KR102241852B1 - Coating materials and Coating System for Members of Eco-friendly Hybride Car - Google Patents

Coating materials and Coating System for Members of Eco-friendly Hybride Car Download PDF

Info

Publication number
KR102241852B1
KR102241852B1 KR1020190179359A KR20190179359A KR102241852B1 KR 102241852 B1 KR102241852 B1 KR 102241852B1 KR 1020190179359 A KR1020190179359 A KR 1020190179359A KR 20190179359 A KR20190179359 A KR 20190179359A KR 102241852 B1 KR102241852 B1 KR 102241852B1
Authority
KR
South Korea
Prior art keywords
coating
layer
sputtering
eco
coating layer
Prior art date
Application number
KR1020190179359A
Other languages
Korean (ko)
Inventor
홍정기
Original Assignee
주식회사 이노션테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이노션테크 filed Critical 주식회사 이노션테크
Priority to KR1020190179359A priority Critical patent/KR102241852B1/en
Application granted granted Critical
Publication of KR102241852B1 publication Critical patent/KR102241852B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0682Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

An objective of the present invention is to design a high functional coating material having wear resistance, high temperature corrosion resistance, low friction, lubricity, and lightweightness, which is suitable for a driving part of an eco-friendly hybrid car, and provide a coating method and a coating system thereof. Accordingly, with respect to the driving part of the car, the coating material comprises: a coating film on which Al-Sn is complexly coated; and a composite coating film comprising a NiCr layer as a base layer in order to improve adhesion of the coating material and prevent separation and precipitation of Sn.

Description

친환경 하이브리드 자동차 부품용 코팅재 및 코팅 시스템{Coating materials and Coating System for Members of Eco-friendly Hybride Car }Coating materials and Coating System for Members of Eco-friendly Hybride Car}

본 발명은 친환경 하이브리드 자동차 부품용 코팅재 및 코팅 시스템에 관한 것으로, 좀 더 상세하게는 내연기관 엔진과 전기차 또는 수소차를 겸비한 친환경 하이브리드 자동차 부품에 필요한 코팅 소재 및 그 코팅 시스템에 관한 것이다.The present invention relates to a coating material and a coating system for eco-friendly hybrid vehicle parts, and more particularly, to a coating material required for an eco-friendly hybrid vehicle component having an internal combustion engine and an electric vehicle or a hydrogen vehicle, and a coating system thereof.

전기차 또는 수소차에 내연기관 엔진을 겸비하여 연비향상과 친환경성을 모두 구비한 하이브리드 자동차는 수요가 꾸준히 늘고 있다. 전기차/수소차에 비해 가격경쟁력이 있고 충전 인프라, 충전시간 단축 문제 등이 완전히 해결되기 전까지는 이러한 추세는 지속될 것이다. 하이브리드 자동차의 경우, 내연기관 구동과 배터리 구동 모터를 모두 구비하여 어느 한쪽의 구동에서 다른 쪽으로의 연속적 전환(Go-Stop) 동작은 부품의 초기구동에 따른 마모 요소를 증가시킨다. 연소엔진 구동환경 하에 따른 고온내식성과 엔진오일과의 상호작용 및 경량화 요소 그리고 전기차 구동 모터 부품으로서 금속-금속 간 윤활성 및 그리스 프리 무윤활 구동 환경 적합성과 같은 물성 요구에 따라 부품에 대한 고기능성 코팅이 필요한 상황이다. Demand for a hybrid vehicle equipped with both an electric vehicle or a hydrogen vehicle and an internal combustion engine to improve fuel efficiency and eco-friendliness is steadily increasing. Compared to electric/hydrogen cars, this trend will continue until they are more cost-competitive and the charging infrastructure and charging time shortening issues are completely resolved. In the case of a hybrid vehicle, since both the internal combustion engine drive and the battery drive motor are provided, the Go-Stop operation from one drive to the other increases the wear factor due to the initial drive of the component. High-performance coatings are required for high-temperature corrosion resistance under the combustion engine driving environment, interaction with engine oil, and lightweight factors, as well as metal-metal lubrication and grease-free, non-lubricating driving environment suitability as an electric vehicle driving motor part. It is a necessary situation.

공개특허 10-2016-0111372호의 경우, 내연기관용 베어링에 대해 황산바륨, 황산아연등의 물질을 바인더와 배합하여 도포하는 마찰방지 코팅을 실시하고 있다. 그러나 이러한 코팅층은 마찰을 줄여주지만 코팅방법 자체가 친환경적이지 못하고 박리되기 쉬운 문제가 있다. In the case of Korean Patent Application Publication No. 10-2016-0111372, anti-friction coating is applied to bearings for internal combustion engines in which a material such as barium sulfate or zinc sulfate is mixed with a binder. However, although such a coating layer reduces friction, the coating method itself is not environmentally friendly, and there is a problem that it is easy to peel off.

따라서 본 발명의 목적은 친환경 하이브리드 자동차 구동 부품에 적합한 내마모성, 고온내식성, 저마찰성, 윤활성 및 경량성을 갖춘 고기능성 코팅재를 설계하고 그에 따른 코팅 방법 및 코팅 시스템을 제공하고자 하는 것이다.Accordingly, an object of the present invention is to design a highly functional coating material having abrasion resistance, high temperature corrosion resistance, low friction, lubricity and light weight suitable for an eco-friendly hybrid vehicle driving part, and to provide a coating method and a coating system according thereto.

상기 목적에 따라 본 발명은 자동차 구동 부품에 대하여 최종 Top layer 구성은 Al-Sn이 복합적으로 코팅된 코팅막을 제공하며, Al은 원가절감을 위한 인성 및 내충격성에 좋은 경량금속 성분 기반의 기지재 역할을 하며 Sn은 코팅재의 저윤활 특성에 효과를 더하는 합금 첨가 조성으로 구성되어 있다. 또한 자동차 구동 부품의 소재는 Al합금 계열 또는 스틸계열의 소재로 대부분 적용되고 있으며 이러한 부품 소재-코팅재 간의 동일한 금속 성분은 코팅층의 Al 성분의 부품 소재로의 확산이 발생하여 코팅이 적용된 부품의 코팅층 마모 및 내구성 문제로 인한 금속-금속간의 소착에 대한 문제가 발생할 수 있다. 이러한 부품 소재와 코팅재 성분의 확산을 방지하기 위하여 최총 Top layer 층과 부품 소재 계면 사이에 높은 코팅 밀착력과 최종 Top layer 층의 Al-Sn의 분리 확산 석출을 방지하기 위하여 하지층으로서 NiCr층을 구성한 복합코팅막을 제공한다. 이러한 확산 방지층의 역할을 하는 코팅소재 선정에 있어 재료 단가의 경제성 및 기능성을 고려하였을 때 Ni 소재가 가장 적합하나, 이론적으로 Ni은 강자성체로 분류되어 스퍼터링 공정시 플라즈마 소스 및 재료 특성상 플라즈마 방전이 어려운 단점이 있다. 이러한 부분을 고려하여 Ni 기반에 내식성이 강하며 기계적 강도가 우수하고, 또한 스퍼터링 방전이 가능한 Cr, Ti, Cu 등의 코팅막과의 결합이 이루어지지 않는 이종 전이금속 또는 이종의 경량금속을 합금화시킨 코팅 타겟을 이용하여 기능성 코팅층, 즉, 밀착력 향상을 위한 버퍼층, 최종 코팅층의 Al 확산에 의한 Al-Sn의 분리 석출을 막아주는 확산 방지층의 역할을 하는 고급형 패키징 코팅재이다.In accordance with the above object, the present invention provides a coating film coated with Al-Sn in the final top layer configuration for automobile driving parts, and Al serves as a base material based on lightweight metal components with good toughness and impact resistance for cost reduction. Sn is composed of an alloy-added composition that adds an effect to the low lubrication properties of the coating material. In addition, the material of automobile driving parts is mostly applied as Al alloy-based or steel-based materials, and the same metal component between these parts material-coating material diffuses the Al component of the coating layer into the component material, causing wear of the coating layer of the coated part. And a problem of seizure between metal and metal due to durability problems. In order to prevent the diffusion of such component materials and coating materials, a composite consisting of a NiCr layer as an underlying layer to prevent high coating adhesion between the top layer layer and the component material interface, and to prevent the separation and diffusion precipitation of Al-Sn in the final top layer layer. Provides a coating film. When selecting a coating material that serves as such a diffusion barrier, Ni material is the most suitable considering the economical efficiency and functionality of the material cost, but in theory Ni is classified as a ferromagnetic material, making it difficult to discharge plasma due to the characteristics of the plasma source and material during the sputtering process. There is this. Considering these parts, a coating made of alloys of different types of transition metals or different types of lightweight metals that do not bond with coating films such as Cr, Ti, Cu, etc., which have strong corrosion resistance and excellent mechanical strength based on Ni, and are capable of sputtering discharge. It is a high-end packaging coating that acts as a functional coating layer using a target, that is, a buffer layer for improving adhesion, and a diffusion preventing layer that prevents separation and precipitation of Al-Sn by Al diffusion in the final coating layer.

즉, 본 발명은,That is, the present invention,

자동차 구동 부품에 대하여 적용되는 코팅재로서,As a coating material applied to automobile drive parts,

Al-Sn이 복합적으로 코팅된 것을 특징으로 하는 코팅재를 제공한다.It provides a coating material, characterized in that the Al-Sn is coated in combination.

상기에 있어서, 기재 위에, 그리고 Al-Sn 아래 하지층으로서 Ni-Cr, Ni-Ti, 또는 Ni-Cu 코팅막이 형성된 것을 특징으로 하는 코팅재를 제공한다.In the above, it provides a coating material, characterized in that the Ni-Cr, Ni-Ti, or Ni-Cu coating film is formed as a base layer on the substrate and under the Al-Sn.

상기에 있어서, Al:Sn의 조성비는 중량비로서 90~50:10~50인 것을 특징으로 하는 코팅재를 제공한다.In the above, it provides a coating material, characterized in that the composition ratio of Al:Sn is 90-50: 10-50 as a weight ratio.

상기에 있어서, 하지층은 Ni:Cr=80~50:20~50으로 이루어진 것을 특징으로 하는 코팅재를 제공한다.In the above, the base layer provides a coating material, characterized in that consisting of Ni:Cr=80-50:20-50.

자동차 구동 부품에 대하여, About automotive drive parts,

Al-Sn 합금 타겟을 준비하고,Prepare an Al-Sn alloy target,

펄스 스퍼터링을 실시하여, By performing pulse sputtering,

Al-Sn 복합코팅층을 형성하는 것을 특징으로 하는 코팅 방법을 제공한다.It provides a coating method comprising forming an Al-Sn composite coating layer.

상기에 있어서, Al-Sn 복합코팅층을 형성하기 전에 Ni-Cr 합금 타겟을 준비하고, DC 스퍼터링으로 Ni-Cr, Ni-Ti, 또는 Ni-Cu 하지층을 형성하는 것을 특징으로 하는 코팅 방법을 제공한다.In the above, before forming the Al-Sn composite coating layer, a Ni-Cr alloy target is prepared, and a Ni-Cr, Ni-Ti, or Ni-Cu base layer is formed by DC sputtering. do.

상기에 있어서, Al-Sn 합금 타겟에서 Al:Sn의 조성비는 중량비로서 90~50:10~50 인 것을 특징으로 하는 코팅 방법을 제공한다.In the above, it provides a coating method, characterized in that the composition ratio of Al:Sn in the Al-Sn alloy target is 90-50: 10-50 as a weight ratio.

자동차 구동 부품에 대하여 적용되는 코팅재로서, ZrO2, SiO2, Al2O3, ZraOxSibOy, AlaOxSibOy, 또는 ZraOxAlbOySicOz 을 포함하는 금속계 기반 나노복합 산화물 코팅재를 제공한다.As a coating material applied to automobile driving parts, ZrO 2, SiO 2 , Al 2 O 3 , Zr a O x Si b O y , Al a O x Si b O y , or Zr a O x Al b O y Si c It provides a metal-based nanocomposite oxide coating material containing O z.

자동차 구동 부품에 대하여 적용되는 코팅재로서, ZiSi, ZiSiN 및 ZiSiO2가 순서대로 기재에 적층된 것을 특징으로 하는 코팅재를 제공한다.As a coating material applied to a driving part of an automobile, ZiSi, ZiSiN, and ZiSiO 2 are sequentially laminated on a substrate.

본 발명에 따르면, Al의 연성, 인성, 내충격성 및 경량성과 Sn의 저마찰성을 복합적으로 나타내는 고기능성 코팅으로 인해 친환경 하이브리드 자동차의 구동부품은 0.1 근처의 마찰계수를 갖는 저마찰 특성과 0.3um 근처의 낮은 마모 깊이(wear depth)를 보였다. According to the present invention, due to the high functional coating that combines the ductility, toughness, impact resistance, and light weight of Al and the low friction of Sn, the driving parts of eco-friendly hybrid vehicles have low friction characteristics with a friction coefficient of around 0.1 and near 0.3 um. Showed a low wear depth.

NiCr 확산배리어층으로 인해 Al의 비율을 높여도 석출되지 않으며, Sn 조성을 높일 경우 표면조도를 낮출 수 있어 저마찰 특성 및 윤활성을 좋게 한다. Due to the NiCr diffusion barrier layer, it does not precipitate even if the ratio of Al is increased, and if the Sn composition is increased, the surface roughness can be lowered, thereby improving low friction and lubricity.

도 1은 친환경 하이브리드 자동차 구동부와 구동부재에 대한 개요도이다.
도 2는 본 발명에 따라 구동부재에 형성되는 코팅층의 구성을 보여주는 단면도이다.
도 3은 본 발명의 코팅층 설계에 따라 코팅층을 형성하기 위한 스퍼터링 시험 결과를 보여주는 인가전압 주파수 대비 출력 및 스퍼터링 전압 그래프이다.
도 4는 본 발명의 코팅층 형성 공정에 대해 DC 스퍼터링과 펄스 스퍼터링 결과 타겟침식을 보여주는 사진이다.
도 5는 본 발명의 코팅층 형성 공정에 대해 DC 스퍼터링과 펄스 스퍼터링 결과 코팅층의 표면을 보여주는 사진이다.
도 6은 본 발명에 따른 코팅층에 있어서, Al과 Sn의 조성 변화와 코팅 공정 조건을 보여준 테이블이다.
도 7은 Al과 Sn의 조성 변화에 따라 펄스 스퍼터링된 후 타겟의 침식 상태를 보여주는 사진이다.
도 8은 Al과 Sn의 조성 변화에 따라 펄스 스퍼터링으로 코팅된 시료들의 사진이다.
도 9는 Al과 Sn의 조성 변화에 따라 펄스 스퍼터링으로 코팅된 시료들의 표면분석 사진이다.
도 10은 Al과 Sn의 조성 변화에 따른 시료들의 코팅면의 표면조도 그래프이다.
도 11은 Al과 Sn의 조성 변화에 따른 시료들의 코팅면의 표면 맵핑 분석(EDX) 결과이다.
도 12는 시료들의 코팅 두께를 보여준다.
도 13 내지 도 17은 시료들의 코팅 라인 스캐닝 분석을 보여준다.
도 18은 시료들의 마이크로 비커스 경도를 보여준다.
도 19는 시료들의 마찰특성 평가 결과이다.
도 20 내지 도 24는 시료들의 마모특성 평가결과를 보여준다.
도 25와 도 26은 시료들의 마모 깊이를 보여준다.
도 27은 본 발명의 변형 실시예로서 다층 코팅막의 구성단면도이다.
1 is a schematic diagram of an eco-friendly hybrid vehicle driving unit and a driving member.
2 is a cross-sectional view showing the configuration of a coating layer formed on a driving member according to the present invention.
3 is a graph of output and sputtering voltage versus applied voltage frequency showing sputtering test results for forming a coating layer according to the coating layer design of the present invention.
4 is a photograph showing target erosion as a result of DC sputtering and pulse sputtering for the coating layer forming process of the present invention.
5 is a photograph showing the surface of the coating layer as a result of DC sputtering and pulse sputtering for the coating layer forming process of the present invention.
6 is a table showing changes in the composition of Al and Sn and coating process conditions in the coating layer according to the present invention.
7 is a photograph showing an erosion state of a target after pulse sputtering according to a composition change of Al and Sn.
8 is a photograph of samples coated by pulse sputtering according to changes in the composition of Al and Sn.
9 is a photograph of the surface analysis of samples coated by pulse sputtering according to changes in the composition of Al and Sn.
10 is a graph of the surface roughness of the coated surfaces of samples according to the composition change of Al and Sn.
11 is a result of surface mapping analysis (EDX) of the coated surfaces of samples according to the composition change of Al and Sn.
12 shows the coating thickness of the samples.
13 to 17 show coating line scanning analysis of samples.
18 shows the micro Vickers hardness of the samples.
19 is a result of evaluating the friction characteristics of samples.
20 to 24 show the evaluation results of the wear characteristics of the samples.
25 and 26 show the depth of wear of the samples.
27 is a cross-sectional view of the configuration of a multilayer coating film as a modified embodiment of the present invention.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 친환경 하이브리드 자동차 구동부와 구동부재에 대한 개요도이다.1 is a schematic diagram of an eco-friendly hybrid vehicle driving unit and a driving member.

기존의 내연기관 엔진과 배터리로 구동되는 구동부를 모두 갖추고 있어, 구동 절환에 따른 초기구동 마모 요소가 증가되는 특성이 있다. 그러한 구동부재들로서 베어링, 피스톤 핀, 피스톤 링, 웜휠 기어 등이 있다. Since it is equipped with both an existing internal combustion engine and a battery-driven drive unit, there is a characteristic that the initial drive wear factor increases according to the drive switching. Such driving members include bearings, piston pins, piston rings, worm wheel gears, and the like.

따라서 본 발명은 상기와 같은 구동 부재들의 내마모성을 향상시킬 수 있는 코팅재로서 저마찰 및 고경도 특성을 구비하고 밀착력이 있는 도 2와 같은 구조의 코팅층을 설계하였다. Accordingly, the present invention designed a coating layer having a structure as shown in FIG. 2 having low friction and high hardness characteristics and having adhesion as a coating material capable of improving the abrasion resistance of the driving members as described above.

도 2에 나타낸 코팅층은 Al-Sn 복합코팅재로서 Al이 갖는 연성, 인성, 내충격성, 및 경량성과 Sn이 갖는 저마찰성을 모두 구비한다. 또한, 이러한 Al-Sn 복합코팅재가 기재에 강하게 밀착되고, Sn의 석출문제가 일어나지 않도록 NiCr 하지층을 형성하였다. 표층의 Al-Sn 복합코팅재에서 중량비로서 Al:Sn=90~50:10~50으로 할 수 있다. 코팅층의 두께는 Al-Sn 복합코팅층 1 내지 2um, 하지층의 두께 0.5 내지 1.5um로 할 수 있다. The coating layer shown in FIG. 2 is an Al-Sn composite coating material and has all of the ductility, toughness, impact resistance, and light weight of Al and the low friction properties of Sn. In addition, such an Al-Sn composite coating material was strongly adhered to the substrate and a NiCr underlayer was formed so as not to cause a problem of precipitation of Sn. As a weight ratio of the Al-Sn composite coating material of the surface layer, Al:Sn=90-50:10-50 can be used. The thickness of the coating layer may be 1 to 2 um of the Al-Sn composite coating layer, and 0.5 to 1.5 um of the underlying layer.

상기와 같은 코팅층의 형성방법은 물질 특성을 고려하여 선택되어야 한다.The method of forming the coating layer as described above should be selected in consideration of material properties.

본 발명은 코팅소재 자체가 타겟으로 제작된 것을 적용하여 스퍼터링으로 코팅층을 형성하였다. In the present invention, the coating material itself was formed as a target to form a coating layer by sputtering.

도 3은 본 발명의 코팅층 설계에 따라 코팅층을 형성하기 위한 스퍼터링 시험 결과를 보여주는 인가전압 주파수 대비 출력 및 스퍼터링 전압 그래프이다.3 is a graph of output and sputtering voltage versus applied voltage frequency showing sputtering test results for forming a coating layer according to the coating layer design of the present invention.

DC 파워로는 Sn이 중량비 50을 넘으면 타겟 자체에서 스퍼터링 방전이 일어나지 않는 문제가 있다. 따라서 펄스 전압을 이용하여 스퍼터링을 실시한다. 최적의 펄스 전압은 주파수 150KHz ~ 350KHz, 전압 350 내지 390V이며, 듀티 타임은 1 내지 2us으로 한다.With DC power, when Sn exceeds the weight ratio of 50, there is a problem that sputtering discharge does not occur in the target itself. Therefore, sputtering is performed using a pulse voltage. The optimal pulse voltage is a frequency of 150KHz to 350KHz, a voltage of 350 to 390V, and the duty time is set to 1 to 2us.

도 4는 본 발명의 코팅층 형성 공정에 대해 DC 스퍼터링과 펄스 스퍼터링 결과 타겟침식을 보여주는 사진이며, 도 5는 본 발명의 코팅층 형성 공정에 대해 DC 스퍼터링과 펄스 스퍼터링 결과 코팅층의 표면을 보여주는 사진이다. FIG. 4 is a photograph showing target erosion as a result of DC sputtering and pulse sputtering for the coating layer forming process of the present invention, and FIG. 5 is a photograph showing the surface of the coating layer as a result of DC sputtering and pulse sputtering for the coating layer forming process of the present invention.

상기에서 DC 스퍼터링 결과 타겟 침식 부위가 불균일하게 형성되고, 시료의 코팅층 표면조도에서도 2um 이상의 거대입자가 형성됨을 알 수 있다. 이는 Al이 결정성장을 하여 이루어진 것이다. 이에 반해, 펄스 스퍼터링에서는 타겟의 침식이 균일하고, 코팅층도 치밀한 구조를 나타내었으며, Al 입자가 1um 미만으로 형성되어있었다. 따라서 코팅층의 형성은 펄스 스퍼터링으로 실시하는 것이 바람직하다.As a result of DC sputtering in the above, it can be seen that the target erosion site is formed unevenly, and macroparticles of 2 μm or more are formed even in the surface roughness of the coating layer of the sample. This is achieved by crystal growth of Al. On the other hand, in pulse sputtering, the erosion of the target was uniform, the coating layer also showed a dense structure, and Al particles were formed with less than 1 μm. Therefore, it is preferable to perform the formation of the coating layer by pulse sputtering.

도 6은 본 발명에 따른 코팅층에 있어서, Al과 Sn의 조성 변화와 코팅 공정 조건을 보여준 테이블이다.6 is a table showing changes in the composition of Al and Sn and coating process conditions in the coating layer according to the present invention.

코팅층 형성 전에 이온 건으로 세정전처리를 실시하며, 하지층은 Ni:Cr=80~50:20~50으로 할 수 있다. 본 실시예의 경우, NiCr(80:20) 조성의 확산층(Diffusion layer)으로 형성하였고, 증착은 DC Power를이용하여 10A 조건에서 60min 정도 실시하였다. 이러한 하지층은 Sn이 석출되는 현상을 막아주며, Al-Sn 복합코팅층의 밀착력을 강화한다. Before the coating layer is formed, pre-cleaning treatment is performed with an ion gun, and the underlying layer may be Ni:Cr=80-50:20-50. In the case of this example, a diffusion layer having a composition of NiCr (80:20) was formed, and deposition was performed for about 60 minutes at 10A condition using DC Power. This underlayer prevents the precipitation of Sn and strengthens the adhesion of the Al-Sn composite coating layer.

도 7은 Al과 Sn의 조성 변화에 따라 펄스 스퍼터링된 후 타겟의 침식 상태를 보여주는 사진이다.7 is a photograph showing an erosion state of a target after pulse sputtering according to a composition change of Al and Sn.

순수 Al, 순수 Sn의 경우, 타겟 침식이 불균일하게 되며, Sn의 경우 용융부분이 나타난다. 이에 따르면, Sn의 함량이 10 내지 50중량%인 것이 바람직하다는 것을 알 수 있다. In the case of pure Al and pure Sn, the target erosion becomes non-uniform, and in the case of Sn, a molten part appears. According to this, it can be seen that the content of Sn is preferably 10 to 50% by weight.

도 8은 Al과 Sn의 조성 변화에 따라 펄스 스퍼터링으로 코팅된 시료들의 사진으로 육안으로 표면을 관찰할 수 있다. 좀 더 확실한 코팅표면 상태를 확인하기 위해 표면구조분석을 실시하였다.8 is a photograph of samples coated by pulse sputtering according to the composition change of Al and Sn, and the surface can be observed with the naked eye. Surface structure analysis was conducted to confirm the more reliable coating surface condition.

도 9는 Al과 Sn의 조성 변화에 따라 펄스 스퍼터링으로 코팅된 시료들의 표면분석 사진이고, 도 10은 Al과 Sn의 조성 변화에 따른 시료들의 코팅면의 표면조도 그래프이다.9 is a photograph of the surface analysis of samples coated by pulse sputtering according to the composition change of Al and Sn, and FIG. 10 is a graph of the surface roughness of the coated surfaces of the samples according to the composition change of Al and Sn.

Sn 조성비가 높아질수록 표면조도가 낮아지는 것을 알 수 있다. 시료의 표면조도는 0.31 내지 0.40um이다.It can be seen that the higher the Sn composition ratio, the lower the surface roughness. The surface roughness of the sample is 0.31 to 0.40um.

도 11은 Al과 Sn의 조성 변화에 따른 시료들의 코팅면의 표면 맵핑 분석(EDX) 결과이고, 도 12는 시료들의 코팅 두께를 보여준다.11 is a result of surface mapping analysis (EDX) of the coated surfaces of samples according to the composition change of Al and Sn, and FIG. 12 shows the coating thickness of the samples.

각각의 조성을 갖는 타겟으로 같은 시간 동안 코팅을 실시하여 얻은 코팅층의 두께는 도 12와 같이 서로 다르게 나타난다. 합금타겟의 수율이 약간 더 높다는 것을 알 수 있다. The thickness of the coating layer obtained by coating the targets having each composition for the same period of time is different as shown in FIG. 12. It can be seen that the yield of the alloy target is slightly higher.

도 13 내지 도 17은 시료들의 코팅 라인 스캐닝 분석을 보여준다.13 to 17 show coating line scanning analysis of samples.

도 18은 시료들의 마이크로 비커스 경도를 보여준다.18 shows the micro Vickers hardness of the samples.

여기서 순수 Sn 타겟의 경우, 방전 후 타겟 용융 현상이 일어나 정확한 데이터라 보기 어렵다. 대체로 Sn 함량이 증가할수록 마이크로 비커스 경도는 낮아지며, 100 내지 260Hv를 보인다. 이로써 AlSn 복합 코팅재는 어느 정도 우수한 경도를 갖는다고 볼 수 있다. Here, in the case of a pure Sn target, the target melting phenomenon occurs after discharging, so it is difficult to say that it is accurate data. In general, as the Sn content increases, the micro-Vickers hardness decreases, showing 100 to 260 Hv. As a result, it can be seen that the AlSn composite coating material has some degree of excellent hardness.

도 19는 시료들의 마찰특성 평가 결과이다.19 is a result of evaluating the friction characteristics of samples.

AlSn(80:20)의 코팅재는 순수 Al, 순수 Sn 보다 더 낮은 마찰계수를 나타내었으며, 0.1 미만(0.08 근처)의 마찰계수를 보여 저마찰 특성이 우수함을 알 수 있다. The coating material of AlSn (80:20) exhibited a lower coefficient of friction than pure Al and pure Sn, and exhibited a coefficient of friction of less than 0.1 (near 0.08), indicating excellent low friction characteristics.

도 20 내지 도 24는 시료들의 마모특성 평가결과를 보여준다.20 to 24 show the evaluation results of the wear characteristics of the samples.

여기서 AlSn(80:20) 및 AlSn(50:50)의 코팅재 마모특성이 우수함을 볼 수 있다.Here, it can be seen that the coating material wear characteristics of AlSn (80:20) and AlSn (50:50) are excellent.

도 25와 도 26은 시료들의 마모 깊이를 보여준다.25 and 26 show the depth of wear of the samples.

마모 깊이 역시 순수 Al, 순수 Sn 보다 AlSn 복합소재에서 더 낮게 나타났다. The wear depth was also lower in AlSn composites than in pure Al and pure Sn.

상기와 같이 AlSn 복합코팅재를 친환경 하이브리드 구동부재에 적용함으로써 내마모 저마찰성을 확보하여 수명과 안정성을 얻을 수 있다.As described above, by applying the AlSn composite coating material to the eco-friendly hybrid driving member, it is possible to obtain wear resistance and low friction, thereby obtaining life and stability.

상기 실시예는 베어링에 대해 이루어졌지만 이에 한정되지 않고 여러가지 구동부재에 실시될 수 있다. Although the above embodiment was made for a bearing, it is not limited thereto and may be implemented on various driving members.

또한, 금속계 또는 합금기반의 나노복합 산화물 즉, ZrO2, SiO2, Al2O3, ZraOxSibOy, AlaOxSibOy, ZraOxAlbOySicOz 등의 금속계 기반 나노복합 산화물 코팅재도 합금 타겟 내지 순금속 타겟과 산소를 공급하는 스퍼티링 공정에 의해 적용될 수 있으며, 세라믹 구조의 단점인 취성 특성에 대한 부분을 코팅입자의 나노사이즈화 및 수십 또는 수백 나노수준의 박막 두께를 형성하여 취성을 극복하고 엔진오일 환경, 전기차 모터 부분의 구동 샤프트 등의 그리스 또는 무윤활 환경에서의 저마찰 내마모성을 향상시킬 수 있다. 또한 단일금속 타겟이 아닌 Si과 같은 산화물을 형성하는 합금화 타겟을 이용한 코팅막의 경우 주상구조가 아닌 비정질 형태의 금속 나노복합 산화물을 형성할 수 있어 내충격에 대한 세라믹 코팅막 층의 취성 보완이 이루어져 수십 또는 수백 나노 두께의 금속 복합 산화물층이 아닌 후막화도 가능하다.In addition, metal-based or alloy-based nanocomposite oxides, that is, ZrO 2, SiO 2 , Al 2 O 3 , Zr a O x Si b O y , Al a O x Si b O y , Zr a O x Al b O y Si Metal-based nanocomposite oxide coating materials such as c O z can also be applied by a sputtering process that supplies oxygen to an alloy target or a pure metal target. By forming a thin film thickness of tens or hundreds of nanometers, it is possible to overcome brittleness and improve low friction and wear resistance in an engine oil environment, grease or non-lubricating environment such as a drive shaft of an electric vehicle motor. In addition, in the case of a coating film using an alloying target that forms an oxide such as Si rather than a single metal target, an amorphous metal nanocomposite oxide can be formed, so that the brittleness of the ceramic coating layer against impact can be compensated for dozens or hundreds. It is also possible to form a thick film rather than a nano-thick metal composite oxide layer.

최근 ZrCuSi계 합금화가 된 코팅타겟을 이용하여 나노복합 질화물 ZrCuSiN의 코팅재 적용 부품의 엔진부품이 신기술로 적용되고 있으나 Cu의 영향으로 인한 내열성- 및 내식성 부족, 기존 CrN 코팅이 적용된 엔진부품에서의 저마찰 특성은 크게 차이가 나지 않는다고 보고되고 있다. 이러한 특성을 고려하였을 때 향후 차세대 고출력 기반의 친환경 자동차용 연소 엔진 또는 전기구동 부품에의 적용에 한계가 있으므로 앞서 언급한 금속계 기반 나노복합 산화물 코팅재의 경우 취성을 보완함으로써 세라믹 구조가 가지는 고경도, 저마찰 특성을 기본으로 하는 동시에 고온안정성 및 내열, 내산화특성이 더해진 다기능성 코팅막의 적용이 가능하다.Recently, engine parts of nanocomposite nitride ZrCuSiN coating material applied parts are being applied as a new technology using ZrCuSi-based alloyed coating targets, but due to the influence of Cu, heat resistance and corrosion resistance are insufficient, and low friction in engine parts applied with existing CrN coating. It is reported that there is no significant difference in characteristics. Considering these characteristics, there is a limit to application to next-generation high-power-based eco-friendly combustion engines or electric drive parts. Therefore, in the case of the metal-based nanocomposite oxide coating material mentioned above, the high hardness and low strength of the ceramic structure by supplementing brittleness. It is possible to apply a multifunctional coating film that is based on frictional properties and has added high-temperature stability, heat resistance, and oxidation resistance.

또한, 금속 또는 합금 타겟을 이용한 하지층을 갖는 반응성 스퍼터링을 이용한 금속계 산화물의 나노복합 코팅막 형성은 내구성 향상을 위하여 다층으로 구성될 수 있다. 즉, 최초 부품 소재 위에 하지층으로는 동일한 코팅 타겟 조성의 순수 스퍼터링을 통한 0.5um~2.0um 버퍼층 증착, 2단계로는 동일 타겟을 이용한 완충 및 내충격성, 강화 버퍼층 역할을 하는 금속 나노복합 질화층의 1.0um~3.0um 형성, 최종층에는 금속 또는 합금 타겟을 이용한 다기능성 고온 내마모, 저마찰금속 나노 복합산화물층의 50nm~1000nm 이내의 코팅막 증착을 통하여 금속 나노복합 멀티 코팅층의 적용도 가능하다. In addition, the formation of a nanocomposite coating film of a metal-based oxide using reactive sputtering having a base layer using a metal or alloy target may be composed of multiple layers to improve durability. In other words, as an underlying layer on the first component material, 0.5um to 2.0um buffer layer is deposited through pure sputtering with the same coating target composition, and in the second step, a metal nanocomposite nitride layer that serves as a buffer layer for buffering and impact resistance and reinforcement using the same target. Formation of 1.0um~3.0um in the final layer, multifunctional high-temperature wear resistance using a metal or alloy target, and application of a metal nanocomposite multi-coating layer by depositing a coating film within 50nm~1000nm of the low-friction metal nanocomposite oxide layer is also possible. .

상기에서, 합금은 주조 또는 소결방식으로 제조될 수 있으며 본 실시예의 타겟은 소결방식으로 제작된 것이다. In the above, the alloy may be manufactured by a casting or sintering method, and the target of this embodiment is manufactured by a sintering method.

소결의 경우 일반소결 또는 합금화 분말(아토마이징 공법)을 소결하여 코팅 타겟을 제작할 수 있다. In the case of sintering, a coating target can be manufactured by sintering general sintering or alloying powder (atomizing method).

본 발명의 권리는 위에서 설명된 실시 예에 한정되지 않고 청구범위에 기재The rights of the present invention are not limited to the embodiments described above, but are described in the claims.

된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.It is defined by what has been defined, and it is apparent that a person of ordinary skill in the field of the present invention can make various modifications and adaptations within the scope of the rights described in the claims.

Claims (9)

삭제delete 삭제delete 삭제delete 삭제delete 자동차 구동 부품에 대하여,
Al-Sn 합금 타겟과 Ni-Cr 합금 타겟을 준비하고,
Ni-Cr 합금 타겟에 대해 DC 스퍼터링을 실시하여 Ni-Cr 하지층을 형성하고,
Al-Sn 합금 타겟에 대해 펄스 스퍼터링을 실시하여, 상기 Ni-Cr 하지층 위에 Al-Sn 복합코팅층을 형성하며,
Ni-Cr 합금 타겟에서 Ni:Cr의 조성비는 중량비로서 Ni:Cr=80~50:20~50으로 하고,
Al-Sn 합금 타겟에서 Al:Sn의 조성비는 중량비로서 90~50:10~50으로 하고,
Al-Sn 복합코팅층의 형성은 주파수 150KHz ~ 350KHz의 펄스 전압을 이용하여 펄스 스퍼터링을 실시하여 이루어지는 것을 특징으로 하는 코팅 방법.











About automotive drive parts,
Prepare an Al-Sn alloy target and a Ni-Cr alloy target,
DC sputtering was performed on the Ni-Cr alloy target to form a Ni-Cr base layer,
Pulse sputtering is performed on the Al-Sn alloy target to form an Al-Sn composite coating layer on the Ni-Cr underlayer,
In the Ni-Cr alloy target, the composition ratio of Ni:Cr is a weight ratio, and Ni:Cr=80-50: 20-50,
The composition ratio of Al:Sn in the Al-Sn alloy target is 90-50:10-50 as a weight ratio,
The coating method, characterized in that the formation of the Al-Sn composite coating layer is performed by performing pulse sputtering using a pulse voltage of a frequency of 150KHz to 350KHz.











삭제delete 삭제delete 삭제delete 삭제delete
KR1020190179359A 2019-12-31 2019-12-31 Coating materials and Coating System for Members of Eco-friendly Hybride Car KR102241852B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190179359A KR102241852B1 (en) 2019-12-31 2019-12-31 Coating materials and Coating System for Members of Eco-friendly Hybride Car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190179359A KR102241852B1 (en) 2019-12-31 2019-12-31 Coating materials and Coating System for Members of Eco-friendly Hybride Car

Publications (1)

Publication Number Publication Date
KR102241852B1 true KR102241852B1 (en) 2021-04-20

Family

ID=75743405

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190179359A KR102241852B1 (en) 2019-12-31 2019-12-31 Coating materials and Coating System for Members of Eco-friendly Hybride Car

Country Status (1)

Country Link
KR (1) KR102241852B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230055801A (en) 2021-10-19 2023-04-26 주식회사 이노션테크 Coating method for rubber component of automobile brake parts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020038437A (en) * 2000-11-17 2002-05-23 이명훈 DEVEIOPMENT METHOD OF AI-Sn COATING FILM METAL BEARINGS FOR DIESEL ENGINES BY RF MAGNETRON SPUTTERING PROCESS
JP2006336674A (en) * 2005-05-31 2006-12-14 Taiho Kogyo Co Ltd Direct supporting connecting rod and method of manufacturing the same
JP2012500365A (en) * 2008-08-15 2012-01-05 アーエムゲー、コーティング、テクノロジーズ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Sliding element with composite layers
KR20160093080A (en) * 2008-10-31 2016-08-05 뷔흘러 알제나우 게엠베하 Hafnium oxide or zirconium oxide coating
KR20160111372A (en) * 2013-12-27 2016-09-26 페데랄-모굴 비스바덴 게엠베하 Anti-friction lacquer and sliding bearing laminate comprising same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020038437A (en) * 2000-11-17 2002-05-23 이명훈 DEVEIOPMENT METHOD OF AI-Sn COATING FILM METAL BEARINGS FOR DIESEL ENGINES BY RF MAGNETRON SPUTTERING PROCESS
JP2006336674A (en) * 2005-05-31 2006-12-14 Taiho Kogyo Co Ltd Direct supporting connecting rod and method of manufacturing the same
JP2012500365A (en) * 2008-08-15 2012-01-05 アーエムゲー、コーティング、テクノロジーズ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Sliding element with composite layers
KR20160093080A (en) * 2008-10-31 2016-08-05 뷔흘러 알제나우 게엠베하 Hafnium oxide or zirconium oxide coating
KR20160111372A (en) * 2013-12-27 2016-09-26 페데랄-모굴 비스바덴 게엠베하 Anti-friction lacquer and sliding bearing laminate comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230055801A (en) 2021-10-19 2023-04-26 주식회사 이노션테크 Coating method for rubber component of automobile brake parts

Similar Documents

Publication Publication Date Title
US20080076683A1 (en) Slide member
US10494701B2 (en) Composite material for a sliding bearing
CN102459688B (en) Protective coating, a coated member having a protective coating as well as method for producing a protective coating
US7541086B2 (en) Bearing element
US9090965B2 (en) Slide part
US8574715B2 (en) Laminated film and laminated film-coated member
KR102250748B1 (en) Multi-layered plain bearing
KR20060048974A (en) Aluminum alloy for tribologically loaded surfaces
CN102124238A (en) Sliding element having a multiple layer
KR20150093684A (en) Plain bearing composite material
JP2008069372A (en) Member with hard carbon film
EP3507392A1 (en) Sliding element with max phase coating
KR102241852B1 (en) Coating materials and Coating System for Members of Eco-friendly Hybride Car
JP6273288B2 (en) Covering section with frictional stress for high temperature applications
JP5141654B2 (en) Sliding parts
CN102758201B (en) Composite coating with anti-corrosion lubricating property of surface of magnesium alloy, preparation method thereof
GB2500487A (en) Tribological coatings and methods of forming
KR20190024846A (en) Tappet coated low-friction layer and method of fabricating the same
JP5418405B2 (en) Method of using sliding component and sliding device using the sliding component
JP2016145406A (en) Nano composite solid lubricating film
KR20220096363A (en) Coating materials and Coating System for Members of Eco-friendly Hybride Car
JP5132281B2 (en) Sliding member
KR102154823B1 (en) Piston ring coated low-friction layer and method of fabricating the same
JPH07224390A (en) Sliding member
KR20190024843A (en) Target for physical vapor deposition, nano composite coating layer using the same and method of fabricating thereof

Legal Events

Date Code Title Description
AMND Amendment
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant