sulfonic acid counter electrode: Lithium metal separator: Glass wool Electrolyte: PC (propylene carbonate) / DMC (dimethyl carbonate)
1 L (volume ratio: 1/3) of electrolyte LiPF6 (1 mol of lithium hexafluorophosphate) current collector: working electrode: copper foil Counter electrode: SUS mesh

比較例1Comparative Example 1

当該比較例1を説明する。
実施例1)の作用極被覆剤を除き上記の実施例1)と同じ構成材料で電池を構成し充放電試験を行った。
作用極:活物質:MCMB6−28、導電剤:アセチレンブラック、
被覆剤かつ結着剤:SBR水分散エマルジョン
対極 :リチウム金属
セパレーター:ガラスウール
電解液:PC(プロピレンカーボネート)/DMC(ジメチルカーボネート)
:1L(容積比率:1/3)に、電解液 LiPF6(6フッ化燐酸
リチウムの1モルを配合の溶液
集電体:作用極:銅箔、対極:SUSメッシュ
The comparative example 1 will be described.
A battery was constructed with the same constituent materials as in Example 1) except for the working electrode coating material in Example 1), and a charge / discharge test was conducted.
Working electrode: active material: MCMB6-28, conductive agent: acetylene black,
Coating agent and binder: SBR water dispersion emulsion Counter electrode: Lithium metal Separator: Glass wool Electrolytic solution: PC (propylene carbonate) / DMC (dimethyl carbonate)
1 L (volume ratio: 1/3) and electrolyte solution LiPF6 (1 mol of lithium hexafluorophosphate mixed) Current collector: Working electrode: Copper foil, Counter electrode: SUS mesh

先ず、電極活物質MCMB6−28に被覆剤としてカルボキシメチルセルロースナトリウム塩(CMCNa)またはカルボキシメチルセルロースナトリウム塩(CMCNa)とポリアニリンスルホン酸(PAS)混合物またはスチレンブタジエンゴム水分散エマルジョン(SBR)を使用し被覆した。被覆剤がCMCNaの場合、活物質MCMB5−28の2.175グラムに被覆剤CMCNa0.0371グラム、導電剤0.021グラムを配合した。First, the electrode active material MCMB6-28 was coated using carboxymethyl cellulose sodium salt (CMCNa) or a mixture of carboxymethyl cellulose sodium salt (CMCNa) and polyaniline sulfonic acid (PAS) or styrene butadiene rubber aqueous dispersion emulsion (SBR) as a coating agent. . When the coating agent was CMCNa, 0.0371 gram of the coating agent CMCNa and 0.021 gram of the conductive agent were blended with 2.175 grams of the active material MCMB5-28.

被覆剤がCMCNaとPAS混合物の場合、活物質MCMB6−28の4.403グラムに被覆剤CMCNaとPAS混合物0.0828グラム、導電剤0.0406グラムを配合した。When the coating agent was a CMCNa and PAS mixture, the active material MCMB6-28 was mixed with 4.403 grams of the coating agent CMCNa and PAS mixture 0.0828 grams and the conductive agent 0.0406 grams.

被覆剤がSBRの場合、MCMB6−28の2.814グラムにSBR0.031グラム、導電剤0.031グラムを使用するほかは、被覆剤がCMCNaの場合に準じてリチウムイオン二次電池を作製し電池特性試験に使用した。When the coating agent is SBR, a lithium ion secondary battery is manufactured in accordance with the case where the coating agent is CMCNa, except that 0.031 gram of SBR and 0.031 gram of conductive agent are used for 2.814 grams of MCMB6-28. Used for battery characteristics test.

実施例1、実施例2および比較例1における充電放電容量を表1に示した。

Figure 2007095641
The charge / discharge capacities in Example 1, Example 2 and Comparative Example 1 are shown in Table 1.
Figure 2007095641

発明の効果The invention's effect

以上説明したように、本発明によれば電極活物質を当該発明のカルボキシメチルセルロース類を被覆剤として被覆することにより、非水系電解液の充電放電に伴う分解を長期的に防止することが出来、高充電容量であり充電放電特性を長期的に安定化させることが可能となる。
一方、電極活物質に炭素MCMB6−28を使用し、非水系電解液にプロピレンカーボネート(PC)系電解液を使用したリチウムイオン電池では、充電放電の電圧が約0.8ボルトで、プロピレンカーボネート(PC)が分解されるため当然電池特性の低下を誘起させることになる。
As described above, according to the present invention, by covering the electrode active material with the carboxymethyl cellulose of the present invention as a coating agent, it is possible to prevent decomposition associated with charging and discharging of the non-aqueous electrolyte solution over a long period of time, The charge capacity is high and the charge / discharge characteristics can be stabilized for a long time.
On the other hand, in a lithium ion battery using carbon MCMB6-28 as the electrode active material and using a propylene carbonate (PC) electrolyte as the non-aqueous electrolyte, the charge / discharge voltage is about 0.8 volts, and propylene carbonate ( Since PC) is decomposed, the battery characteristics are naturally deteriorated.

Claims (9)

被覆剤がカルボキシメチルセルロースまたはカルボキシメチルセルロースアルカリ塩であるカルボキシメチルセルロース類と他の高分子と導電剤からなるリチウム電池電極活物質被覆剤Lithium battery electrode active material coating agent comprising carboxymethylcelluloses whose coating agent is carboxymethylcellulose or carboxymethylcellulose alkali salt, other polymer and conductive agent 被覆剤が陽イオン交換可能なセルロース類または陽イオン交換可能なセルロース誘導体または陽イオン交換可能なイオン交換樹脂またはそれらのアルカリ塩と他の高分子と導電剤からなるリチウム電池電極活物質被覆剤Lithium battery electrode active material coating material comprising a cation exchangeable cellulose, a cation exchangeable cellulose derivative, a cation exchangeable ion exchange resin or an alkali salt thereof, another polymer, and a conductive agent. 他の高分子がポリアニリンまたはポリアニリンスルホン酸であるポリアニリン類とその他の高分子で組成される請求項1The other polymer is composed of polyaniline which is polyaniline or polyaniline sulfonic acid and other polymer. 他の高分子がポリアニリンまたはポリアニリンスルホン酸であるポリアニリン類とその他の高分子で組成される請求項2The other polymer is composed of polyaniline which is polyaniline or polyaniline sulfonic acid and other polymer. リチウム電池電極であって、その構成が電極活物質と請求項1または請求項2である電極活物質被覆剤と結着剤と導電剤と集電体からなるリチウム電池電極A lithium battery electrode comprising an electrode active material, an electrode active material coating agent according to claim 1, a binder, a conductive agent, and a current collector. リチウム電池であって、請求項5で成る負極と正極と分離膜と電解液とそれらを封入する電池ケースと充放電制御装置から成るリチウム電池A lithium battery comprising a negative electrode, a positive electrode, a separation membrane, an electrolyte, a battery case enclosing them, and a charge / discharge control device according to claim 5 リチウム電池であって、請求項5で成る正極と負極と分離膜と電解液とそれらを封入する電池ケースと充放電制御装置から成るリチウム電池A lithium battery comprising a positive electrode, a negative electrode, a separation membrane, an electrolyte, a battery case enclosing them, and a charge / discharge control device according to claim 5 リチウム電池であって、請求項5で成る負極と請求項5で成る正極と分離膜と電解液とそれらを封入する電池ケースから成るリチウム電池A lithium battery comprising a negative electrode according to claim 5, a positive electrode according to claim 5, a separation membrane, an electrolytic solution, and a battery case enclosing them. リチウム電池の製造方法であって、請求項6または請求項7または請求項8で構成されるリチウム電池を製造する方法A method for producing a lithium battery, wherein the method comprises producing a lithium battery comprising claim 6 or claim 7 or claim 8.
JP2005307760A 2005-09-26 2005-09-26 Battery constructing material Pending JP2007095641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005307760A JP2007095641A (en) 2005-09-26 2005-09-26 Battery constructing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005307760A JP2007095641A (en) 2005-09-26 2005-09-26 Battery constructing material

Publications (1)

Publication Number Publication Date
JP2007095641A true JP2007095641A (en) 2007-04-12

Family

ID=37981061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005307760A Pending JP2007095641A (en) 2005-09-26 2005-09-26 Battery constructing material

Country Status (1)

Country Link
JP (1) JP2007095641A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534392A (en) * 2007-07-25 2010-11-04 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Lithium ion battery comprising an electrode and a novel electrode binder
WO2011024799A1 (en) 2009-08-27 2011-03-03 大日精化工業株式会社 Aqueous coating liquid for an electrode plate, electrode plate for an electrical storage device, method for manufacturing an electrode plate for an electrical storage device, and electrical storage device
JP2017123345A (en) * 2014-01-31 2017-07-13 株式会社豊田自動織機 Negative electrode for nonaqueous secondary battery, nonaqueous secondary battery, negative electrode active material and manufacturing method therefor, composite including nano silicon, carbon layer and cationic polymer layer, and method for manufacturing composite including nano silicon and carbon layer
WO2017169022A1 (en) * 2016-03-31 2017-10-05 株式会社日立製作所 Method for manufacturing lithium ion secondary cell, and lithium ion secondary cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534392A (en) * 2007-07-25 2010-11-04 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Lithium ion battery comprising an electrode and a novel electrode binder
US9653733B2 (en) 2007-07-25 2017-05-16 VW-VM Forschungsgesellschaft mbH & Co. KG Electrodes and lithium-ion cells with a novel electrode binder
WO2011024799A1 (en) 2009-08-27 2011-03-03 大日精化工業株式会社 Aqueous coating liquid for an electrode plate, electrode plate for an electrical storage device, method for manufacturing an electrode plate for an electrical storage device, and electrical storage device
US8628610B2 (en) 2009-08-27 2014-01-14 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Dispersant for use in a carbon filler
US8945767B2 (en) 2009-08-27 2015-02-03 Dainichiseika Color & Chemicals Mfg. Co., Ltd Aqueous coating liquid for an electrode plate, electrode plate for an electrical storage device, method for manufacturing an electrode plate for an electrical storage device, and electrical storage device
US9359509B2 (en) 2009-08-27 2016-06-07 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous carbon filler dispersion coating liquid, conductivity-imparting material, electrode plate for an electrical storage device, manufacturing method therefore, and electrical storage device
US9359508B2 (en) 2009-08-27 2016-06-07 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Water-based slurry composition, electrode plate for electricity storage device, and electricity storage device
US9834688B2 (en) 2009-08-27 2017-12-05 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Aqueous carbon filler dispersion coating liquid, conductivity-imparting material, electrode plate for an electrical storage device, manufacturing method therefore, and electrical storage device
JP2017123345A (en) * 2014-01-31 2017-07-13 株式会社豊田自動織機 Negative electrode for nonaqueous secondary battery, nonaqueous secondary battery, negative electrode active material and manufacturing method therefor, composite including nano silicon, carbon layer and cationic polymer layer, and method for manufacturing composite including nano silicon and carbon layer
WO2017169022A1 (en) * 2016-03-31 2017-10-05 株式会社日立製作所 Method for manufacturing lithium ion secondary cell, and lithium ion secondary cell

Similar Documents

Publication Publication Date Title
CA2525988C (en) Positive electrode for use in lithium cell and lithium cell using the same
CA2641152C (en) Lithium secondary battery using ionic liquid
JP4407205B2 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery using the same
CN104037418A (en) Lithium ion battery anode film, preparation and application thereof
JP2001325988A (en) Charging method of non-aqueous electrolyte secondary battery
JP2000133304A (en) Non-aqueous electrolyte and lithium secondary battery using it
WO2021184531A1 (en) Electrochemical device and electronic device
JP5530851B2 (en) Method for producing electrode of lithium ion secondary battery and method for producing lithium ion secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
WO2018059180A1 (en) High-power, high-energy chemical power supply and preparation method therefor
CN110676511A (en) Lithium ion battery electrolyte and lithium ion secondary battery
JP4651279B2 (en) Nonaqueous electrolyte secondary battery
WO2024016940A1 (en) Positive electrode plate, secondary battery, battery module, battery pack and electric device
JP2007095641A (en) Battery constructing material
JP2008066260A (en) Selection method of battery composing material
JP2003045433A (en) Nonaqueous secondary battery
KR101122938B1 (en) Preparation method of electrode active material particle
JP2006012753A (en) Battery component material
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3610898B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2000082492A (en) Nonaqueous electrolyte and lithium secondary battery using the same
WO2019065288A1 (en) Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same
JP2005285731A (en) Battery constituting material
JP3258907B2 (en) Non-aqueous electrolyte secondary battery
JP6011077B2 (en) Non-aqueous battery