KR100384390B1 - Leachate Treatment Method and Apparatus with UV Irradiation - Google Patents
Leachate Treatment Method and Apparatus with UV Irradiation Download PDFInfo
- Publication number
- KR100384390B1 KR100384390B1 KR10-1998-0021678A KR19980021678A KR100384390B1 KR 100384390 B1 KR100384390 B1 KR 100384390B1 KR 19980021678 A KR19980021678 A KR 19980021678A KR 100384390 B1 KR100384390 B1 KR 100384390B1
- Authority
- KR
- South Korea
- Prior art keywords
- tank
- fenton
- leachate
- air
- fenton oxidation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 title claims abstract description 8
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 72
- 230000003647 oxidation Effects 0.000 claims abstract description 50
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 45
- 238000005273 aeration Methods 0.000 claims abstract description 33
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- 235000003891 ferrous sulphate Nutrition 0.000 claims abstract description 17
- 239000011790 ferrous sulphate Substances 0.000 claims abstract description 17
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims abstract description 17
- 229910000359 iron(II) sulfate Inorganic materials 0.000 claims abstract description 17
- 238000003756 stirring Methods 0.000 claims abstract description 14
- 238000010979 pH adjustment Methods 0.000 claims abstract description 10
- 230000001590 oxidative effect Effects 0.000 claims abstract description 6
- 239000011521 glass Substances 0.000 claims abstract description 5
- 230000000149 penetrating effect Effects 0.000 claims abstract 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 28
- 239000003153 chemical reaction reagent Substances 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 14
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 230000035484 reaction time Effects 0.000 claims description 7
- -1 radical peroxide Chemical class 0.000 claims description 6
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 claims description 5
- 230000002000 scavenging effect Effects 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 4
- 239000011368 organic material Substances 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 abstract description 4
- 230000009257 reactivity Effects 0.000 abstract description 2
- 239000002351 wastewater Substances 0.000 description 11
- 239000000149 chemical water pollutant Substances 0.000 description 9
- 239000005416 organic matter Substances 0.000 description 9
- CXURGFRDGROIKG-UHFFFAOYSA-N 3,3-bis(chloromethyl)oxetane Chemical compound ClCC1(CCl)COC1 CXURGFRDGROIKG-UHFFFAOYSA-N 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910001902 chlorine oxide Inorganic materials 0.000 description 1
- MAYPHUUCLRDEAZ-UHFFFAOYSA-N chlorine peroxide Chemical compound ClOOCl MAYPHUUCLRDEAZ-UHFFFAOYSA-N 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- QGMRQYFBGABWDR-UHFFFAOYSA-N sodium;5-ethyl-5-pentan-2-yl-1,3-diazinane-2,4,6-trione Chemical compound [Na+].CCCC(C)C1(CC)C(=O)NC(=O)NC1=O QGMRQYFBGABWDR-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
- C02F1/32—Treatment of water, waste water, or sewage by irradiation with ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/722—Oxidation by peroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/06—Contaminated groundwater or leachate
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/02—Specific form of oxidant
- C02F2305/026—Fenton's reagent
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
본 발명은 자외선 조사를 동반하는 침출수 처리방법 및 장치에 관한 것으로, 공기폭기에 의한 전처리를 한 후 펜톤산화반응에 자외선을 조사함으로써 빠른 반응성 및 높은 처리효율을 갖도록 하는 침출수 처리방법 및 장치에 관한 것이다.The present invention relates to a leachate treatment method and apparatus with ultraviolet irradiation, and to a leachate treatment method and apparatus for rapid reactivity and high treatment efficiency by irradiating ultraviolet rays to the fenton oxidation after pretreatment by air aeration. .
본 발명은 페하 조정조와, 공기폭기조와, 자외선 조사를 동반하는 펜톤산화조와, 페하조정 및 완속교반조와, 침전조로 이루어지되, 상기 공기폭기조는 공기를 압축하는 공기압축기와 이를 유입하여 배출하는 산기관과 거품을 제거하는 호퍼로 구성되고, 상기 자외선 조사를 동반하는 펜톤산화조는 2개의 유리관이 적정한 간격으로 중앙을 관통하여 설치되며 이 관에는 각각 유브이 램프(UV lamp)가 삽입, 설치되며, 펜톤산화조 하부에는 펜톤반응을 위해 침출수 유입부 가까이에서 황산제일철이 먼저 주입되어 침출수에 혼합되도록 황산제일철주입구가 설치되어 있고, 펜톤산화조의 둘레로는 적정한 시간 간격을 두고 과산화수소가 투입되어 펜톤반응이 일어나도록 과산화수소주입구가 설치되어 있으며, 전원에 의해 구동되는 교반장치가 펜톤산화조의 정중앙에 설치되어 구성된다.The present invention consists of a pH adjustment tank, an air aeration tank, a Fenton oxidation tank with ultraviolet irradiation, a pH adjustment and slow stirring tank, and a settling tank, the air aeration tank is an air compressor for compressing air and the diffuser inlet and discharged And a hopper for removing bubbles, and the Fenton oxidation tank accompanied by the UV irradiation is installed with two glass tubes penetrating through the center at appropriate intervals, and each UV tube is inserted into and installed with Fenton oxidation. In the lower part of the tank, the ferrous sulfate inlet is installed so that ferrous sulfate is first injected near the leachate inlet for mixing with the leachate, and hydrogen peroxide is introduced at an appropriate time interval around the fenton oxidizing tank so that the fenton reaction occurs. The hydrogen peroxide inlet is installed and the stirring device driven by the power source It consists installed in the center.
Description
본 발명은 자외선 조사를 동반하는 침출수 처리방법 및 장치에 관한 것으로, 특히 공기폭기에 의한 전처리를 한 후 펜톤산화반응에 자외선을 조사함으로써 빠른 반응성 및 높은 처리효율을 갖도록 하는 침출수 처리방법 및 장치에 관한 것이다.The present invention relates to a leachate treatment method and apparatus with ultraviolet irradiation, and more particularly, to a leachate treatment method and apparatus for fast reactivity and high treatment efficiency by irradiating ultraviolet rays to a fenton oxidation reaction after pretreatment by air aeration. will be.
일반적으로 난분해성 폐수는 미생물에 의해 분해되기 어려운 유기물을 함유하는 폐수를 총칭하는 것으로 유기물 자체가 난분해성인 경우와 분해성 유기물 폐수내에 미생물 활동을 저해하는 독성 물질이 함유되어 있는 경우로 대별된다.In general, hardly degradable wastewater is a general term for wastewater containing organic matter that is difficult to be decomposed by microorganisms, and it is classified into a case in which the organic material itself is hardly decomposable and a case in which the degradable organic wastewater contains toxic substances that inhibit microbial activity.
독성물질이 함유된 난분해성 폐수는 살충제, 제초제, 할로겐화 용매, 기타 유기용매를 함유한 폐수, 중금속 함유 폐수, 시안 함유 폐수 등이 있다.Non-degradable wastewater containing toxic substances includes pesticides, herbicides, halogenated solvents, wastewater containing other organic solvents, wastewater containing heavy metals, and wastewater containing cyanide.
또 합성수지 성분을 함유한 폐수나 매립지 침출수 등과 같이 부식질(humic substances)을 함유한 폐수는 고분자성의 난분해성 폐수로 분류될 수 있다.In addition, wastewater containing humic substances such as wastewater containing synthetic resin components or landfill leachate may be classified into polymeric hardly degradable wastewater.
이러한 난분해성 폐수 중 매립지 침출수는 매립지 연령에 따라 성상이 변화하며 난분해성 물질의 비율이 늘어난다.Landfill leachate among these hardly decomposable wastewaters varies with landfill age and the proportion of hardly decomposable substances increases.
이러한 난분해성 폐수 처리는 생물학적 처리만으로는 가능하지 않으며, 생물학적 처리에 연계된 화학적 산화공정이 도입되어야 한다.Such hardly degradable wastewater treatment is not possible with biological treatment alone, and a chemical oxidation process linked to biological treatment should be introduced.
화학적산화공정에는 염소산화, 오존산화, 오존/과산화수소, 자외선/과산화수소, 자외선/이산화티타늄/과산화수소, 펜톤산화공정 등이 있다.Chemical oxidation processes include chlorine oxidation, ozone oxidation, ozone / hydrogen peroxide, ultraviolet ray / hydrogen peroxide, ultraviolet ray / titanium dioxide / hydrogen peroxide, and phentone oxidation.
그러나 염소산화공정은 염소산화물이 부산물로 배출되어 2차적인 환경오염을 유발할 수 있으며, 오존이 개입되는 공정은 공정단가가 높아서 경제적으로 불리한 단점이 있다.However, the chlorine oxidation process may cause secondary environmental pollution due to the discharge of chlorine oxide as a by-product, and the process involving ozone has an economic disadvantage due to high process costs.
그리고 이산화티타늄을 도입하는 공정은 침출수 원수나 생물학적 처리수 등 유기물 농도가 매우 높은 경우에 적용시 촉매활성이 급격히 저하해서 효과적인 처리가 어려운 단점이 발생한다.In addition, the process of introducing titanium dioxide has a disadvantage in that it is difficult to effectively treat the catalytic activity when applied in the case where the concentration of organic matter such as leachate or biologically treated water is very high.
펜톤산화반응은 사용 시약인 황산제일철 및 과산화수소가 매우 구하기 쉽고 저렴하며, 매립지 침출수처럼 유기물 농도가 매우 고농도인 경우, 특히 콜로이드성 물질이 많은 경우 매우 적합한 공정이다.Fenton oxidation reaction is very easy and inexpensive to use the ferric sulfate and hydrogen peroxide, and is very suitable when the concentration of organic matter is very high, such as landfill leachate, especially when there are a lot of colloidal material.
이러한 이유로 국내에서도 매립지 침출수 처리를 위해 펜톤산화공정을 도입하여 처리하고 있다.For this reason, the Fenton oxidation process is introduced and treated in Korea for landfill leachate treatment.
도 1은 기존의 펜톤산화처리를 이용한 매립지 침출수 처리 공정을 나타낸다.1 shows a landfill leachate treatment process using the conventional Fenton oxidation treatment.
펜톤산화공정은 황산제일철(FeSO4)과 과산화수소(H2O2)를 반응시켜 과산화 라디칼(·OH)을 만듦으로써 유기물이 과산화 라디칼에 의해 산화되도록 하는 공정이다.The fenton oxidation process is a process of reacting ferrous sulfate (FeSO 4 ) with hydrogen peroxide (H 2 O 2 ) to form a peroxide radical (· OH) so that the organic material is oxidized by the peroxide radical.
생물학적 처리를 거친 매립지 침출수는 도 1에서 보듯이 페하 조정조(3)를 거치면서 페하(pH)가 8.5 - 8.8에서 3 - 3.5 로 조정된다.The landfill leachate after biological treatment is adjusted from pH 8.5-8.8 to 3-3.5 through the pH control tank 3 as shown in FIG.
펜톤산화반응조(4)에서 유기물 산화반응을 마친 후 다시 페하조정조(5)에서 페하가 8로 조정된 후 침전조(6)에서 침전을 거치게 된다.After the organic matter oxidation reaction in the Fenton oxidation tank (4), the pH is adjusted to 8 in the pH control tank (5) and then precipitated in the precipitation tank (6).
침전조 상등수는 다시 생물학적 처리(7)를 거쳐 최종 방류된다.The settling supernatant is again finally discharged via biological treatment (7).
하지만 상기와 같은 종래의 펜톤산화반응을 이용한 매립지 침출수 처리는 펜톤산화반응이 효과적으로 유기물을 산화시키지 못한다는 문제점이 있다.However, the landfill leachate treatment using the conventional Fenton oxidation reaction has a problem that the Fenton oxidation reaction does not effectively oxidize organic matter.
즉, 다시 설명하자면 종래의 펜톤산화공정은 펜톤반응을 통한 과산화 라디칼의 생성이 시약인 황산제일철과 과산화수소의 투입비 및 투입량에 따라 어느 한계에 도달하면 더 이상 커지지 못하게 된다. 이것은 철착물의 형성이나 스케빈징물질에 의한 영향 때문이다.In other words, in the conventional Fenton oxidation process, the generation of peroxide radicals through the Fenton reaction does not grow any longer when a certain limit is reached according to the input ratio and the input amount of ferrous sulfate and hydrogen peroxide as reagents. This is due to the influence of the formation of iron complexes and scavenging materials.
2가 철이 과산화수소와 반응하여 3가 철로 된 후에 다시 2가 철로 순환하면서 과산화수소를 소모하여 지속적으로 펜톤반응 순환이 이루어져야 하지만, 기존 공정에서는 3가 철의 유기물과의 착물 형성 등으로 인해 이러한 촉매 순환이 제대로 일어나지 않게 된다.After divalent iron reacts with hydrogen peroxide to become trivalent iron, it is circulated back to divalent iron, consuming hydrogen peroxide continuously, and the pentone reaction cycle must be continuously performed. However, in the existing process, such catalyst circulation is caused by complex formation with trivalent iron organic matter. It won't happen properly.
또한 처리수 중에 과산화 라디칼의 스캐빈저 물질들이 많은 양으로 존재하게 되면 유기물의 산화효율이 낮아지고, 따라서 처리효율이 떨어지게 된다.In addition, the presence of a large amount of scavenger materials of the peroxide radical in the treated water lowers the oxidation efficiency of the organic matter, and thus the treatment efficiency.
이러한 스캐빈저의 종류로는 탄산 이온, 중탄산 이온, 염소 이온 등이 있으며 이러한 물질들의 양을 사전에 조절하는 것이 중요하다.Types of such scavengers include carbonate ions, bicarbonate ions and chlorine ions, and it is important to control the amount of these substances in advance.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 매립지 침출수 처리를 위해 도입하고 있는 펜톤산화반응이 효과적으로 유기물을 산화시키지 못하는 문제를 해결하기 위해 펜톤산화반응전에 간단한 전처리를 통해서 반응효율을 높이고 펜톤산화반응시 자외선을 조사함으로써 우수한 처리효율을 갖는 방법과 장치를 제공하는데 있다.An object of the present invention for solving the above problems is to increase the reaction efficiency through the simple pre-treatment before the Fenton oxidation reaction to solve the problem that the Fenton oxidation reaction introduced for landfill leachate treatment does not effectively oxidize organic matter and fenton oxidation It is to provide a method and apparatus having excellent treatment efficiency by irradiating ultraviolet rays during the reaction.
상기와 같은 본 발명의 목적은 황산제일철(FeSO4)과 과산화수소(H2O2)를 반응시켜 과산화 라디칼(·OH)을 만들어 유기물을 과산화 라디칼에 의해 산화되도록 하는 펜톤산화공정에 있어서,In the object of the present invention as described above in the phenton oxidation process for reacting ferrous sulfate (FeSO 4 ) and hydrogen peroxide (H 2 O 2 ) to make a radical peroxide (· OH) to oxidize the organic matter by the peroxide radical,
수산화 라디칼의 스캐빈징 물질인 중탄산 이온의 농도를 낮추기 위해 생물학적 처리수의 페하를 펜톤산화공정을 위한 적정 페하로 조정하는 페하 조정공정과,A pH adjustment process for adjusting the pH of the biologically treated water to an appropriate pH for the fenton oxidation process in order to lower the concentration of bicarbonate ions, the scavenging substance of the hydroxyl radical,
자외선 조사전의 전처리공정으로서 산기관으로 유입되는 공기가 공기압축기에서 압축된 후 공기폭기조 내로 유입되어 교반 및 충분한 폭기를 하여 알칼리도를 낮춤으로써 중탄산 이온 등이 방출되어 중탄산 이온 농도가 낮아지게 하는 공기폭기공정과, 자외선을 조사하여 철의 촉매 순환과정을 활성화시켜 과산화 라디칼 생성속도를 빨라지게 하되 그 반응시간을 10분에서 10시간까지의 시간 범위내에서 운전시간을 고정시키고, 펜톤시약인 황산제일철과 과산화수소의 투입비 및 투입량은 적절한 값으로 조절하는, 예를 들어 반응시간이 30분일 때 시약투입비를 무게비 기준으로 1:2로 하고 투입량을 1,000mg/L : 2,000mg/L로 하는 자외선 조사를 동반하는 펜톤산화공정과, 페하조정 및 완속교반공정과, 침전공정을 거치는 것을 특징으로 하는 자외선 조사를 동반하는 침출수 처리방법을 제공함으로써 달성된다.As the pretreatment process before UV irradiation, the air flowing into the acid pipe is compressed in the air compressor and then flowed into the air aeration tank to lower the alkalinity by lowering the alkalinity by stirring and sufficient aeration to release the bicarbonate ion to decrease the concentration of bicarbonate ion. And by irradiating with ultraviolet rays to activate the catalyst circulation process of iron to speed up the generation of radical peroxide, but the operation time is fixed within the time range of 10 minutes to 10 hours, and the ferton reagent ferrous sulfate and hydrogen peroxide The input ratio and the dosage of is adjusted to an appropriate value. For example, when the reaction time is 30 minutes, the reagent input ratio is 1: 2 based on the weight ratio and the dosage is 1,000 mg / L: 2,000 mg / L UV irradiation characterized in that it undergoes an oxidation process, a pH adjustment, a slow stirring process, and a precipitation process. Contrary is achieved by providing the leachate treatment.
본 발명의 다른 목적은 침출수 처리장치에 있어서,Another object of the present invention in the leachate treatment apparatus,
페하 조정조와, 공기폭기조와, 자외선 조사를 동반하는 펜톤산화조와, 페하조정 및 완속교반조와, 침전조로 이루어지되, 상기 공기폭기조는 공기를 압축하는 공기압축기와 이를 유입하여 배출하는 산기관과 거품을 제거하는 호퍼로 구성되고, 상기 자외선 조사를 동반하는 펜톤산화조는 2개의 유리관이 적정한 간격으로 중앙을 관통하여 설치되며 이 관에는 각각 유브이 램프(UV lamp)가 삽입, 설치되며, 펜톤산화조 하부에는 펜톤반응을 위해 침출수 유입부 가까이에서 황산제일철이 먼저 주입되어 침출수에 혼합되도록 황산제일철주입구가 설치되어 있고, 펜톤산화조의 둘레로는 적정한 시간 간격을 두고 과산화수소가 투입되어 펜톤반응이 일어나도록 과산화수소주입구가 설치되어 있으며, 전원에 의해 구동되는 교반장치가 펜톤산화조의 정중앙에 설치되어 구성되는 것을 특징으로 하는 자외선 조사를 동반하는 침출수 처리장치를 제공함으로써 달성된다.It consists of a pH control tank, an air aeration tank, a Fenton oxidation tank with ultraviolet irradiation, a pH control and a slow stirring tank, and a settling tank. The air aeration tank includes an air compressor that compresses air, and diffusers and bubbles that enter and discharge it. Consists of a hopper to remove, the Fenton oxidation tank accompanied with the ultraviolet irradiation is installed through the center of the two glass tubes at appropriate intervals, each UV tube is inserted and installed, the lower part of the Fenton oxidation tank The ferrous sulfate inlet is installed so that the ferrous sulfate is first injected near the leachate inlet for the Fenton reaction and mixed in the leachate. The hydrogen peroxide inlet is introduced to allow the Fenton reaction to be introduced at an appropriate time interval around the fenton oxidizer. Installed in the center of the Fenton oxidation tank By providing the leachate treatment device, following irradiation with ultraviolet light characterized in that the value is configured is achieved.
도 1 은 기존의 펜톤산화처리 공정도이고,1 is a conventional Fenton oxidation process chart,
도 2 는 본 발명의 공기폭기 전처리 및 자외선조사를 동반하는 펜톤산화공정도이며,2 is a process diagram of the phentone oxidation accompanying the air aeration pretreatment and ultraviolet irradiation of the present invention,
도 3 은 본 발명의 공기폭기조의 개략도이고,3 is a schematic view of the air aeration tank of the present invention,
도 4 는 본 발명의 자외선 조사를 동반하는 펜톤산화조이며,4 is a Fenton oxidation tank with ultraviolet irradiation of the present invention,
도 5 는 본 발명의 시약 투입비에 따른 처리 효율 변화도이고,5 is a change in treatment efficiency according to the reagent input ratio of the present invention,
도 6 은 본 발명의 시약 투입량에 따른 처리 효율 변화도이다.6 is a change in treatment efficiency according to the reagent input amount of the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
(1) : 혐기성 처리조 (2) : 호기성 처리조(1): anaerobic treatment tank (2): aerobic treatment tank
(3) : 페하 조정조 (4) : 펜톤 산화조(3): Peha adjustment tank (4): Fenton oxidation tank
(5) : 페하 조정 및 완속교반조 (6) : 침전조(5): pH adjustment and slow stirring tank (6): Sedimentation tank
(7) : 생물학적 처리조 (8) : 공기폭기조(7): biological treatment tank (8): air aeration tank
(9) : 자외선 조사를 동반하는 펜톤 산화조(9): Fenton oxidation tank with ultraviolet irradiation
(10) : 산기관 (11) : 공기 압축기(10): diffuser (11): air compressor
(12) : 호퍼 (13) : 거품12: Hopper 13: Bubble
(14) : 유리관 (15) : 교반 장치14: glass tube 15: stirring device
(16) : 황산제일철주입구 (17) : 과산화수소주입구(16): ferrous sulfate inlet (17): hydrogen peroxide inlet
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명의 실시예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.When described in detail with reference to the accompanying drawings, the configuration and the operation of the embodiment of the present invention to achieve the object as described above and to perform the task for eliminating the conventional drawbacks.
본 발명에 의한 펜톤산화반응의 효율 개선 방법 및 펜톤산화반응보다 우수한 효율을 갖는 자외선 조사를 동반한 펜톤산화반응을 설명하면 다음과 같다.The method for improving the efficiency of the fenton oxidation reaction according to the present invention and the fenton oxidation reaction with ultraviolet irradiation having superior efficiency than the fenton oxidation reaction are as follows.
도 2는 수산화 라디칼의 스캐빈징 물질인 중탄산 이온의 농도를 낮추기 위해 생물학적 처리수의 페하를 펜톤산화공정을 위한 적정 페하로 조정하는 페하 조정조(3)를 거친 뒤에 공기폭기공정을 하는 공기폭기조(8)를 거치게 하여 자외선 조사 펜톤산화공정을 수행하는 펜톤 산화조(9)를 거치는 것을 도시하고 있다.FIG. 2 is an air aeration tank performing an aeration process after passing through a pH adjustment tank 3 for adjusting the pH of biologically treated water to an appropriate pH for the fenton oxidation process in order to lower the concentration of bicarbonate ions, which is a scavenging substance of the hydroxyl radical. 8) through the Fenton oxidation tank (9) performing the ultraviolet irradiation Fenton oxidation process is shown.
침출수는 자외선 조사를 동반하는 펜톤 산화조(9)에서 자외선 조사 펜톤산화공정 후에 페하 조정 및 완속교반조(5)를 거치게 되고, 침전조(6)에서 침전을 거친 후 다음 공정인 생물처리공정으로 넘겨진다.The leachate is passed through the pH adjustment and slow stirring tank (5) after the ultraviolet irradiation penton oxidation process in the Fenton oxidation tank (9) accompanied by ultraviolet irradiation, and after being precipitated in the settling tank (6), it is passed to the next process, the biological treatment process. Lose.
도 3 은 공기폭기조(8)의 개략도를 나타낸다.3 shows a schematic view of the air aeration tank 8.
공기폭기조(8)내로 유입되는 공기는 공기압축기(11)에서 압축된 후 산기관(10)을 통해 유입되어 공기폭기조(8) 내의 교반 및 충분한 폭기를 할 수 있게 된다.The air flowing into the air aeration tank 8 is compressed in the air compressor 11 and then flows through the diffuser 10 to enable stirring and sufficient aeration in the air aeration tank 8.
공기폭기에 의해 중탄산 이온 등이 방출되면서 표면에서 많은 거품(13)이 발생되며 이를 제거하기 위해 호퍼(12)가 사용된다.As the bicarbonate ions are released by the air aeration, many bubbles 13 are generated on the surface thereof, and a hopper 12 is used to remove them.
도 4 는 기존의 펜톤산화반응을 대체하는 본 발명의 자외선 조사를 동반하는 펜톤산화조(9)를 도시하고 있다.FIG. 4 shows a Fenton oxidation tank 9 with ultraviolet irradiation of the present invention which replaces the existing Fenton oxidation reaction.
자외선 조사를 동반하는 펜톤산화조(9)에는 2개의 유리관(14)이 적정한 간격으로 중앙을 관통하여 설치되며 이 관에는 각각 유브이 램프(UV lamp)가 삽입, 설치된다.In the Fenton oxidation tank 9 with ultraviolet irradiation, two glass tubes 14 are installed through the center at appropriate intervals, and UV tubes are inserted and installed in the tubes.
상기 자외선 조사를 동반하는 펜톤산화조(9)의 하부에는 펜톤반응을 위해 침출수 유입부 가까이에서 황산제일철이 먼저 주입되어 침출수에 혼합되도록 황산제일철주입구(16)가 설치되어 있고,In the lower portion of the Fenton oxidizing tank (9) accompanied with the ultraviolet irradiation, the ferrous sulfate inlet (16) is installed so that ferrous sulfate is first injected near the leachate inlet for the Fenton reaction and mixed with the leachate,
상기 자외선 조사를 동반하는 펜톤산화조(9)의 둘레로는 적정한 시간 간격을 두고 과산화수소가 투입되어 펜톤반응이 일어나도록 과산화수소주입구(17)가 설치되어 있다.A hydrogen peroxide inlet 17 is provided around the Fenton oxidizing tank 9 accompanied with the ultraviolet irradiation at an appropriate time interval so that hydrogen peroxide is introduced to cause a Fenton reaction.
펜톤반응은 급속하게 일어나므로 반응중에 빠른 속도의 교반이 필수적으로 요구되며, 이를 위해 전원에 의해 구동되는 교반장치(15)가 펜톤산화조(9) 정중앙에 설치된다.Since the Fenton reaction occurs rapidly, a high speed stirring is essential during the reaction. For this purpose, a stirring device 15 driven by a power source is installed at the center of the Fenton oxidation tank 9.
본 발명 자외선 조사 펜톤산화조(9)에서는 자외선 조사에 의해 기존 펜톤산화반응에 비해 철의 촉매 순환과정이 활성화되게 되며 이에 따라 과산화 라디칼 생성속도가 매우 빨라지게 된다.In the present invention UV irradiation Fenton oxidation tank (9) is activated by the ultraviolet irradiation of the catalytic circulation process of iron compared to the conventional Fenton oxidation reaction, and thus the rate of radical peroxide generation is very fast.
또한 공기폭기 전처리로 인해 침출수내에 수산화 라디칼의 스캐빈징 물질인 중탄산 이온 농도가 줄어듦으로써 펜톤산화 반응의 유기물 산화 반응은 기존 공정보다 효과적으로 이루어진다.In addition, the pretreatment of air aeration reduces the concentration of bicarbonate ions, the scavenging material of the hydroxyl radicals in the leachate, and the organic oxidation of the fenton oxidation reaction is more effective than the conventional process.
뿐만 아니라 자외선 조사 펜톤산화반응 중에 이온 형태, 또는 수산화 염이나 유기물과의 착물을 형성하고 있는 3가 철은 광에너지를 받아 2가 철로 변환되며, 다시 과산화수소와 반응하면서 수산화 라디칼을 계속 생성하게 되고, 따라서 유기물 산화 효율이 크게 증대되게 된다.In addition, trivalent iron, which forms an ionic form, or a complex with hydroxide salts or organics, is converted into divalent iron during the irradiation with ultraviolet ray penton oxidation, and continues to generate hydroxide radicals by reacting with hydrogen peroxide. Therefore, the organic material oxidation efficiency is greatly increased.
이와 같이 공기폭기에 의한 전처리와 자외선 조사에 의해 철의 촉매 순환과정이 빨라짐으로써 본 발명에 의한 침출수 처리효율은 기존 펜톤산화반응에 의한 처리에 비해 매우 크게 늘어난다.As such, the catalyst circulation process of iron is accelerated by pretreatment by air aeration and ultraviolet irradiation, and the leachate treatment efficiency according to the present invention is greatly increased compared to the treatment by the conventional Fenton oxidation reaction.
한편, 펜톤시약인 과산화수소 및 황산제일철의 시약투입비 및 시약 투입량은 자외선 조사 펜톤산화반응의 효율에 큰 영향을 미친다.On the other hand, the reagent input ratio and the reagent input amount of hydrogen peroxide and ferrous sulfate, which are fenton reagents, have a great influence on the efficiency of ultraviolet irradiation fenton oxidation reaction.
이 변수들을 결정하기 위해서는 먼저 반응시간을 정해야 한다.To determine these variables, the reaction time must first be determined.
반응시간을 초과해서 유브이(UV)광이 조사되면 3가 철이 적고 2가 철이 많아져서 반응 종결 후에 침강성이 떨어져서 반응효율이 오히려 저하하게 된다.When UV light is irradiated over the reaction time, trivalent iron is less and divalent iron is increased, so that the sedimentation property is lowered after completion of the reaction, and the reaction efficiency is lowered.
따라서 반응시간을 고정시킨 후 이 반응시간에서의 시약투입비 및 시약투입량을 결정해야 한다.Therefore, after the reaction time is fixed, the reagent input ratio and the reagent input amount at this reaction time should be determined.
이하 본 발명의 바람직한 실시예를 설명한다.Hereinafter, preferred embodiments of the present invention will be described.
실시예Example
매립지 연령이 5 ∼ 6년이 된 침출수를 대상으로 공기폭기에 따른 알칼리도 변화 측정, 펜톤산화반응 및 자외선 조사를 동반하는 펜톤산화반응을 수행하였다.Leachate of 5 to 6 years of age in landfills was measured for alkalinity change, Fenton oxidation reaction and Fenton oxidation reaction with UV irradiation.
아래 표 1에는 침출수의 생물처리수, 페하를 3으로 조정하였을 경우, 공기폭기시 시간에 따른 알카리도의 변화를 보여 주고 있다.Table 1 below shows the change in alkalinity with time of aeration when bioleaching water, leachate of leachate is adjusted to 3.
대략 60분 여의 공기폭기를 거치면서 알칼리도 저감비율이 낮아진다.Alkaline reduction rate is lowered after about 60 minutes of air aeration.
따라서 60분 정도의 공기폭기가 본 대상 침출수의 경우에 경제적임을 알 수 있다.Therefore, it can be seen that the air aeration of about 60 minutes is economical for the present leachate.
30 ∼ 60분의 공기폭기를 하여 알칼리도를 낮춤으로써 중탄산 이온 농도가 낮아지고 이에 따라 펜톤반응 효율은 10% 정도 상승함을 관찰할 수 있었다.By lowering the alkalinity by air aeration for 30 to 60 minutes, the bicarbonate ion concentration was lowered, and thus the Fenton reaction efficiency increased by about 10%.
표 1Table 1
자외선 조사 펜톤산화 반응의 경우, 반응시간을 30분으로 고정하여 수행하였다.In the case of ultraviolet irradiation fentonation reaction, the reaction time was fixed at 30 minutes.
30분 반응 후, 페하를 8로 올린 후 30분 완속교반하였고, 30분 동안 침강시켰다.After 30 minutes reaction, the peha was raised to 8 and then stirred for 30 minutes, and allowed to settle for 30 minutes.
도 5 는 시약투입비에 따른 처리 효율의 변화를 나타내는데, 자외선 조사 펜톤산화반응전에 공기를 불어넣지 않고 수행한 것이다.Figure 5 shows the change in treatment efficiency according to the reagent input ratio, which was performed without blowing air before the ultraviolet irradiation penton oxidation reaction.
2가 철 기준으로 과산화수소와 무게비로 1:2를 투입했을 때 가장 처리효율이 좋게 나타났다.Treatment efficiency was the best when 1: 2 was added in the ratio of hydrogen peroxide and weight based on divalent iron.
도 6 은 시약 투입량에 따른 처리 효율 변화를 나타내는데, 펜톤반응전에 페하를 3으로 조정한 후, 공기를 불어넣음으로써 알칼리도를 낮춘 후 자외선 조사 펜톤산화반응을 수행한 결과이다.6 shows a change in treatment efficiency according to the reagent input amount, after adjusting the pH to 3 before the Fenton reaction, and lowering the alkalinity by blowing air to perform the ultraviolet irradiation Fenton oxidation reaction.
2가 철 기준으로 과산화수소와 무게비 1:2에서 1,000mg/L:2,000mg/L로 투입했을 때, 가장 처리효율이 좋았다.The highest treatment efficiency was achieved at 1,000 mg / L: 2,000 mg / L at 1: 2 ratio of hydrogen peroxide and weight ratio based on divalent iron.
상기 도 5 및 6에서 보듯이 자외선 조사 펜톤산화반응전에 공기를 불어넣어 처리한 경우에 처리효율이 약 5 %정도 상승하였다.As shown in FIGS. 5 and 6, the treatment efficiency increased by about 5% when air was blown before the ultraviolet irradiation penton oxidation reaction.
상기와 같은 본 발명의 펜톤반응은 공기폭기에 의해 유기물 처리효율이 5 ∼ 10% 정도 상승하였고, 자외선 조사 펜톤산화반응으로 기존 펜톤산화반응에 비해 10% 정도의 처리효율 상승을 얻을 수 있다.In the Fenton reaction of the present invention as described above, the treatment efficiency of organic matters is increased by about 5 to 10% by air aeration, and the treatment efficiency increases by about 10% compared to the conventional Fenton oxidation reaction by ultraviolet irradiation penton oxidation.
이러한 결과로부터, 본 발명에 의한 공기폭기 공정을 펜톤 산화조와 페하 조정조 사이에 둠으로써 펜톤산화반응의 처리효율을 상승시켜, 방류수 기준을 맞추기 위한 방안으로 이 공정을 활용할 수 있다.From this result, by placing the air aeration process according to the present invention between the Fenton oxidation tank and the pehase adjustment tank, the treatment efficiency of the Fenton oxidation reaction can be increased, and this process can be utilized as a method for meeting the effluent standard.
또한 자외선 조사 펜톤산화공정으로 기존의 펜톤산화공정을 대체함으로써 목표로 하는 처리효율에 맞게 시약투입량을 조절함으로써 방류수 기준에 적합한 처리수질을 달성할 수 있으며, 특히 매립지 침출수의 성상이 매립 연령에 따라 변화하므로 이에 유연성 있게 대응할 수 있는 효과적인 화학적 산화공정으로 적용될 수 있다.In addition, by replacing the existing Fenton oxidation process with UV irradiation Fenton oxidation process, it is possible to achieve the treated water quality that meets the discharge standard by adjusting the reagent input amount according to the target treatment efficiency.In particular, the characteristics of the landfill leachate change according to the landfill age. Therefore, it can be applied as an effective chemical oxidation process that can flexibly respond to this.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0021678A KR100384390B1 (en) | 1998-06-11 | 1998-06-11 | Leachate Treatment Method and Apparatus with UV Irradiation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1998-0021678A KR100384390B1 (en) | 1998-06-11 | 1998-06-11 | Leachate Treatment Method and Apparatus with UV Irradiation |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000001417A KR20000001417A (en) | 2000-01-15 |
KR100384390B1 true KR100384390B1 (en) | 2003-07-16 |
Family
ID=19539001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-1998-0021678A KR100384390B1 (en) | 1998-06-11 | 1998-06-11 | Leachate Treatment Method and Apparatus with UV Irradiation |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100384390B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101187418B1 (en) | 2010-09-17 | 2012-10-02 | (주)종합기계 | Sewage treatment plant in ship |
KR101780750B1 (en) | 2016-08-30 | 2017-09-21 | 광운대학교 산학협력단 | Reduction Solution for the Removal of Nitrogen Oxide Using Aniline Wastewater and Manufacturing Method the Same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110240313A (en) * | 2019-06-17 | 2019-09-17 | 自然资源部第三海洋研究所 | The devices and methods therefor of Fenton processing refractory organic |
CN115536219A (en) * | 2022-11-14 | 2022-12-30 | 江苏方天电力技术有限公司 | Treatment method of domestic sewage of temporary camping site |
CN115745137B (en) * | 2022-12-20 | 2024-06-25 | 成都理工大学 | Method for treating alkaline wastewater by Fenton system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5539282A (en) * | 1978-09-16 | 1980-03-19 | Kankyo Eng Kk | Organic waste water treating method |
JPH06182362A (en) * | 1992-12-17 | 1994-07-05 | Gunze Ltd | Treatment of dyeing waste water |
KR960010550A (en) * | 1994-09-03 | 1996-04-20 | 권석명 | Treatment of Refractory Wastewater Using Iron Salt Catalytic Air Oxidation and Hydrogen Peroxide |
KR19980043482A (en) * | 1996-12-03 | 1998-09-05 | 이연기 | Waste Landfill Leachate Treatment Method |
KR19990009014A (en) * | 1997-07-07 | 1999-02-05 | 유성용 | Water treatment system |
KR19990026365A (en) * | 1997-09-24 | 1999-04-15 | 정동현 | Wastewater Treatment Method and Apparatus by Fenton Oxidation and Electric Electrolysis |
-
1998
- 1998-06-11 KR KR10-1998-0021678A patent/KR100384390B1/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5539282A (en) * | 1978-09-16 | 1980-03-19 | Kankyo Eng Kk | Organic waste water treating method |
JPH06182362A (en) * | 1992-12-17 | 1994-07-05 | Gunze Ltd | Treatment of dyeing waste water |
KR960010550A (en) * | 1994-09-03 | 1996-04-20 | 권석명 | Treatment of Refractory Wastewater Using Iron Salt Catalytic Air Oxidation and Hydrogen Peroxide |
KR19980043482A (en) * | 1996-12-03 | 1998-09-05 | 이연기 | Waste Landfill Leachate Treatment Method |
KR19990009014A (en) * | 1997-07-07 | 1999-02-05 | 유성용 | Water treatment system |
KR19990026365A (en) * | 1997-09-24 | 1999-04-15 | 정동현 | Wastewater Treatment Method and Apparatus by Fenton Oxidation and Electric Electrolysis |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101187418B1 (en) | 2010-09-17 | 2012-10-02 | (주)종합기계 | Sewage treatment plant in ship |
KR101780750B1 (en) | 2016-08-30 | 2017-09-21 | 광운대학교 산학협력단 | Reduction Solution for the Removal of Nitrogen Oxide Using Aniline Wastewater and Manufacturing Method the Same |
WO2018044001A1 (en) * | 2016-08-30 | 2018-03-08 | 광운대학교 산학협력단 | Nitrogen oxide reducing solution using aniline wastewater, and method for preparing same |
Also Published As
Publication number | Publication date |
---|---|
KR20000001417A (en) | 2000-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Application of advanced oxidation methods for landfill leachate treatment–A review | |
Deng et al. | Treatment of landfill leachate by the Fenton process | |
Kim et al. | Degradation of organic pollutants by the photo‐Fenton‐process | |
CN104609665A (en) | Glyphosate-producing wastewater treatment integration technology | |
Englehardt et al. | Options for managing municipal landfill leachate: year 1 development of iron-mediated treatment processes | |
CN110015744A (en) | Strengthen Fenton/class Fenton's reaction system removal water pollutant method using free chlorine | |
JP2006297374A (en) | Method and apparatus for wastewater treatment | |
KR100384390B1 (en) | Leachate Treatment Method and Apparatus with UV Irradiation | |
CN108275766A (en) | A method of promoting the repairing organic polluted water body of Fe (III) Fenton-like system with hydrogen | |
CN112551677A (en) | Novel Fenton oxidation method industrial wastewater treatment process | |
CN104230122A (en) | Gold mine cyaniding waste residue leaching solution treating method | |
CN217780975U (en) | Wastewater treatment system containing tetramethylammonium hydroxide | |
KR100343637B1 (en) | Treatment of leachate | |
CN113184972B (en) | Method for removing organic pollutants in wastewater by sequencing batch reaction | |
CN114988644A (en) | Wastewater treatment system and method containing tetramethylammonium hydroxide | |
JPS5929081A (en) | Treatment of waste water containing humic acid and fulvic acid | |
KR100708367B1 (en) | Method for enhancing biological treatment efficiency of nitrogen using radiation | |
KR100208956B1 (en) | METHOD FOR TREATING WASTEWATER BY AN ELECTRON BEAM AFTER ADJUSTING pH | |
JP2652493B2 (en) | COD removal method for leachate from landfill | |
KR970009649B1 (en) | Waste water treatment method using peroxide of hydrogen and ferruginous salt | |
KR19980014095A (en) | Disposal method of leachate in landfill | |
CN109704522A (en) | Wastewater treatment method | |
KR20050090663A (en) | Waste water treatment apparatus and method using optical fenton oxidation mechanism | |
CN111573814A (en) | Method for treating refractory organic matters in wastewater through ferrous ion and dissolved oxygen combined activation dithionite advanced oxidation | |
KR100352168B1 (en) | Wastewater treatment apparatus using microwave |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |