KR100359752B1 - 철손이 낮은 무방향성 전기강판 및 그 제조방법 - Google Patents

철손이 낮은 무방향성 전기강판 및 그 제조방법 Download PDF

Info

Publication number
KR100359752B1
KR100359752B1 KR10-1998-0060211A KR19980060211A KR100359752B1 KR 100359752 B1 KR100359752 B1 KR 100359752B1 KR 19980060211 A KR19980060211 A KR 19980060211A KR 100359752 B1 KR100359752 B1 KR 100359752B1
Authority
KR
South Korea
Prior art keywords
less
annealing
steel sheet
temperature
iron loss
Prior art date
Application number
KR10-1998-0060211A
Other languages
English (en)
Other versions
KR20000043790A (ko
Inventor
배병근
장삼규
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0060211A priority Critical patent/KR100359752B1/ko
Publication of KR20000043790A publication Critical patent/KR20000043790A/ko
Application granted granted Critical
Publication of KR100359752B1 publication Critical patent/KR100359752B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Abstract

본 발명은 무방향성 전기강판 및 그 제조방법에 관한 것으로서, 중량%로 C:0.01%이하, Si:1.5%이하, Mn:1.5%이하, P:0.15%이하, S:0.02%이하, Al:0.005-0.2%, N:0.006%이하, O:0.005%이하, Sn:0.03-0.30%, B:0.0004-0.0030% 및 B/N의 비가 0.1-0.5이고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 재가열한 후 열간압연하는 단계와; 550-850℃의 온도로 권취하는 단계와; 산세 및 냉간압연하는 단계와; 700-1050℃의 온도에서 냉연판을 소둔하는 단계와; 로 이루어진 철손이 낮은 무방향성 전기강판의 제조방법을 요지로 한다.

Description

철손이 낮은 무방향성 전기강판 및 그 제조방법{Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same}
본 발명은 무방향성 전기강판 및 그 제조방법에 관한 것으로서, 특히 중소형모터 및 변압기와 같은 전기기기의 철심으로 사용되는 철손이 낮은 무방향성 전기강판 및 그 제조방법에 관한 것이다.
각종 모터, 소형 변압기 및 자기 차폐(magnetic shield) 제품과 같은 전기제품에서 철심으로 사용되는 무방향성 전기강판은 철손이 낮은 것이 요구된다. 철손은 전기강판 소재의 중량당 전기에너지가 손실되는 정도를 나타내는 것으로서 W/Kg의 단위로 표시된다.
규소(Si)를 증가시켜 철손을 낮추는 방법도 있으나, 제조원가가 증가하는 단점이 있다. 또한, 가격이 낮은 소재는 철손이 높은 단점이 있다. 따라서, 이들을 모두 만족하면서도 전기제품의 특성을 향상시킬 수 있는 방법이 요구된다.
무방향성 전기강판은, 조직중에서 결정립을 크게 성장시킴으로서, 철손을 낮출 수 있다. 그러나, 결정립의 성장을 억제하는 원소중에서 대표적인 원소가 질소(N)이다. 따라서, 결정립 성장에 대한 질소(N)의 악영향을 억제하기 위하여,알루미늄(Al)을 0.2% 이상 첨가하기도 하였지만 이는 무방향성 전기강판의 제조비용을 상승시키게 된다.
일본공개특허 소64-39348호에는 붕소(B)를 첨가하여 질소(N)의 영향을 감소시키려는 방식이 개시되어 있지만, B/N의 비가 0.5 내지 1.5로 높아서 붕소(B)가 필요이상으로 함유될 수 있다. 또한 일본공개특허 소62-180014호에 개시되어 있는 방식에 따르면, B/N의 비가 0.5 내지 1.5 정도이므로 붕소(B) 석출물이 증가할 수 있다.
대한민국 특허출원 제1997-65507호에 개시되어 있는 발명에 따르면, B/N의 비가 0.1 내지 1.5로 낮으나, 용융 알루미늄(Sol.Al)의 양이 낮아서 충분한 탈산이 어려워지므로, 산화물의 생성이 증가하게 된다.
본 발명은 상기 문제점을 해결하기 위하여 안출된 것으로서, 결정립이 크고 철손이 낮은 무방향성 전기강판 및 그 제조방법을 제공하는 것을 목적으로 하고 있다.
본 발명의 상기 목적은 중량%로 C:0.01% 이하, Si:1.5% 이하, Mn:1.5% 이하, P:0.15% 이하, S:0.02% 이하, Al:0.005% 내지 0.2%, N:0.006% 이하, O:0.005% 이하, Sn:0.03 내지 0.30%, B:0.0004% 내지 0.003% 및 B/N의 비가 0.1 내지 0.5이고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 철손이 낮은 무방향성 전기강판을 제공함으로써 달성된다.
한편, 본 발명의 실시예에 따르면, 철손이 낮은 무방향성 전기강판의 제조방법은 중량%로 C:0.01% 이하, Si:1.5% 이하, Mn:1.5% 이하, P:0.15% 이하, S:0.02% 이하, Al:0.005% 내지 0.2%, N:0.006% 이하, O:0.005% 이하, Sn:0.03% 내지 0.30%, B:0.0004% 내지 0.0030% 및 B/N의 비가 0.1 내지 0.5이고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1300℃ 이하의 온도로 재가열한 후, 열간압연하는 단계와, 550℃ 내지 850℃의 온도로 권취하는 단계와, 산세 및 냉간압연하는 단계와, 700℃ 내지 1050℃의 온도에서 30초 내지 5분동안 냉연판을 소둔하는 단계로 이루어진 것을 특징으로 한다.
또한, 본 발명의 다른 실시예에 따르면, 철손이 낮은 무방향성 전기강판의 제조방법은 중량%로 C:0.01% 이하, Si:1.5% 이하, Mn:1.5% 이하, P:0.15% 이하, S:0.02% 이하, Al:0.005% 내지 0.2%, N:0.006% 이하, O:0.005% 이하, Sn:0.03% 내지 0.30%, B:0.0004% 내지 0.003% 및 B/N의 비가 0.1 내지 0.5이고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1300℃ 이하의 온도로 재가열한 후 열간압연하는 단계와, 550℃ 내지 850℃의 온도로 권취하는 단계와, 산세 및 냉간압연하는 단계와, 650℃ 내지 900℃의 온도에서 30초 내지 5분동안 냉연판을 소둔하는 단계와, 1% 내지 10%의 압하율로 압연하는 단계로 이루어진 것을 특징으로 한다.
이하, 본 발명을 더욱 상세히 설명하기로 한다.
본 발명에 따른 무방향성 전기강판에서 질소(N)는 결정립성장에 큰 영향을 미친다. 즉, 질소(N)는 미세하여 주로 선상의 AlN으로 석출되므로 결정립 성장을 억제하게 된다. 따라서, 질소(N)와 알루미늄(Al)은 가능한 억제하여야 하지만, 불가피하게 첨가됨으로서 이들의 영향을 감소시킬 수 있는 방법을 사용할 수 있다.
질소(N)의 영향을 감소시킬 수 있는 원소로 붕소(B)를 사용하고 있으며, 붕소(B)는 질소(N)와 결합력이 커서 BN으로 석출하지만, 붕소(B)가 과다한 경우에는 B2O3및 FeB 등으로 석출될 수 있다. 따라서, 붕소(B)의 양은 적당하게 첨가되어야 하고, BN과 결합하는 양을 보상할 수 있도록 충분히 첨가되어야 하며, 그 이상의 붕소(B)는 첨가되지 않는 것이 중요하다. 불가피하게 함유되는 질소(N)의 양보다는 임의로 조정가능한 붕소(B)의 양을 보다 적게 첨가하는 방법을 조사하였다.
또한, 알루미늄(Al)의 양도 상당히 중요한 것으로 조사되었다. 특히 알루미늄(Al)은 산화억제제로서 제강단계에서 용강을 출강후 산화억제를 위하여 첨가하여야 한다. 따라서 용강중에서 산소(O)를 0.005% 이하로 유지시킨 후, 붕소(B)를 첨가함으로서 AlN의 형성을 억제할 수 있을 뿐만 아니라 산소와 결합하여 발생되는 산화물의 형성도 억제할 수 있다.
본 발명의 제조방법은 다음과 같다. 즉, 제강 - 연주 - 슬라브 재가열 - 열연 - 냉연 - 소둔 - 절연피막 - 출하의 폴리프로세스 공정과, 제강 - 연주 - 슬라브 재가열 - 열연 - 냉연 - 소둔 - 경압연 - 절연피막 - 출하의 세미프로세스 공정으로 나눌 수 있다. 세미프로세스는 폴리프로세스의 냉연판의 소둔후, 경압연[1%-내지 10%의 스킨 패스(skin pass)] 공정을 추가하는 프로세스로서, 이 프로세스에 의한 강판은 수요자가 타발 가공후 열처리를 하여 잔류응력을 제거하여야 하는 데 특징이 있다.
본 발명에 따른 강판은 성분 중에서 알루미늄(Al)을 0.005 내지 0.2% 투입하여 산소(O)를 충분히 제거한 후 붕소(B)를 첨가한다. 그리고, 질소(N)와 반응이 강판 붕소(B)는 최소한으로 첨가하여 불필요한 석출물이 형성되지 않도록 하며, 이를 위해서 붕소(B)는 0.0004 내지 0.0030%로 첨가하며, B/N의 값을 0.1 내지 0.5로 유지한다. 이와 같은 조건 하에서, 결정립이 잘 성장되는 것으로 관찰되었다.
이하, 본 발명의 조성범위에 따른 수치한정 이유에 대하여 설명한다.
탄소(C)는 자기시효를 일으켜서, 사용중 무방향성 전기강판의 자기적 특성을 저하시키므로, 슬라브에서는 0.01% 이하로 유지하고, 최종 제품에서는 0.003% 이하로 억제하는 것이 바람직하다.
규소(Si)는 비저항을 증가시켜서 철손을 낮추는 원소이지만, 본 발명에 따르면 강의 성분에서는 1.5% 이하로 첨가하는 것이 가장 효과적이다. 즉, 붕소(B) 첨가강에서 철손을 낮출 수 있는 규소(Si)의 적정 영역은 1.5% 이하이다.
인(P)은 자성에 유리한 집합조직을 형성하는 원소이며, 냉간압연성을 고려하여 최대 0.15%까지 첨가할 수 있다.
황(S)은 미세한 석출물인 MnS를 형성하여 결정립 성장을 억제하므로, 가능한한 낮게 함유되는 것이 유리하며, 본 발명에서는 최대 0.02% 이하로 유지된다.
망간(Mn)은 결정립을 성장시켜 철손을 낮추고, 집합조직을 개선하므로 첨가하며 1.5% 이상 첨가시에는 냉간압연시 판파단이 일어나고, 그 이상 첨가하여도 첨가효과가 적기 때문에 1.5% 이하로 억제한다.
알루미늄(Al)은 용강의 충분한 탈산용으로 0.005% 이상, 최대 0.2% 까지 첨가한다. 0.005% 이하로 첨가시, 탈산이 불충분할 수 있어서 산화 개재물이 많이 발생될 수 있으며, 0.2% 이상 첨가시 본 발명의 강에서는 첨가량에 비해 그 효과가 적다. 일반적으로 알루미늄(Al)은 질소의 영향을 감소시키는 역할을 수행하지만, 본 발명의 강은 붕소(B)가 그 역할을 하기 때문에 알루미늄(Al)을 많이 첨가하지 않아도 된다.
질소(N)는 미세하고 긴 AlN 석출물을 형성하므로, 가능한 한 그 첨가량을 최소화시키며, 본 발명에서는 0.006% 이하로 한다.
산소(O)는 산화물을 형성하여 강판에서 자구(magnetic domain)의 이동을 억제하여 자성을 저하시키므로, 그 첨가량을 최소화시키며, 본 발명에서는 0.005% 이하로 한다.
주석(Sn)은 결정립계에 편석하여 질소(N)의 확산을 억제하며, 자성에 불리한 (222) 면의 집합 조직을 억제시키는 역할을 수행한다. 이때, 그 첨가량을 0.03% 이하로 하면 그 효과가 적은 반면, 0.30% 이상으로 하면 냉간압연성이 나빠지고, 열연판의 형상이 불량해지므로, 주석은 0.03 % 내지 0.30%로 첨가된다.
붕소(B)는 소재 내부에서 질소(N)와 결합하여 미세한 AlN 대신 조대한 붕소석출물인 BN을 형성시키므로, 결정립 성장에 보다 유리하도록 첨가시킨다. 즉, 붕소(B)는 최소 0.004% 이상 첨가하며, 그 양이 많으면 오히려 철손이 높아짐으로 최대 0.0030% 까지 첨가할 수 있다. 그리고, B/N이 0.1 내지 0.5가 되도록 함으로써, 질소와 붕소의 석출물을 가능한 한 감소시켜 자성에 불리한 BN 석출물의 형성을 억제할 수 있다.
이하, 본 발명의 제조방법에 대하여 설명한다.
상기와 같이 조성되는 슬라브는 제강에서의 용강을 연속주조하여 제조되고, 이러한 슬라브는 열간압연전 가열로에 장입되어 1300℃ 이하의 온도 범위에서 재가열후 열간압연한다. 재가열 온도가 1300도 보다 높으면, 슬라브중 석출물이 재용해되어 열간압연 후 미세한 석출물로 과도하게 석출되므로 재가열온도를 1300℃ 이하로 한다.
열간압연된 열연판은 권취하며, 권취시 550℃ 내지 850℃의 온도범위로 권취함으로써, 열연판을 소둔하는 효과를 부가할 수 있으며, 따라서 미세한 석출물을 크게 성장시킬 수 있다. 이것을 자기소둔이라고 한다. 550℃ 이하로 권취시에는 소둔의 효과가 적으며, 850℃ 이상으로 소둔시에는 과다한 표면산화로 인하여 산세가 어려워질 수 있다. 권취후 냉각된 열연판은 산용액에서 산세한 후 냉간압연한다.
폴리프로세스로 제조시에는 냉간압연판은 700℃ 내지 1050℃의 온도에서 30초이상 5분 이하의 시간동안 연속공정으로 냉연판소둔을 실시하며, 소둔판은 절연피막처리후 수요가로 출하한다. 냉연판의 소둔시, 700℃ 이하 온도에서 소둔하면 재결정이 불충분하며, 1050℃ 이상으로 소둔하면 표면에 산화층이 발생될 수 있으므로 700 ℃ 내지 1050℃의 온도 범위에서 소둔을 행한다. 또한 소둔은 30초 이상, 5분 이하로 소둔한다.
상기 소둔 시간을 30초 이상 5분 이하로 한정한 것은 소둔시간이 30초 이하로 너무 짧으면 냉간압연판의 결정립이 재결정되지 못하고 미세화될 수 있으며, 소둔시간이 5분 이상으로 너무 길면 소둔시간에 비하여 결정립 성장이 미미하여 그효과가 떨어지므로 소둔 시간을 30초 이상 5분 이하로 한정한다.
세미프로세스로 제조시, 냉간압연판은 650℃ 내지 900℃의 온도에서 30초 이상 5분 이하의 시간동안 연속공정으로 냉연판 소둔처리된다. 소둔판은 1% 내지 10%로 경압연된 후, 수요가로 출하되며, 수요가가 필요시에는 절연피막을 형성할 수 있다. 냉연판 소둔시 650℃ 이하로 소둔하면 재결정이 불충분하며, 900℃ 이상으로 소둔하면 결정립성장이 과도하여 경압한 후 수요가 가공후 응력제거 소둔시에 결정립성장이 불균일하여질 수 있다. 스킨 패스를 1% 이하로 실시할 때, 수요가 응력제거소둔시 결정립 성장이 미흡하며, 10% 이상일 때에는 재결정이 발생되어 결정립이 미세해지므로, 스킨 패스는 1% 내지 10%로 실시된다.
수요가로 출하된 무방향성 전기강판은 수요가가 원하는 형상으로 타발가공하며, 필요시 타발된 소재를 응력제거 소둔할 수 있다. 응력제거 소둔은 비산화성 분위기에서 실시하며, 700℃ 내지 850℃의 온도범위에서 10분 이상 실시될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다.
(실시예 1)
세미프로세스로 제조된 본 발명의 강판에 대한 예로서, 하기 표 1과 같은 성분을 갖는 슬라브가 제조되었으며, 강종별 B/N는 발명강 a인 경우 0.26이고, 발명강 b인 경우 0.31이고, 비교강 a는 0.83이고, 비교강 b는 1.90이었다. 슬라브는 1180℃로 가열되고, 통상의 방법에 의해 2.0mm의 두께로 열간압연되었으며, 하기 표 2와 같이 권취하고 냉각되었다.
냉각된 열연판은 산세되고 냉간압연되고, 소둔후 표 2와 같이 경압연(skinpass) 되었으며, 경압연후의 두께는 0.5mm이었다. 냉연판의 소둔은 수소 20%와 질소 80%의 혼합분위기에서 실시되었으며, 응력제거 소둔은 100% 질소분위기에서 수행되었다. 응력제거 소둔은 790℃에서 60분간 가열된 후 노냉함으로써 수행되었다. 응력제거된 시료는 그 자성이 측정되고 결정립 크기 또한 측정되었다.
표 2에서 비교재 1은 소둔온도가 낮았으며, 비교재 2는 경압연율이 0.5%로 낮은 것이 결정립이 작고 철손이 높은 원인으로 나타났다. 비교재 3은 소둔온도가 높아서 결정립이 혼립으로 나타났다. 비교재 4와 5는 B/N의 값이 발명의 범위를 초과함으로써 결정립이 작고, 철손이 높은 것으로 판단되었다.
〈표 1〉
〈표 2〉
(실시예 2)
폴리프로세스가 제조된 발명강에 대한 예로서, 하기 표 3과 같은 성분을 갖는 슬라브가 제조되었으며, 강종별 B/N는 발명강 c인 경우 0.40이고, 비교강 c인 경우 1.66이었다. 슬라브는 1200℃로 가열되고, 통상의 방법으로 2.3mm의 두께로 열간압연되고, 표 4와 같이 권취하고 냉각되었다. 냉각된 열연판은 산세되고 냉간압연되어 두께가 0.5mm로 되었다. 냉연판의 소둔은 수소 20%와 질소 80%의 혼합분위기에서 실시되었다. 소둔한 소재는 절연피막처리후 절단하여 자성을 측정하고 결정립 크기도 측정하였다.
표 4에서 비교재 6은 소둔온도가 낮았으며, 비교강 c는 B/N의 값이 본 발명의 범위를 초과함으로써, 비교재 6 내지 8과 같이 조건을 바꾸어도 철손이 높은 것으로 판단되었다.
〈표 3〉
〈표 4〉
(실시예 3)
중량%로, C:0.003%, Si:0.41%, Mn:0.25%, P:0.071%, S:0.001%, Al:0.011%, N:0.0025%, Sn:0.09%, B:0.0010% 및 B/N의 비가 0.4이고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 진공용해하고, 1150℃로 가열한 후, 850℃ 온도로 마무리 열간압연하고, 800℃의 온도에서 권취 및 냉각하고, 산세후 0.50mm의 두께로 냉간압연하였다. 냉연판은 850℃에서 수소 20%와 질소 80%의 분위기에서 소둔하고, 절단후 790℃에서 60분간 응력제거 소둔하고 노냉하였다. 자기적 특성중 철손(W15/50)은 4.31 W/kg이었다. 재료의 특성을 시험한 결과 결정립크기는 92㎛ 이었다.
상술한 바와 같이, 본 발명에 의하면, 중소형의 모터 및 변압기와 같은 전기기기의 철심으로 사용되는 무방향성 전기강판에 있어서 철손의 함량이 저감되는 효과를 가진다.

Claims (3)

  1. 중량%로 C:0.01% 이하, Si:1.5% 이하, Mn:1.5% 이하, P:0.15% 이하, S:0.02%이하, Al:0.005% 내지 0.2%, N:0.006% 이하, O:0.005% 이하, Sn:0.03% 내지 0.30%, B:0.0004% 내지 0.003% 및 B/N의 비가 0.1 내지 0.5이고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 철손이 낮은 무방향성 전기강판.
  2. 중량%로 C:0.01% 이하, Si:1.5% 이하, Mn:1.5% 이하, P:0.15% 이하, S:0.02% 이하, Al:0.005% 내지 0.2%, N:0.006% 이하, O:0.005% 이하, Sn:0.03% 내지 0.30%, B:0.0004% 내지 0.003% 및 B/N의 비가 0.1 내지 0.5이고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1300℃ 이하의 온도로 재가열한 후, 열간압연하는 단계와,
    550℃ 내지 850℃의 온도로 권취하는 단계와,
    산세 및 냉간압연하는 단계와,
    700℃ 내지 1050℃의 온도에서 30초 내지 5분동안 냉연판을 소둔하는 단계로 이루어진 것을 특징으로 하는 철손이 낮은 무방향성 전기강판의 제조방법.
  3. 중량%로 C:0.01% 이하, Si:1.5% 이하, Mn:1.5% 이하, P:0.15% 이하, S:0.02% 이하, Al:0.005% 내지 0.2%, N:0.006% 이하, O:0.005% 이하, Sn:0.03% 내지 0.30%, B:0.0004% 내지 0.003% 및 B/N의 비가 0.1 내지 0.5이고, 잔부 Fe 및 기타 불가피한 불순물로 조성되는 슬라브를 1300℃ 이하의 온도로 재가열한 후 열간압연하는 단계와,
    550℃ 내지 850℃의 온도로 권취하는 단계와,
    산세 및 냉간압연하는 단계와,
    650℃ 내지 900℃의 온도에서 30초 내지 5분동안 냉연판을 소둔하는 단계와,
    1% 내지 10%의 압하율로 압연하는 단계로 이루어진 것을 특징으로 하는 철손이 낮은 무방향성 전기강판의 제조방법.
KR10-1998-0060211A 1998-12-29 1998-12-29 철손이 낮은 무방향성 전기강판 및 그 제조방법 KR100359752B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0060211A KR100359752B1 (ko) 1998-12-29 1998-12-29 철손이 낮은 무방향성 전기강판 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0060211A KR100359752B1 (ko) 1998-12-29 1998-12-29 철손이 낮은 무방향성 전기강판 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20000043790A KR20000043790A (ko) 2000-07-15
KR100359752B1 true KR100359752B1 (ko) 2003-01-08

Family

ID=19567046

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0060211A KR100359752B1 (ko) 1998-12-29 1998-12-29 철손이 낮은 무방향성 전기강판 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR100359752B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466176B1 (ko) * 2000-12-27 2005-01-13 주식회사 포스코 응력제거소둔 후 철손이 낮은 무방향성 전기강판의 제조방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030053769A (ko) * 2001-12-24 2003-07-02 주식회사 포스코 자성특성이 우수한 무방향성 전기강판 제조방법
KR20040026041A (ko) * 2002-09-17 2004-03-27 주식회사 포스코 철손이 낮은 무방향성 전기강판 제조방법
KR100957931B1 (ko) * 2002-12-23 2010-05-13 주식회사 포스코 철손이 낮은 무방향성 전기강판의 제조방법
KR100957939B1 (ko) * 2002-12-24 2010-05-13 주식회사 포스코 자성이 우수한 무방향성 전기강판 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100466176B1 (ko) * 2000-12-27 2005-01-13 주식회사 포스코 응력제거소둔 후 철손이 낮은 무방향성 전기강판의 제조방법

Also Published As

Publication number Publication date
KR20000043790A (ko) 2000-07-15

Similar Documents

Publication Publication Date Title
US5779819A (en) Grain oriented electrical steel having high volume resistivity
US4439251A (en) Non-oriented electric iron sheet and method for producing the same
KR100345706B1 (ko) 자기적특성이우수한무방향성전기강판및그제조방법
KR100779579B1 (ko) 철손이 낮고 자속밀도가 높은 무방향성 전기강판의제조방법
KR100359752B1 (ko) 철손이 낮은 무방향성 전기강판 및 그 제조방법
KR100395100B1 (ko) 수요가 열처리후 자성이 우수한 무방향성 전기강판의 제조방법
KR20010028570A (ko) 자성이 우수한 무방향성 전기강판 및 그 제조방법
GB2095287A (en) Method for producing grain- oriented silicon steel
KR930011407B1 (ko) 자속밀도와 투자율이 높은 무방향성 전기강판 및 그 제조방법
KR100435480B1 (ko) 자성이 우수한 세미프로세스 무방향성 전기강판의 제조방법
KR100340548B1 (ko) 자성이우수한무방향성전기강판의제조방법
KR100530069B1 (ko) 응력제거소둔 후 철손이 낮고 자속밀도가 높은 무방향성전기강판의 제조방법
KR100321035B1 (ko) 수요가 열처리후 자기특성이 우수한 무방향성 전기강판 및 그제조방법
JP2005146295A (ja) 磁気特性に優れた方向性電磁鋼板の製造方法
JP2501219B2 (ja) 無方向性電磁鋼板の製造方法
KR910003880B1 (ko) 자성이 우수한 세미프로세스 무방향성 전기강판의 제조방법
KR100530047B1 (ko) 응력제거소둔후 철손이 개선된 무방향성 전기강판 및 그제조방법
KR100782762B1 (ko) 자기특성이 우수한 무방향성 전기강판 제조방법
KR100544610B1 (ko) 철손이 낮은 무방향성 전기강판의 제조방법
KR20030053154A (ko) 자성이 우수한 무방향성 전기강판의 제조방법
KR100501000B1 (ko) 응력제거소둔후철손이낮은무방향성전기강판및그제조방법
KR20020012643A (ko) 자성이 우수한 무방향성 전기강판 및 그 제조방법
KR960003175B1 (ko) 철손이 낮고 자속밀도가 높은 무방향성 전기강판 및 그 제조방법
KR100276279B1 (ko) 철손이낮은풀리프로세스무방향성전기강판의제조방법
KR100940719B1 (ko) 응력제거 소둔 후 자속밀도 특성이 우수한 무방향성전기강판의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee