KR100359496B1 - DEVEIOPMENT METHOD OF AI-Sn COATING FILM METAL BEARINGS FOR DIESEL ENGINES BY RF MAGNETRON SPUTTERING PROCESS - Google Patents

DEVEIOPMENT METHOD OF AI-Sn COATING FILM METAL BEARINGS FOR DIESEL ENGINES BY RF MAGNETRON SPUTTERING PROCESS Download PDF

Info

Publication number
KR100359496B1
KR100359496B1 KR1020000075009A KR20000075009A KR100359496B1 KR 100359496 B1 KR100359496 B1 KR 100359496B1 KR 1020000075009 A KR1020000075009 A KR 1020000075009A KR 20000075009 A KR20000075009 A KR 20000075009A KR 100359496 B1 KR100359496 B1 KR 100359496B1
Authority
KR
South Korea
Prior art keywords
coating film
aluminum
tin
vacuum
magnetron sputtering
Prior art date
Application number
KR1020000075009A
Other languages
Korean (ko)
Other versions
KR20020038437A (en
Inventor
이명훈
이경황
이찬식
장진국
Original Assignee
이명훈
이경황
장진국
이찬식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이명훈, 이경황, 장진국, 이찬식 filed Critical 이명훈
Priority to KR1020000075009A priority Critical patent/KR100359496B1/en
Publication of KR20020038437A publication Critical patent/KR20020038437A/en
Application granted granted Critical
Publication of KR100359496B1 publication Critical patent/KR100359496B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

본 발명은 마그네트론 스퍼터링(Magnetron Sputtering)공정에 의한 알루미늄(AI)-주석(Sn)계 디젤엔진용 코팅막 메탈베어링의 제조방법에 관한 것으로서,The present invention relates to a manufacturing method of a coating film metal bearing for an aluminum (AI) -tin (Sn) -based diesel engine by a magnetron sputtering process,

물리기상증착법(PVD:Physical Vapour Deposition)중의 하나인 마그네트론 스퍼터링법을 이용하여 장치의 진공용기(1)내를 원자.분자 및 이온등의 직진성운동을 좋게 하기 위해 진공을 형성시키고, 아르곤가스봄베(2)에서 불황성 아르곤가스를 공급하여 양의 아르곤(Ar +)이온이 증착하고자 하는 알루미늄(AI)과 주석(Sn) 금속 타겟트(target)를 스퍼터시키고, 타겟트로부터 튀어나온 원자는 무선주파수(RF)전원의 공급에 의해 원자.분자 및 이온등이 충돌을 하게하여,Magnetron sputtering, one of physical vapor deposition (PVD), is used to form a vacuum in order to improve the linear motion of atoms, molecules, and ions in the vacuum vessel (1) of the apparatus. 2) sputtered aluminum (AI) and tin (Sn) metal targets to which positive argon ( Ar + ) ions are to be deposited by supplying inert argon gas, and the atoms protruding from the targets are radio frequency. (RF) Atoms, molecules, and ions collide by the supply of power,

이 때 생성된 전자는 자장에 의해 나선운동을 하여 평균자유행정(한 분자가 진공상태하에서 운동을 하여 또 다른 분자와 충돌하기까지 움직인 평균거리)이 길어져 다른 분자와 비탄성 충돌을 일으켜 양이온으로 이온화시키고 동시에 진공용기 내에서 원자와 분자들은 연속적인 충돌을 진행하며 원자가 여기 또는 이온화되어 플라즈마를 형성시키고,At this time, the generated electrons are spirally moved by the magnetic field and the average free stroke (the average distance traveled until one molecule moves under vacuum and collides with another) becomes long, causing inelastic collision with other molecules and ionizing with cations. At the same time, atoms and molecules in a vacuum vessel undergo continuous collisions, and atoms are excited or ionized to form a plasma,

이 때 타겟트로부터 스퍼터 된 알루미늄(AI)과 주석(Sn) 금속의 원자.분자 혹은 이온의 상태로 모재(Substrate)에 증착시켜 알루미늄(AI)-주석(Sn)계 코팅막 메탈베어링을 제작하는 방법으로서,At this time, a method of manufacturing an aluminum (AI) -tin (Sn) coating film metal bearing by depositing on the substrate in the state of atoms, molecules or ions of aluminum (AI) and tin (Sn) metal sputtered from the target. As

코팅막 베어링제작을 위한 모재는 통상의 압연강판 ss41강 위에 코팅막의 국부손상에도 윤활성을 보완할 수 있는 케멧(kelmet)을 두께 2㎜로 소결시킨 것을 이용하고, 상기 재료와 코팅막과의 밀착력 향상을 위한 모재의 초음파세척을 통한 1차 세정과 진공용기내에서 이온봄바드먼트(Ionbombardment)를 통한 2차 세정을 시행한다.The base material for manufacturing the coating film bearing is a sintered kemet (2 mm thick) that can compensate for the lubricity even in the local damage of the coating film on a conventional rolled steel ss41 steel, and to improve the adhesion between the material and the coating film Primary cleaning by ultrasonic cleaning of the base material and secondary cleaning by ion bombardment in vacuum vessel.

세정된 후 코팅막의 형성 조건을 일정 아르곤가스압을 진공용기내에 공급하여 일정한 진공도로 유지시켜 아르곤 가스압이 유지되는 상태하에서 알루미늄(AI)과 주석(Sn) 타겟트(Target)에 각각 230w와 55w의 무선주파수전압(RF power)을 인가를 통하여 제작된 막의 조성비율을 75% AI , 25% Sn의 합금막으로 코팅막을 건식도 금법인 마그네트론 스퍼터링(Magnetron Sputtering)법에 의하여하게 됨으로 종래 습식법에 의하여 발생되던 폐액 및 유해가스의 방출의 염려가 없고,After cleaning, the coating conditions of the coating film were supplied to a vacuum chamber with a constant argon gas pressure, and maintained at a constant vacuum, so that the aluminum and tin targets were 230w and 55w, respectively, while the argon gas pressure was maintained. The composition ratio of the film produced by applying RF voltage is 75% AI and 25% Sn alloy film, and the coating film is made by the magnetron sputtering method, which is a dry plating method, which was generated by the conventional wet method. There is no fear of discharge of waste liquid and harmful gas,

납으로 인한 공해해소와 내마모성, 윤활성, 내구성, 내식성을 향상시킬 수 있는 마그네트론 스퍼터링(Margnetron Sputtering)공정에 의한 디젤엔진용 코팅막 메탈베어링의 제조방법을 제공할 수 있도록 한 것이다.It is to provide a method of manufacturing a coating film metal bearing for diesel engines by a magnetron sputtering process that can improve pollution and lead resistance, wear resistance, lubricity, durability and corrosion resistance due to lead.

Description

마그네트론 스퍼터링공정에 의한 알루미늄- 주석계 디젤엔진용 코팅막 메탈베어링의 제조방법{DEVEIOPMENT METHOD OF AI-Sn COATING FILM METAL BEARINGS FOR DIESEL ENGINES BY RF MAGNETRON SPUTTERING PROCESS}Manufacturing method of coating film metal bearing for aluminum-tin-based diesel engine by magnetron sputtering process {DEVEIOPMENT METHOD OF AI-Sn COATING FILM METAL BEARINGS FOR DIESEL ENGINES BY RF MAGNETRON SPUTTERING PROCESS}

본 발명은 디젤엔진용 메탈베어링의 표면에다 마그네트론 스퍼터링(Magnetron Sputtering)의 공정에 의하여 알루미늄-주석계의 코팅막을 피막시키크로서 코팅막의 내마모성,윤활성과 내구성 및 내식성을 향상시킬 수 있도록 함과 아울러 환경오염을 해소시킬 수 있도록 한 마그네트론 스퍼터링공정에 의한 알루미늄(AI)-주석(Sn)계 디젤엔진용 코팅막 메탈베어링의 제조방법에 관한 것이다.The present invention provides an aluminum-tin based coating film on the surface of a metal bearing for a diesel engine by magnetron sputtering to improve the wear resistance, lubricity, durability and corrosion resistance of the coating film, as well as the environment. The present invention relates to a method for producing a coating film metal bearing for an aluminum (AI) -tin (Sn) -based diesel engine by a magnetron sputtering process capable of eliminating contamination.

일반적으로 메탈베어링 재료의 공정에 있어서 마지막 공정인 표면처리방법은 마찰계수 감소를 통한 윤활성능을 향상시켜 내구성은 물론 경제적으로 우수한 효과를 주고 있다.In general, the surface treatment method, which is the last step in the process of the metal bearing material, improves lubrication performance by reducing the friction coefficient, thereby giving excellent durability as well as economic efficiency.

그러나 현재 메탈베어링의 표면처리방법으로 가장 많이 사용되고 있는 습식도금은 밀착성,마찰,마모등의 트라이볼로지(Tribology) 특성향상에 있어서 기능상 한계에 달하고 있고, 공정상 폐액처리에 따른 공해유발등의 문제점이 남이 있는 실정이다.However, wet plating, which is most commonly used as the surface treatment method of metal bearings, has reached a functional limit in improving tribology characteristics such as adhesion, friction, and abrasion, and problems such as pollution generation due to waste liquid treatment in the process. This situation exists.

또한 현재 화이트 메탈(white metal) 베어링, 켈멧(kelmet)상의 3원도금막베어링등에는 윤활성이 우수한 메탈베어링 재료로서 납(Pb)금속의 사용이 상당부분을 차지하고 있다.In addition, the use of lead (Pb) metal as a metal bearing material with excellent lubrication is mainly occupied in white metal bearings, kelmet ternary plated film bearings, and the like.

그러나 이 납(Pb) 금속은 환경에 유해하다는 지적에 따라 2004년경부터는 사용을 제한한다는 움직임이 활발하므로 이에 따른 대체 재료의 선정과 환경친화적인 건식도금의 방법을 이용하는 메탈베어링재료의 표면처리가 절실하게 요구된다.However, since this lead (Pb) metal is harmful to the environment, the movement to restrict its use has been active since 2004. Therefore, the selection of alternative materials and the surface treatment of metal bearing materials using environmentally-friendly dry plating methods are urgently needed. Is required.

한편, 디젤엔진의 고하중,고부하,고속회전등의 고성능화의 요구에 따라 메인 베어링(main bearing)과 코넥트로드 베어링(connecting rodbearing)에 이용되는 메탈베어링들은 점점 더 가혹한 환경에서 구동하게 된다.Meanwhile, metal bearings used in main bearings and connecting rod bearings are driven in more and more harsh environments due to the demand for high performance such as high load, high load, and high speed rotation of diesel engines.

따라서 메탈베어링의 마무리공정인 표면처리에서 밀착성,내구성,윤활성,내마모성 및 내식성등을 향상시킬 수 있는 재료의 선정과 표면처리공정은 중요한 부분이다.Therefore, in the surface treatment, which is the finishing process of metal bearings, the selection of materials and the surface treatment process to improve adhesion, durability, lubrication, wear resistance and corrosion resistance are important parts.

현재 메탈베어링의 제작에 적용중인 습식도금을 통한 표면처리의 경우 처리공정과 코팅막으로 이용되는 재료인 납(Pb) 금속의 사용으로 인한 환경오염에 대한 문제점이 있었다.In the case of surface treatment through wet plating currently applied to the manufacture of metal bearings, there was a problem about environmental pollution due to the use of lead (Pb) metal, which is a material used as a treatment process and a coating film.

또한 디젤엔진의 사용환경이 고속,고하중,고부하,고성능화에 따라 베어링(main bearing)과 코넥트로트 베어링(Connecting Rod bearing)은 높은 내마모성,윤활특성 및 내식특성에 대한 트라이볼로지(Tribology)의 요구에 부흥하지 못하는 문제점이 있었다.In addition, due to the high speed, high load, high load, and high performance of the diesel engine, the main bearings and connecting rod bearings require tribology for high wear resistance, lubrication, and corrosion resistance. There was a problem that could not be revived.

본 발명은 상기와 같은 문제점을 해결하기 위하여 물리기상증착법 (PVD:Physical Vapour Deposition)중의 하나인 마그네트론 스퍼터링법을 이용하여 장치의 진공용기(1)내를 원자.분자 및 이온등의 직진성운동을 좋게 하기 위해 진공을 형성시키고,The present invention uses a magnetron sputtering method, one of physical vapor deposition (PVD) to solve the above problems, to improve the linear motion of atoms, molecules and ions in the vacuum vessel (1) of the device To create a vacuum,

아르곤가스봄베(2)에서 불활성 아르곤가스를 공급하여 양의 아르곤(Ar +)이온이 증착하고자 하는 알루미늄(AI)과 주석(Sn) 금속 타겟트(target)를 스퍼터시키고, 타겟트로부터 튀어나온 원자는 무선주파수(RF)전원의 공급에 의해 원자.분자 및 이온등이 충돌을 하게하여,Inert argon gas is supplied from the argon gas cylinder (2) to sputter the aluminum (AI) and tin (Sn) metal targets to which positive argon ( Ar + ) ions are to be deposited, and the atoms protrude from the targets. Causes collision of atoms, molecules, and ions by the supply of radio frequency (RF) power,

이 때 생성된 전자는 자장에 의해 나선운동을 하여 평균자유행정(한 분자가 진공상태하에서 운동을 하여 또 다른 분자와 충돌하기까지 움직인 평균거리)이 길어져 다른 분자와 비탄성충돌을 일으켜 양이온으로 이온화시키고 동시에 진공용기 내에서 원자와 분자들은 연속적인 충돌을 진행하며 원자가 여기 또는 이온화되어 플라즈마를 형성시키고,At this time, the generated electrons are spirally moved by the magnetic field and the average free stroke (the average distance traveled until one molecule moves under vacuum and collides with another) becomes long, causing inelastic collision with other molecules and ionizing with cations. At the same time, atoms and molecules in a vacuum vessel undergo continuous collisions, and atoms are excited or ionized to form a plasma,

이 때 타겟트로부터 스퍼터 된 알루미늄(AI)과 주석(Sn) 금속의 원자.분자 혹은 이온의 상태로 모재(Substrate)에 증착시켜 알루미늄(AI)-주석(Sn)계 코팅막 메탈베어링을 제작하는 방법으로서,At this time, a method of manufacturing an aluminum (AI) -tin (Sn) coating film metal bearing by depositing on the substrate in the state of atoms, molecules or ions of aluminum (AI) and tin (Sn) metal sputtered from the target. As

코팅막베어링제작을 위한 모재는 통상의 압연강판 ss41강 위에 코팅막의 국부손상에도 윤활성을 보완할 수 있는 켈멧(kelmet)을 두께 2mm로 소결시킨 것을 이용하고, 상기 재료와 코팅막과의 밀착력향상을 위한 모재의 초음파세척을 통한 1차세정과 진공용기내에서 이온봄바드먼트(Ionbombardment)를 통한 2차세정을 시행한다.The base material for the production of coating film bearings is a sintered kelmet having a thickness of 2 mm on a conventional rolled steel ss41 steel that can compensate for lubrication even in local damage of the coating film, and the base material for improving adhesion between the material and the coating film. The primary cleaning by ultrasonic cleaning and the secondary cleaning by ion bombardment are carried out in a vacuum vessel.

세정된 후 코팅막의 형성 조건을 일정 아르곤가스압을 진공용기내에 공급하여 일정한 진공도로 유지시켜 아르곤가스압이 유지되는 상태하에서 알루미늄(AI)과 주석(Sn)타겟트(Target)에 각각 230w와 55w의 무선주파수전압(RF power)을 인가를 통하여 제작된 막의 조성비율을 75%AI 25Sn의 합금막으로 코팅막을 건식도금법인 마그네트론 스퍼터링(Magnetron Sputtering)법에 의하여하게 됨으로 종래 습식법에 의하여 발생되던 폐액 및 유해가스의 방출의 염려가 없고,After cleaning, the coating conditions of the coating film were supplied to a vacuum chamber with a constant argon gas pressure and maintained at a constant vacuum, so that the aluminum (AI) and tin (Sn) targets were 230w and 55w, respectively, while the argon gas pressure was maintained. The composition ratio of the film produced by applying RF voltage is 75% AI 25Sn alloy film, and the coating film is made by the magnetron sputtering method, which is a dry plating method. There is no fear of the release,

납으로 인한 공해해소와 내마모성,윤활성,내구성,내식성을 향상시킬 수 있는 마그네트론 스퍼터링(Magnetron Sputtering)공정에 의한 디젤엔진용 코팅막 메탈베어링의 제조방법을 제공할 수 있도록 한 것이다.It is to provide a method of manufacturing a coating film metal bearing for diesel engines by a magnetron sputtering process that can improve pollution and lead resistance, wear resistance, lubrication, durability and corrosion resistance due to lead.

도1은 본 발명에 사용되는 일예의 장치도(RF Magnetron Sputtering장치의 개략도)1 is a device diagram of an example used in the present invention (schematic diagram of an RF Magnetron Sputtering device)

도2는 본 발명의 코팅막형성공정도Figure 2 is a coating film forming process of the present invention

도3은 알루미늄(AI)-주석(Sn)계 코팅막과 3원도금막의 마찰계수변화도.Figure 3 is a friction coefficient change of the aluminum (AI) -tin (Sn) -based coating film and the three-way plating film.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

1 : 진공용기1: vacuum container

2 : 로터리펌프(R/P)2: Rotary Pump (R / P)

3 : 터보분자펌프(TMP)3: turbomolecular pump (TMP)

4 : RF제너레이터(RF GENERATOR)4: RF GENERATOR

5 : 바이어스전압공급기(DC POWER SUPPLY)5: Bias Voltage Supply (DC POWER SUPPLY)

6 : 알루미늄타겟트(AI target)6: aluminum target (AI target)

7 : 주석타겟트(Sn target)7: Tin target

8 : 시편걸이8: specimen hanger

9 : 아르곤가스9: argon gas

10 : 질소가스10: nitrogen gas

11 : 가스흐름조절기11: gas flow regulator

12 : 양흐름제어기12: flow controller

표면에 알루미늄(AI)-주석(Sn)계 코팅막을 형성시키기 위한 베어링 모재는 일차적으로 고하중을 지지할 수 있는 ss41강을 기반 재료로하여 이 위에 기본적으로 윤활성을 갖는 켈멧(kelmet)을 2㎜정도 소결시키므로서 막의 국부손상에도 윤활성을 보완할 수 있는 모재를 이용하는 단계와: 기존의 납(Pb)과 같이 윤활성이 우수한 재료를 알루미늄(AI)-주석(Sn)계의 합금형태로 제작하는 단계와: 플라즈마상태를 이용하는 마그네트론 스퍼터링(Magnetron Sputtering)법에 있어서 막에 밀착성 및 윤활성이 좋은 막의 제작이 가능한 일정한 진공도를 유지하며 알루미늄(AI)-주석(Sn)계 코팅막을 형성하는 단계와: 상기 항의 진공도가 유지되는 상태하에서 알루미늄(AI)-주석(Sn) 타겟트(Target)에 성분비 조성을 알루미늄(AI) 75%와 주석(Sn) 25%의 합금막 형성에 필요한 무선주파수(RF)전원을 각각 230w와 55w로 인가하는 단계와: 제작된 막의 조성비율을 75%AI 25%Sn의 합금막으로 코팅막을 제작하는 단계로 코팅막 베어링을 제작하여 모재와 알루미늄(AI)-주석(Sn)계막과의 밀착력,내마모성,윤활성 및 내식성을 향상시키는 것을 특징으로 한 것이다.The bearing base material for forming aluminum (AI) -tin (Sn) -based coating on the surface is based on ss41 steel, which can primarily support high loads, and has a basic lubricity kelmet on it. Using a base material that can supplement the lubricity even in the local damage of the film by sintering to a degree: Producing a material with excellent lubricity, such as lead (Pb) in the form of aluminum (AI) -tin (Sn) -based alloy And: forming an aluminum (AI) -tin (Sn) -based coating film in a magnetron sputtering method using a plasma state while maintaining a constant vacuum degree to enable a film having good adhesion and lubricity to the film. The radio frequency (RF) required to form an alloy film of 75% aluminum (AI) and 25% tin (Sn) in the aluminum (AI) -tin (Sn) target while maintaining the degree of vacuum. Applying a circle at 230w and 55w, respectively: forming a coating film with an alloy film of 75% AI 25% Sn, and producing a coating film bearing to form a base material and aluminum (AI) -tin (Sn). It is characterized by improving adhesion with the membrane, abrasion resistance, lubrication and corrosion resistance.

(실시예)(Example)

본 발명을 상세히 설명하면 다음과 같다.The present invention is described in detail as follows.

도1은 본 발명에 따른 알루미늄(AI)-주석(Sn)계 코팅막메탈베어링을 제조하기 위한 마그네트론 스퍼터링(Magnetron Sputtering) 장치의 일예시도로서,1 is an example of a magnetron sputtering apparatus for manufacturing an aluminum (AI) -tin (Sn) -based coating film metal bearing according to the present invention,

진공용기(1) 내의 진공은 로터리펌프(Rotary Pump)(2)와 터보분자펌프(Turbo Monlecular Pump)(3)에 의해 진공도를 형성하며 제너레이터(4)를 통하여 플라즈마를 형성시키며 타겟트인 알루미늄(AI)(6)과 주석(Sn)(7)은 뒤쪽의 N극과 S극의 마그네틱에 의해 자장을 형성함으로써 나선운동에 의해 충돌횟수를 증가시킴으로써 원자.분자의 여기와 생성된 이온들에 의해 플라즈마를 더욱 활성화시키게 된다.The vacuum in the vacuum container 1 forms a vacuum degree by a rotary pump 2 and a turbo monlecular pump 3, forms a plasma through the generator 4, and targets aluminum (AI). (6) and tin (Sn) (7) form a magnetic field by the magnetic poles of the north pole and the south pole to increase the number of collisions due to the spiral motion, thereby generating plasma by excitation of atoms and molecules and generated ions. Will activate more.

알루미늄(AI)-주석(Sn)계막을 형성시키는 순차적인 방법은 도2의 알루미늄(AI)-주석(Sn)계 코팅막베어링제작의 순차도에서 나타내는 것과 같다.The sequential method of forming the aluminum (AI) -tin (Sn) based film is as shown in the flowchart of the manufacturing of the aluminum (AI) -tin (Sn) coated film bearing of FIG.

먼저 모재는 기본재료(ss41)에 kelmet을 2㎜ 소결시킨 후 경면 연마를 시행하고 막과 모재사이의 밀착력 향상을 위하여 시편 표면에 남아 있는 유지분제거를 위해 탈지유에 의한 20분간의 초음파세척과 아세톤,알콜에 15분동안 일차적으로 모재세정을 시행한 후 진공용기내의 시편걸이(8)에 장착을 한다.First, the base material is sintered 2 mm of kelmet on the base material (ss41) and then mirror-polished and ultrasonic cleaning and acetone for 20 minutes by skim milk are used to remove oils remaining on the surface of the specimen to improve adhesion between the membrane and the base material. After washing the base material with alcohol for 15 minutes, it is mounted on the specimen hanger (8) in the vacuum container.

진공용기(1)내에 시편을 장착하고 진공용기를 잔류가스,수분등을 제거하여 용기내에서의 불활성 아르곤가스 및 타겟트로부터 튀어나온 금속원자들의 직진성을좋게 하기 위해 로타리펌프와 터보분자펌프를 이용하여 진공동 2 X 10-5토르(torr)로 배기한 후 모재표면의 흡착 미립자의 세정을 위하여 가스공급조절기(11),(12)를 통하여 고순도의 아르곤가스를 공급하여 1 X 10-2토르(torr)의 진공도를 유지하며, 모재에 바이어스 전압공급기(5)를 통해 -700V의 바이어스전압을 인가하여 20분간 이온봄바드먼트(Ion-bomardment)를 통한 이차세정을 시행한다.A rotary pump and a turbomolecular pump are used to install the specimen in the vacuum vessel (1) and to remove the residual gas and water in the vacuum vessel to improve the straightness of the metal atoms protruding from the target inert argon gas and the target. by Jean cavity 2 X 10 -5 Torr (torr) in order to the cleaning of the adsorbent particles in the exhaust after the base metal surface supplied with argon gas of high purity through the gas regulator (11), (12) 1 X 10 -2 Torr While maintaining the vacuum degree of tor, the secondary material is subjected to secondary cleaning through ion-bomardment for 20 minutes by applying a bias voltage of -700V to the base material through the bias voltage supply 5.

또한 알루미늄(AI)과 주석(Sn) 타겟트(Target)들의 프리스퍼터(Pre-sputter)를 통하여 타겟트 표면의 오염된 표면층을 세정하고 재차 진공용기를 충분히 배기시킨 후, 아르곤가스를 공급하여 진공도를 5 X 10-3토르(torr)로 유지하며, 알루미늄(AI)과 주석(Sn) 타겟트(Target)에 무선주파수(RF)전원을 각각 230w와 55w를 인가하여 플라즈마를 형성하고 플라즈마내의AI +Sn +의 이온들과 원자 및 분자상태의 알루미늄(AI)과 주석(Sn)을 모재에 코팅막으로 형성시킨다.In addition, after cleaning the contaminated surface layer on the surface of the target through the pre-sputter of aluminum (AI) and tin (Sn) targets, and again evacuating the vacuum container sufficiently, vacuum is supplied by argon gas. Is maintained at 5 x 10 -3 torr, and 230w and 55w are applied to the aluminum (AI) and tin (Sn) targets to form a plasma, and the AI in the plasma is formed. Ions of + and Sn + and aluminum (AI) and tin (Sn) in atomic and molecular form are formed on the base material as a coating film.

이상과 같이 형성된 알루미늄(AI)-주석(Sn)계 코팅막들의 마찰계수 변화를 도3에 실용 메탈베어링으로 이용되고 있는 3원도금막에 비교하여 나타내고 있다.The change in the friction coefficient of the aluminum (AI) -tin (Sn) -based coating films formed as described above is shown in FIG. 3 compared to the ternary plating film used as the practical metal bearing.

알루미늄(AI)과 주석(Sn)의 조성비에 따라 마찰계수의 변화는 75%AI 25%Sn에서 낮고 안정된 마찰거동을 보이는 것을 알 수 있다. 반면 3원도금의 경우는 초기마찰계수는 낮지만 순간적인 마찰계수의 상승으로 보아 윤활특성과 내구성의 면에 있어 마찰특성이 떨어지는 것을 확인할 수 있다.According to the composition ratio of aluminum (AI) and tin (Sn), it can be seen that the change of the friction coefficient shows a low and stable friction behavior at 75% AI 25% Sn. On the other hand, in the case of three-way plating, the initial friction coefficient is low, but the instantaneous friction coefficient is increased, indicating that the friction characteristics are poor in terms of lubrication characteristics and durability.

이와 같이 된 본 발명은 마그네트론 스퍼터링(Magnetron Sputtering)법에 의한 알루미늄(AI)-주석(Sn)계 코팅막을 형성, 개발한 디젤엔진용 Metal베어링의 경우 환경에 유해한 납(Pb)금속의 사용없이 윤활특성이 향상됨은 물론 내구성,내마모성이 뛰어나며 환경친화적인 건식도금공정을 통하여 환경을 저해하는 제문제점을 해소할 수 있는 효과가 있다.Thus, the present invention forms an aluminum (AI) -tin (Sn) -based coating film by the magnetron sputtering method, lubricating without using lead (Pb) metal harmful to the environment in the case of metal bearings for diesel engines. In addition to the improved properties, it is effective in solving the problems that hinder the environment through the dry plating process that is excellent in durability, wear resistance and environmentally friendly.

Claims (1)

건식도금법인 마그네트론 스퍼터링(Magnetron Sputtering)법에 의한 알루미늄(AI)-주석(Sn)계 디젤엔진용 코팅막 메탈베어링의 개발방법에 있어서,In the development method of the coating film metal bearing for aluminum (AI) -tin (Sn) -based diesel engine by the magnetron sputtering method of dry plating method, 일차적으로 고하중을 지지할 수 있는 ss41강을 기반재료로 하여 상기 재료위에 코팅막의 국부손상에도 윤활성을 보완할 수 있도록 켈멧(kelmet)을 2mm정도 소결하여 모재를 형성하고,First, the base material is formed by sintering about 2mm of kelmet on the ss41 steel which can support high load, so that the lubricity can be compensated for local damage of the coating film on the material. 상기의 모재와 코팅막의 밀착력향상을 위하여 상기의 모재를 초음파세척을 통해 1차세정하며, 상기의 모재를 일정공간의 진공용기에 장착하고 불활성아르곤가를 투입한 다음,In order to improve the adhesion between the base material and the coating film, the base material is first washed by ultrasonic cleaning, and the base material is mounted in a vacuum container in a predetermined space, and then inert argon is introduced. 밀착성 및 윤활성이 좋고 코팅막의 제작이 가능하게 하기 위해 일정한 진공압을 진공용기에 부여하고, 상기의 진공용기내에서 투입된 모재 표면의 오염층을 세정하기 위해 이옴밤바먼트를 통한 2차세정을 행하며,In order to provide good adhesion and lubricity and to enable the production of a coating film, a constant vacuum pressure is applied to the vacuum container, and secondary cleaning is performed through an ion bomb bament to clean the contaminated layer on the surface of the base material introduced into the vacuum container. 알루미늄(AI)과 주석타겟트(Sn target)들의 오염된 표면을 세정하고 진공용기를 충분히 배기시킴과 동시에 아르곤가스를 공급하여 진공도를 조정하여 진공용기내에 설치된 알루미늄타겟트(AI target)와 주석타겟트(Sn target)에 무선주파수 전원을 연결하여 플라즈마를 형성시킴으로서 코팅막을 형성함을 특징으로 하는 마그네트론 스퍼터링공정에 의한 알루미늄-주석계 디젤엔진용 코팅막 메탈베어링의 제조방법.Cleans the contaminated surfaces of aluminum (AI) and tin targets, exhausts the vacuum container sufficiently, and simultaneously adjusts the vacuum degree by supplying argon gas to adjust the vacuum degree. A method of manufacturing a coating film metal bearing for an aluminum-tin based diesel engine by a magnetron sputtering process, characterized in that a coating film is formed by connecting a radio frequency power source to a Sn target to form a plasma.
KR1020000075009A 2000-11-17 2000-11-17 DEVEIOPMENT METHOD OF AI-Sn COATING FILM METAL BEARINGS FOR DIESEL ENGINES BY RF MAGNETRON SPUTTERING PROCESS KR100359496B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000075009A KR100359496B1 (en) 2000-11-17 2000-11-17 DEVEIOPMENT METHOD OF AI-Sn COATING FILM METAL BEARINGS FOR DIESEL ENGINES BY RF MAGNETRON SPUTTERING PROCESS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000075009A KR100359496B1 (en) 2000-11-17 2000-11-17 DEVEIOPMENT METHOD OF AI-Sn COATING FILM METAL BEARINGS FOR DIESEL ENGINES BY RF MAGNETRON SPUTTERING PROCESS

Publications (2)

Publication Number Publication Date
KR20020038437A KR20020038437A (en) 2002-05-23
KR100359496B1 true KR100359496B1 (en) 2002-11-04

Family

ID=19702904

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000075009A KR100359496B1 (en) 2000-11-17 2000-11-17 DEVEIOPMENT METHOD OF AI-Sn COATING FILM METAL BEARINGS FOR DIESEL ENGINES BY RF MAGNETRON SPUTTERING PROCESS

Country Status (1)

Country Link
KR (1) KR100359496B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120114971A1 (en) * 2007-01-05 2012-05-10 Gerd Andler Wear resistant lead free alloy sliding element method of making
KR102241852B1 (en) * 2019-12-31 2021-04-20 주식회사 이노션테크 Coating materials and Coating System for Members of Eco-friendly Hybride Car

Also Published As

Publication number Publication date
KR20020038437A (en) 2002-05-23

Similar Documents

Publication Publication Date Title
CN102994967B (en) Ultra high speed preparation method for ultra thick diamond-like coating
EP2963145B1 (en) Coating and method for its deposition to operate in boundary lubrication conditions and at elevated temperatures
CN108977776B (en) High-binding-force solid lubricating film layer in wide-space temperature-range environment and preparation method thereof
CN102912298B (en) Cr-doped DLC (diamond-like carbon) coating with anticorrosion and antifriction properties and preparation method
JP6388868B2 (en) Component having coating and method for manufacturing the same
CN105220120B (en) A kind of method of MULTILAYER COMPOSITE fullerene film industrialization in automobile engine
CN1133818C (en) Compressor for refrigerator
JP3980053B2 (en) Manufacturing method of hard material layer
CN112553584A (en) Method for depositing diamond-like carbon film on outer surface of inner ring of knuckle bearing
CN113621912A (en) Gradient self-lubricating composite coating and preparation method thereof
JP2009185336A (en) Amorphous carbon film and method for forming the same
KR100359496B1 (en) DEVEIOPMENT METHOD OF AI-Sn COATING FILM METAL BEARINGS FOR DIESEL ENGINES BY RF MAGNETRON SPUTTERING PROCESS
KR100762198B1 (en) Coating material and thereof coating method with superhard and high lubrication
JP2009203556A (en) Method for manufacturing amorphous carbon film and sliding component coated with amorphous carbon
WO1997014555A1 (en) Diamond-like nanocomposite thin films for automotive powertrain component coatings
CN110484696A (en) A kind of preparation method of the hydraulic pump component of antifriction antiwear
CN105369205A (en) Technological method for manufacturing multifunctional film on surface of stainless steel
CN101880876A (en) Compressor sliding blade and surface coating layer treatment method thereof
KR20050063463A (en) Manufacturing method and structure of hard coatings with lubrication properties
CN114196913A (en) Ultralow-friction solid-liquid composite lubricating coating and preparation method thereof
CN113061858A (en) CrMoN/MoS2Wide-temperature-range lubricating wear-resistant composite film and preparation method thereof
KR20120129445A (en) The method of high wear and oxidation resistant multi-layer coating material process.
CN108411263B (en) Gradient composite lubricating coating and preparation method thereof
CN101215687B (en) Method for preparing PVD bushing with compact arranged column form crystal
CN115323326B (en) Preparation method and application of long-life molybdenum disulfide-based composite film resistant to space atomic oxygen irradiation

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120820

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130924

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141020

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20151103

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20161020

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20171020

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20181022

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20191021

Year of fee payment: 18