KR100325542B1 - Ferritic stainless steel for welding structure and method thereof - Google Patents

Ferritic stainless steel for welding structure and method thereof Download PDF

Info

Publication number
KR100325542B1
KR100325542B1 KR1019970052426A KR19970052426A KR100325542B1 KR 100325542 B1 KR100325542 B1 KR 100325542B1 KR 1019970052426 A KR1019970052426 A KR 1019970052426A KR 19970052426 A KR19970052426 A KR 19970052426A KR 100325542 B1 KR100325542 B1 KR 100325542B1
Authority
KR
South Korea
Prior art keywords
steel
less
annealing
stainless steel
ferritic stainless
Prior art date
Application number
KR1019970052426A
Other languages
Korean (ko)
Other versions
KR19990031642A (en
Inventor
김철홍
김현철
안상곤
Original Assignee
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사 filed Critical 포항종합제철 주식회사
Priority to KR1019970052426A priority Critical patent/KR100325542B1/en
Publication of KR19990031642A publication Critical patent/KR19990031642A/en
Application granted granted Critical
Publication of KR100325542B1 publication Critical patent/KR100325542B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Abstract

PURPOSE: A method for manufacturing ferritic stainless steel for welding structure is provided, which can produce a ferritic stainless steel for welding structure having equal quality of STS410L steel by the addition of Ni and Cu to conventional STS410L steel to widen possible temperature range for annealing. CONSTITUTION: The method for manufacturing ferritic stainless steel for welding structure includes step of continuous casting a steel comprising 0.02 wt.% or less of C, Si 0.2 to 0.4 wt.%, Mn 0.7 to 1.0 wt.%, 0.035 wt.% or less of P, 0.008 wt.% or less of S, Cr 11.0 to 11.6 wt.%, 0.020 wt.% or less of N, Cu 0.2 to 0.5 wt.%, Ni 0.5 to 1.0 wt.%, a balance of Fe and incidental impurities, followed by hot rolling; batch annealing the hot rolled steel strip at a temperature range of 640 to 680°C; cold rolling the steel strip; continuous annealing the steel strip under an atmosphere condition of 750 to 820°C; and pickling and temper rolling.

Description

용접구조용 페라이트계 스테인레스강과 그 제조방법Ferritic stainless steel for welding structure and manufacturing method

본 발명은 용접구조용 페라이트계 스테인레스강과 그 제조방법에 관한 것으로서 특히, 우수한 용접부 및 모재부 충격특성을 가지면서, 냉연소둔가능 온도영역을 확대하여 냉연소둔시 재질불량을 크게 줄일수 있는 용접구조용 페라이트계 스테인레스강과 이를 이용한 강판의 제조방법에 관한 것이다.The present invention relates to a ferritic stainless steel for welding structure and a method of manufacturing the same, in particular, having excellent impact properties of the welded part and the base material, and can expand the cold-annealed temperature range to significantly reduce material defects during cold-rolled annealing It relates to a stainless steel and a method for manufacturing a steel sheet using the same.

일반적으로 용접구조용으로 사용되는 스테인레스 강재는 STS410L강이 대표적인 강재이며, 컨테이너의 골조 및 외장 또는 오토바이의 디스크 브래이크등의 용도로 많이 이용되고 있다. 이와 같은 STS410L강은 용해 → 정련 → 주조 → 열간압연 → 열연소둔(Batch Annealing) → 냉간압연 → 냉연소둔(연속소둔) → 조질압연의 제조공정을 거쳐 생산되는 강이다. 상기의 공정중에서 냉연소둔 공정은 냉간압연시 가공경화된 재료를 재결정온도보다 높고 AC1온도보다 낮은 임의의 온도에서 열처리를 행하여, 재료를 재결정 연화시키는 공정이다. 이때, 소둔조건은 소둔온도와 시간으로 정의되며 소둔가능 온도 영역이 넓을수록 작업이 용이하다. 그러나 종래의 STS410L강의 경우 재결정을 통하여 연화가 시작되는 온도와 마르텐사이트형성이 시작되는 AC1온도간의 영역이 좁아서 냉연소둔작업시 소둔온도 관리가 매우 어렵고 이로 인하여 재질불량 발생이 아주 높은 단점이 있다.Generally, stainless steels used for welded structures are representative steels of STS410L, and are widely used for framing and exterior of containers or disc brakes for motorcycles. Such STS410L steel is produced through the manufacturing process of melting → refining → casting → hot rolling → batch annealing → cold rolling → cold rolling annealing → temper rolling. In the above process, the cold rolling annealing process is a process of recrystallizing and softening the material by heat-treating the work hardened material during cold rolling at an arbitrary temperature higher than the recrystallization temperature and lower than the AC 1 temperature. At this time, the annealing conditions are defined by the annealing temperature and time, and the wider the annealing temperature range, the easier the operation. However, in the case of conventional STS410L steel, the area between the temperature at which softening starts through recrystallization and the temperature of AC 1 at which martensite formation starts is narrow, so that the annealing temperature is very difficult to control during cold rolling annealing, which causes a defect in material defects.

도 1은 종래의 STS410L강의 소둔온도 변화에 따른 재질변화를 나타내는 그래프로서, 종래의 STS410L강은 중량%로 C:0.03 %이하, Si: 1.0 %이하, Mn: 1.0 %이하, P:0.04 %이하, S:0.03 %이하, Cr:11.0∼13.5 %, Ni: 0.6 %이하, 잔량 Fe 및 기타 불가피한 불순물로 조성되는 강이다. 상기와 같은 방법으로 조성되는 STS410L강은 냉간압연 후 소둔시 도 1에서 보는 바와 같이 소둔가능 온도범위가 20∼30 ℃로 매우 좁아서 소둔온도를 ±10℃ 범위내로 제어하지 못할 경우 재질불량을 유발하는 문제점이 있다. 또한 통상 산업용으로 사용되는 열전대의 경우 800∼1000 ℃ 영역에서 그 정도가 ±5∼±10 ℃의 측정오차를 가지므로 STS410L강의 소둔가능 온도범위는 열전대의 측정오차와 거의 유사한 범위를 갖게 된다. 따라서 냉연소둔시 소둔온도 이상으로 인한 재질불량이 다발하고, 로트(LOT)간 재질편차가 크게되는 문제점이 있었다.1 is a graph showing the material change according to the annealing temperature of the conventional STS410L steel, the conventional STS410L steel in weight% C: 0.03% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.04% or less , S: 0.03% or less, Cr: 11.0 to 13.5%, Ni: 0.6% or less, residual amount of Fe, and other inevitable impurities. STS410L steel is formed in the same way as the annealing after cold rolling, as shown in Figure 1 the temperature range that can be annealing is very narrow to 20 ~ 30 ℃ cause an inferior material material when the annealing temperature is not controlled within ± 10 ℃ range There is a problem. In addition, in the case of thermocouples used for industrial purposes in general, the temperature range of 800 to 1000 ℃ has a measurement error of ± 5 ~ ± 10 ℃, the temperature range of annealing of the STS410L steel has a range similar to the measurement error of the thermocouple. Therefore, there is a problem that the material defects due to the annealing temperature or more during cold rolling annealing, the material deviation between lots (LOT) is large.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, STS410L강에 Ni 및 Cu를 적정량 첨가함으로서 소둔가능 온도범위를 확대하고, STS410L강과 대등한 용접구조용 페라이트계 스테인레스강과 그 제조방법을 제공하는 것을 목적으로 한다.The present invention is to solve the above problems, and to add an appropriate amount of Ni and Cu to the STS410L steel to expand the annealing temperature range, and to provide a ferritic stainless steel for welding structure equivalent to STS410L steel and its manufacturing method. do.

도 1은 종래의 STS410L강의 소둔온도 변화에 따른 재질변화를 나타내는 그래프.1 is a graph showing a change in material according to the annealing temperature of the conventional STS410L steel.

도 2는 25Cr강의 DBTT(연성-취성 천이온도)에 미치는 Ni의 영향을 나타내는 그래프.2 is a graph showing the effect of Ni on the DBTT (ductile-brittle transition temperature) of 25Cr steel.

도 3은 열연소둔 조건을 나타내는 그래프.3 is a graph illustrating hot annealing conditions;

도 4는 열연소둔 온도변화에 따른 재료의 경도변화를 나타내는 그래프.Figure 4 is a graph showing the hardness change of the material according to the temperature change of the hot-annealed.

도 5는 열연소둔 온도변화에 따른 소둔조직의 변화를 나타내는 사진.5 is a photograph showing a change in the annealing structure according to the temperature change of the hot-rolled annealing.

도 6은 열연소둔 온도변화에 따른 소둔조직의 변화를 나타내는 사진.Figure 6 is a photograph showing the change in the annealing structure according to the temperature change of the hot-rolled annealing.

도 7은 냉연소둔 온도변화에 따른 경도변화를 나타내는 그래프.7 is a graph showing the change in hardness according to the cold rolling annealing temperature change.

도 8은 모재의 충격특성을 나타내는 그래프.8 is a graph showing the impact characteristics of the base material.

도 9는 열 사이클 재현조건을 나타내는 그래프.9 is a graph showing thermal cycle reproducing conditions.

도 10은 용접부 충격특성을 나타내는 그래프.10 is a graph showing weld impact properties.

도 11은 모재부와 용접부의 충격특성을 비교한 그래프.11 is a graph comparing the impact characteristics of the base material and the weld.

도 12는 용접부 조직을 나타내는 사진.12 is a photograph showing a welded structure.

이러한 목적을 달성하기 위한 본 발명은, 중량%로 C: 0.02 %이하, Si: 0.20∼0.40%, Mn: 0.7∼1.0 %, P: 0.035 %이하, S: 0.008 %이하, Cr: 11.0∼11.6 %, N: 0.020 %이하, Cu: 0.2∼0.5 %, Ni: 0.5∼1.0 %, 잔량 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 용접구조용 페라이트계 스테인레스강에 의하여 달성됨은 물론, 상기의 용접구조용 페라이트계 스테인레스강을 연속주조 및 열간압연을 한후 640 ∼ 680 ℃에서 열연소둔을 하는 단계와; 상기 열연강대를 냉간압연 한후 750 ∼ 820 ℃분위기 온도에서 냉연소둔하는 단계와; 산세 및 조질압연을 행하는 단계로 이루어지는 것을 특징으로하는 용접구조용 페라이트계 스테인레스강의 제조방법을 제공함으로서 달성된다.The present invention for achieving the above object, by weight% C: 0.02% or less, Si: 0.20 to 0.40%, Mn: 0.7 to 1.0%, P: 0.035% or less, S: 0.008% or less, Cr: 11.0 to 11.6 %, N: 0.020% or less, Cu: 0.2-0.5%, Ni: 0.5-1.0%, the residual amount of Fe and other inevitable impurities are achieved by the ferritic stainless steel for welding structure, of course, the above welding Performing continuous casting and hot rolling of the structural ferritic stainless steel at a temperature of 640 to 680 ° C .; Cold rolling the hot rolled steel strip and then cold rolling annealing at an ambient temperature of 750 to 820 ° C .; It is achieved by providing a method for producing a ferritic stainless steel for welded structure, which comprises the steps of pickling and temper rolling.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 STS410L강에 있어서 냉간압연 후 소둔시 소둔온도를 ±10℃ 범위 내로 제어하지 못할 경우 재질불량을 유발하는 문제점을 해결하기 위해 상기 STS410L강에 Cu: 0.2∼0.5 % 및 Ni: 0.5∼1.0 %를 첨가하여 냉연소둔가능 온도영역을 50∼70℃범위로 확대함으로서 냉연소둔식 재질불량을 크게 줄일 수 있어 우수한 용접부 및 모재부 충격특성을 가진 용접구조용 페라이트계 스테인레스강의 제조방법에 관한 것이다.In the present invention, in order to solve the problem of causing material defects when the annealing temperature during annealing after cold rolling in the STS410L steel cannot be controlled within a range of ± 10 ° C, Cu: 0.2 to 0.5% and Ni: 0.5 to 1.0 in the STS410L steel. The present invention relates to a method for manufacturing a ferritic stainless steel for welded structure having excellent welded and base metal impact characteristics by greatly reducing cold-annealed material defects by expanding the cold-annealable temperature range by adding% to 50-70 ° C.

이하, 본 발명 강성분의 한정이유 및 그 첨가이유를 설명한다.Hereinafter, the reason for limitation of the steel component of the present invention and the reason for addition thereof will be described.

C는 강력한 오스테나이트계 안정화 원소로서 제품의 강도를 높이는 효과가 있으나, 그 함량이 너무 높으면 소둔처리시 AC1온도가 낮아져 마르텐사이트 조직이 형성될 뿐 아니라, 용접시공시 용접 열영향부에 마르텐사이트조직이 형성되어 용접부를 취화시키고 탄화물 석출로 내식성 저하가 우려된다. 따라서 본 발명에서는 C의 함량을 0.02%이하로 제한하는 것이다.C is a strong austenite-based stabilizing element that has the effect of increasing the strength of the product, but if the content is too high, the AC 1 temperature is lowered during annealing to form martensite structure, and martensite at the heat affected zone during welding. Tissues are formed to embrittle the welds and the carbides are susceptible to deterioration in corrosion resistance. Therefore, the present invention is to limit the content of C to 0.02% or less.

Si는 탈산제로 작용하고 내고온 산화성에 유리하지만 그 첨가량이 0.20% 미만에서는 그 작용하는 효과가 불충분하고, 그 첨가량이 0.40% 보다 많은 경우에는 용접성이 나빠지고 라멜라 타입(Lamellar Type)의 실리케이트(Silicate)성 개재물발생으로 밴딩(Bending)가공시 크랙 발생의 원인이 된다. 따라서 본 발명에서는 Si의 함량을 0.20 ∼ 0.40 %로 한정하는 것이다.Si acts as a deoxidizer and favors high temperature oxidation resistance, but its effect is insufficient when the addition amount is less than 0.20%, and when the addition amount is more than 0.40%, the weldability becomes poor and lamellar type silicate (Silicate) ) Because of occurrence of inclusions, cracking may occur during bending processing. Therefore, in the present invention, the content of Si is limited to 0.20 to 0.40%.

Mn은 탈산제로 작용할 뿐만아니라 용접성을 향상시키나 그 첨가량이 0.7% 미만에서는 충분한 효과를 발휘할 수 없고, 1.0% 보다 많은 량을 첨가시 오스테나이트상 생성으로 냉각시 마르텐사이트 조직을 유발하여 재료를 취화시킴으로 0.7 ∼1.0 %로 한정한다.Mn not only acts as a deoxidizer, but also improves weldability, but when the added amount is less than 0.7%, Mn does not exert sufficient effect, and when more than 1.0% is added, austenite phase is generated. It is limited to 0.7 to 1.0%.

P는 함량이 많은 경우에는 가공성 및 내식성이 저하되고 용접시 P가 입계에 편석되어 용접부 열화의 원인이 되므로 본 발명에서는 0.035 %이하로 제한한다.If the P content is large, workability and corrosion resistance are lowered, and P is segregated at the grain boundary during welding, causing deterioration of the welded part. Therefore, the P content is limited to 0.035% or less.

S는 강중의 Mn과 친화력이 큰 원소로서 MnS형태의 개재물로 존재시 부식의 기점으로 작용하므로서 본 발명에서는 0.008 %이하로 제한한다.S is an element having a high affinity with Mn in the steel and acts as a starting point of corrosion when present as an inclusion in the form of MnS, and is limited to 0.008% or less in the present invention.

Cr은 첨가량이 너무 작으면 내식성이 저하하고 너무 많으면 제조비용의 증가를 유발함으로 본 발명에서는 11.0 ∼11.6 %로 한정한다.If the amount of Cr is too small, the corrosion resistance is lowered. If the amount of Cr is too high, the production cost is increased, so it is limited to 11.0 to 11.6% in the present invention.

N은 강의 강도를 향상시키는 효과가 있으나 오스테나이트 형성을 촉진하므로, 본 발명에서는 0.020 %이하로 제한한다.N has the effect of improving the strength of the steel, but promotes the formation of austenite, in the present invention is limited to 0.020% or less.

Cu는 노블 메탈(Noble metal)로 강의 자연부식 전위를 상승시키고 재환원에 의한 음극면적을 감소시킴으로서 내식성을 향상시킬뿐만 아니라 용접부의 조직을 미세화시켜 용접부의 인성을 향상시키는 효과가 있으나 그 첨가량이 0.2% 보다 적을 경우 그 효과를 기대할 수 없으며, 그 함량이 0.5% 보다 많을 시 σ상(Phase)을 형성하여 강을 취화시키고 내식성을 저해하므로, 본 발명에서는 0.2∼0.5 %로 한정한다.Cu is a noble metal, which increases the natural corrosion potential of steel and decreases the cathode area by re-reduction, which not only improves the corrosion resistance but also improves the toughness of the weld by miniaturizing the structure of the weld. If the amount is less than%, the effect cannot be expected, and when the content is more than 0.5%, σ phase (Phase) is formed to embrittle the steel and inhibit the corrosion resistance, so the present invention is limited to 0.2 to 0.5%.

Ni은 자체로 오스테나이트상을 형성하려는 특성을 가지는 오스테나이트 안정화원소이며, 페라이트 스테인레스강에서 Ni의 첨가는 충격특성을 향상시킨다.Ni is an austenite stabilizing element having a property of forming an austenite phase by itself, and the addition of Ni in ferritic stainless steel improves impact characteristics.

도 2는 25Cr강의 DBTT(연성-취성 천이온도)에 미치는 Ni의 영향을 나타내는 그래프로서, Ni을 2 %에서 5.8 %까지 첨가 시킴에 따라 DBTT가 상온에서 -200 ℃까지 향상됨을 알수 있다. 내식성 측면에서 Ni은 부동태피막을 안정시키고 내공식성과 대기부식성을 개선하는 역할을 한다. 응력부식 균열 측면에서 페라이트 스테인레스강에 Ni을 1.0%이하 첨가시는 응력부식 민감도에 영향을 주지않으나 1.0 %를 초과하는 Ni을 첨가시는 응력부식 민감도를 높이는 역할을 한다. 용접부의 인성에 대해서는 8∼15Cr- < 0.07C강에 Ni을 0.3∼3.0 %첨가시 결정립이 미세한 용접부가 형성되어 용착금속이 강하고 인성이 우수하며 용접부의 내식성이 개선되는 효과가 있다. 한편 본 발명의 Ni의 첨가는 12Cr 계 페라이트강에서 냉연소둔시 재결정 연화를 촉진시키므로, 본 발명에서는 Ni을 0.5∼1.0 %로 한정하였다.Figure 2 is a graph showing the effect of Ni on the DBTT (ductile-brittle transition temperature) of 25Cr steel, it can be seen that the DBTT is improved to -200 ℃ at room temperature by adding Ni from 2% to 5.8%. In terms of corrosion resistance, Ni stabilizes the passivation film and improves corrosion resistance and atmospheric corrosion resistance. In terms of stress corrosion cracking, the addition of Ni to ferrite stainless steel below 1.0% does not affect the stress corrosion sensitivity, but when Ni is added above 1.0%, it increases the stress corrosion sensitivity. Regarding the toughness of the welded part, a welded part having fine crystal grains is formed when Ni is added to 0.3% to 3.0% of 8-15Cr- <0.07C steel, so that the weld metal is strong, the toughness is improved, and the corrosion resistance of the welded part is improved. On the other hand, since the addition of Ni of the present invention promotes recrystallization softening at the time of cold rolling in 12Cr ferritic steel, Ni was limited to 0.5 to 1.0% in the present invention.

본 발명에서는 또한 중량%로 C: 0.02 %이하, Si: 0.2∼0.4 %, Mn: 0.7∼1.0 %, P: 0.035 %이하, S: 0.008 %이하, Cr: 11.0∼11.6 %, N: 0.02%이하, Cu: 0.2∼0.5%, Ni: 0.5∼1.0%, 잔량 Fe 및 기타 불가피한 불순물로 조성되는 상기의 스테인레스강을 제조하기 위하여 먼저, 통상의 방법에 의하여 연속주조 및 열간압연을 한후 640∼680℃에서 열연소둔하는 단계와; 상기 열연소둔을 거친 열연강대를 냉간압연 한후 750∼820℃분위기 온도에서 냉연소둔하는 단계와; 산세 및 조질압연을 행하는 단계를 제공하고 있다.In the present invention, by weight%, C: 0.02% or less, Si: 0.2-0.4%, Mn: 0.7-1.0%, P: 0.035% or less, S: 0.008% or less, Cr: 11.0-11.6%, N: 0.02% Hereinafter, in order to manufacture the above stainless steel composed of 0.2% to 0.5% of Cu, 0.5% to 1.0% of Ni, residual Fe and other unavoidable impurities, first, continuous casting and hot rolling are carried out by a conventional method, and then 640 to 680. Hot-annealing at ° C .; Cold rolling the hot rolled steel sheet subjected to hot rolling annealing at an 750 to 820 ° C. ambient temperature; Pickling and temper rolling are provided.

이는 다음의 실시예를 통하여 도면과 함께 상세히 설명하기로 한다.This will be described in detail with reference to the following embodiments.

실시예Example

하기의 표 1과 같은 성분을 가진 발명강 A,B,C 및 비교강 1,2의 페라이트계 스테인레스강을 진공 유도가열로(Vacuum induction furnace)에서 용해하여 50mm*50mm*100mm의 강괴를 제조했다.Ferritic stainless steels of the inventive steels A, B, C and comparative steels 1 and 2 having the components shown in Table 1 were dissolved in a vacuum induction furnace to prepare 50 mm * 50 mm * 100 mm ingots. .

상기 강괴를 1200℃에서 2시간 가열한 후 열간압연하여 두께 6.4mm의 열연강판을 제조했고, 이 열연강판을 20mm*20mm*6.4mm의 크기로 절단한 다음 도 3과 같은 히트 싸이클(Heat Cycle)로 상소둔로(Box furnace)에서 열연소둔처리를 했다. 열연소둔된 강판을 불산과 질산혼합용액에서 표면의 스케일(scale)을 제거한후, 두께 2.5mm로 냉간압연을 했다. 상기의 냉간압연된 시편들을 20mm*20mm*2.5mm의 크기로 절단한 다음, 냉연소둔 가능 온도범위 확인을 위해 750℃,780℃,820℃,840℃,860℃로 각각 가열시켜 30초간 유지시킨후 수냉시켰다. 상기 냉연소둔된 시편들을 불산과 질산 혼합용액에서 산세 한후, 기계적 성질 및 소둔 조직을 조사했다.The ingot was heated at 1200 ° C. for 2 hours and hot rolled to produce a hot rolled steel sheet having a thickness of 6.4 mm. The hot rolled steel sheet was cut into a size of 20 mm * 20 mm * 6.4 mm and then heat cycle as shown in FIG. 3. Hot annealing was performed in a box furnace. The hot-rolled steel sheet was subjected to cold rolling to a thickness of 2.5 mm after removing the scale of the surface from the mixed solution of hydrofluoric acid and nitric acid. The cold rolled specimens were cut to a size of 20mm * 20mm * 2.5mm, and then heated to 750 ° C., 780 ° C., 820 ° C., 840 ° C., 860 ° C. for 30 seconds to confirm the cold range of possible annealing. After cooling with water. After the cold-annealed specimens were pickled in a mixed solution of hydrofluoric acid and nitric acid, mechanical properties and annealing structures were examined.

[표 1]TABLE 1

Figure pat00001
Figure pat00001

* (단위: 중량%)* (Unit: weight%)

도 4는 열연소둔 온도변화에 따른 재료의 경도변화를 측정한 것이다.Figure 4 measures the change in hardness of the material according to the temperature change of the hot-annealed.

Ni함량이 1.0%이하인 비교강1,2 및 발명강 A,B는 소둔온도가 640℃에서 680℃로 증가하면 경도가 완만한 감소현상을 보인다. 하지만 Ni함량이 1.47%인 발명강C의 경우 HRB 90이상의 높은 경도가 전 소둔온도 구간에서 측정된다. 이는 Ni을 1.0%이상 첨가한 발명강 C의 경우 열간압연시 생성된 마르텐사이트조직을 페라이트 조직으로 분해해야 하는 열간소둔 작업과정에서 미세한 마르텐사이트 조직이 생성되어 재료의 연화가 충분히 이루어지지 않음을 나타낸다.Comparative steels 1, 2 and inventive steels A and B having a Ni content of 1.0% or less show a gentle decrease in hardness when the annealing temperature increases from 640 ° C to 680 ° C. However, in the case of the inventive steel C having a Ni content of 1.47%, a high hardness of HRB 90 or more is measured in the entire annealing temperature range. This indicates that in the case of Invented Steel C containing 1.0% or more of Ni, fine martensite structure is generated during the hot annealing process in which the martensite structure generated during hot rolling must be decomposed into ferrite tissue, and thus the material is not softened sufficiently. .

이러한 현상을 나타낸 것이 열연소둔 온도변화에 따른 소둔조직의 변화를 나타내는 사진인 도 5와 도 6이다. 도면에서 알 수 있는 바와 같이 Ni함량이 1.0%이하인 경우 소둔온도가 640℃에서 680℃로 높아지면서 소둔조직이 잘 형성되어 있어 경도의 감소를 나타내었으나, Ni함량 1.47%강의 경우 660℃부터 미세 마르텐사이트조직이 발생됨을 알수 있다.This phenomenon is shown in Figure 5 and Figure 6 which shows the change in the annealing structure according to the temperature change of the hot annealing. As can be seen in the drawing, when the Ni content is less than 1.0%, the annealing temperature is increased from 640 ° C to 680 ° C, and the annealing structure is well formed, indicating a decrease in hardness. However, in the case of Ni content of 1.47%, the fine martensite is from 660 ° C. It can be seen that site organization occurs.

도 7은 냉연소둔 온도변화에 따른 경도변화를 나타내는 그래프이다.7 is a graph showing the change in hardness according to the cold rolling temperature change.

비교강 1,2의 경우 소둔온도와 경도와의 관계를 나타내는 U 커브(curve)상의 기저부 영역이 20℃정도로 매우 좁음을 알수 있고 발명강 A,B의 경우 U 커브상의 기저부 영역이 750 ∼ 820℃가 되므로 50∼70℃ 범위로 매우 넓음을 알수 있다. 여기서 U 커브의 기저부는 재료의 소둔가능 온도영역에 해당한다.In comparison steels 1 and 2, the base region on the U curve showing the relationship between the annealing temperature and the hardness was very narrow, about 20 ° C. In the case of the inventive steels A and B, the base region on the U curve was 750 to 820 ° C. It can be seen that very wide in the range of 50 ~ 70 ℃. Here the base of the U curve corresponds to the annealing temperature range of the material.

하기 표 2는 비교강 1,2와 발명강 A,B,C의 냉연소둔후 인장시험 결과이다.Table 2 below shows the tensile test results after cold annealing of Comparative Steels 1,2 and Invented Steels A, B, and C.

[표 2]TABLE 2

Figure pat00002
Figure pat00002

Ni 함량이 1.0%까지는 소둔시 페라이트 단상의 확보가 용이하여 강도 및 연성이 유사한 수준을 나타내었다. 그러나 1.47% Ni첨가강(발명강 C)는 소둔중 미세한 마르텐사이트 조직의 형성으로 강도는 급격히 증가하고 연신율은 급격히 감소했다.Ni content of 1.0% is easy to secure the ferrite single phase during annealing, showing a similar level of strength and ductility. However, 1.47% Ni-added steel (Invention Steel C) rapidly increased its strength and elongated rapidly due to the formation of fine martensite structure during annealing.

모재의 충격특성은 먼저 두께 6.4mm의 열연소둔재를 두께 4.0mm로 밀링(milling)가공한 후, Charpy V-Notch 시험편을 제작했다. 그리고 -100∼100℃의 온도범위에서 충격시험을 실시하고 DBTT(vTrs)를 조사했다.The impact characteristics of the base metal were first milled to a thickness of 4.0 mm of the hot rolled annealing material having a thickness of 6.4 mm, and then Charpy V-Notch specimens were prepared. And the impact test was performed in the temperature range of -100-100 degreeC, and DBTT (vTrs) was investigated.

도 8은 모재의 충격특성을 나타내는 그래프로서, Ni함량이 0.72%까지는 DBTT(vTrs)가 약 -65∼-70℃로서 충격특성이 유사한 수준임을 알수 있으나, 발명강 B는 DBTT가 약 -90℃로서 -20℃이상 충격특성이 개선되었음을 나타낸다. 그러나 Ni함량을 1.47% 첨가한 발명강 C는 DBTT(vTrs)가 -60℃로서, 오히려 충격특성이 저하했다. 이것은 1.47% Ni첨가강은 소둔중 마르텐사이트 형성에 기인한 것으로 생각된다.8 is a graph showing the impact characteristics of the base material, the Ni content of 0.72% DBTT (vTrs) is about -65 ~ -70 ℃ It can be seen that the impact characteristics are similar, but the invention steel B DBTT is about -90 ℃ As a result, the impact characteristic of -20 ° C or more is improved. However, invented steel C to which Ni content was added 1.47% had DBTT (vTrs) of -60 ° C, and the impact characteristic was rather deteriorated. This is thought to be due to the formation of martensite during annealing of 1.47% Ni-added steel.

용접부 충격특성을 조사하기 위하여 두께 6.4mm의 열연소둔재를 두께 4.0mm로 밀링 가공한 후, 용접 열싸이클 재현장치(Metal thermal cycle simulator)를 사용하여 용접부 냉각시간(△T12/8)을 59초로 제어하여 용접 열영향부를 재현시켰다.In order to investigate the impact characteristics of the weld, the 6.4mm thick hot rolled annealing material was milled to a thickness of 4.0mm, and then the weld cooling time (△ T 12/8 ) was measured using a metal thermal cycle simulator. Second control was used to reproduce the weld heat affected zone.

도 9는 열 사이클 재현조건을 나타내는 그래프로서, 최고온도는 δ상이 되는 1350℃로 했고, 1200∼800℃구간은 최고온도에서 냉각도중 r + α 이상 구역에서의 변태를 고려한 것이다. 한편, 800∼500℃구간은 실용접조건의 온도구배를 재현한것이다. 상기와 같이 각 시험재에 용접 열 사이클을 부여한 다음, 모재의 충격특성과 비교가 용이하도록 4mm두께의 서브 싸이즈(sub size)충격시험편을 제작했고, 50 ∼ -80℃온도구간에서 충격시험을 실시하여 Ni함량별 충격특성을 조사했다.9 is a graph showing the thermal cycle reproducing conditions, the maximum temperature is 1350 ℃ to be the δ phase, the 1200 to 800 ℃ section is considering the transformation in the region of r + α or more during cooling at the maximum temperature. On the other hand, the 800 to 500 ° C section reproduces the temperature gradient under practical welding conditions. After applying the welding heat cycle to each test member as described above, a sub-size impact test piece having a thickness of 4 mm was manufactured to be easily compared with the impact characteristics of the base material, and the impact test was conducted at a temperature range of 50 to -80 ° C. The impact characteristics of each Ni content were investigated.

도 10은 용접부 충격특성을 나타내는 그래프로서, 각 시험재의 충격특성은 비교강 1이 가장 열화했고, Ni함량이 0.4% 이상인 비교강 2, 발명강 A,B는 유사한 충격특성을 보였다.Figure 10 is a graph showing the impact characteristics of the weld, the impact characteristics of each test specimen was the most deteriorated comparative steel 1, Comparative steel 2, the invention steel A, B having a Ni content of more than 0.4% showed similar impact characteristics.

도 11은 모재부와 용접부의 충격특성을 비교한 그래프로서, 비교강 1의 경우 용접부의 충격특성이 모재부 대비 현저히 저하함을 알수 있다.FIG. 11 is a graph comparing the impact characteristics of the base material and the weld part. In Comparative Steel 1, the impact properties of the weld part are significantly lower than that of the base material part.

도 12는 용접부 조직을 나타내는 사진으로서, 각 시험재의 충격특성 변화의 원인을 알아보기 위하여 용접부 조직을 관찰한 것이다. 충격특성이 가장 열위인 비교강 1의 경우 마르텐사이트와 약 14%의 조대한 페라이트 상을 포함하는 이상조직인 반면 0.4% 이상의 Ni가 첨가된 비교강 2와 발명강 A,B,C는 미세한 마르텐사이트 단상조직을 나타낸다.12 is a photograph showing a welded structure, in which the welded structure is observed to determine the cause of the change in the impact characteristics of each test material. Comparative steel 1, which has the lowest impact characteristics, is an ideal structure containing martensite and a coarse ferrite phase of about 14%, whereas comparative steel 2 and invented steels A, B, and C containing 0.4% or more are fine martensite. Represents single-phase tissue.

상기의 결과를 볼 때, Cu첨가 STS410L강에 Ni첨가량은 용접부 마르텐사이트 생성량에 영향을 미치며, 이때 발생된 마르텐사이트 조직의 양 및 형태가 용접부 충격특성에 영향을 미치고 있음을 알수 있다. 0.4∼1.47%의 Ni를 첨가한 비교강 2 및 발명강 A,B,C의 용접부 충격특성은 우수했으나, 비교강 1의 경우 모재 충격특성이 상대적으로 낮게 나타남을 알수 있다.In view of the above results, it can be seen that the amount of Ni added to the Cu-added STS410L steel affects the amount of weld martensite, and the amount and shape of martensite structure generated at this time affect the weld impact properties. Welded impact characteristics of Comparative Steel 2 and Invented Steels A, B, and C with 0.4 to 1.47% Ni were excellent, but the base steel impact characteristics of Comparative Steel 1 were relatively low.

상술한 바와 같이 본 발명은 기존의 STS410L강에 미량의 Cu와 Ni을 첨가하여열연, 냉연 소둔조건 및 기계적성질, 충격특성을 실험한 결과 하기의 표 3a 및 표 3b와 같은 효과를 확인할 수 있었다.As described above, the present invention was conducted to test the hot rolling, cold rolling annealing conditions and mechanical properties, impact characteristics by adding a small amount of Cu and Ni to the existing STS410L steel as shown in Table 3a and Table 3b.

[표 3a]TABLE 3a

Figure pat00003
Figure pat00003

[표 3b]TABLE 3b

Figure pat00004
Figure pat00004

이상의 결과를 볼 때 기존의 STS410L강에 Cu를 0.2∼0.5%, Ni을 0.5∼1.0% 첨가함으로서 STS410L강보다 우수한 용접부 및 모재부 충격특성을 가지면서, 냉연소둔 가능온도 영역이 넓어서 냉연소둔시 재질불량을 크게 줄일수 있는 12Cr 계의 용접구조용 스테인레스강의 제조가 가능해 졌다.In view of the above results, by adding 0.2 to 0.5% of Cu and 0.5 to 1.0% of Ni to the existing STS410L steel, the welded and base metal parts have better impact characteristics than the STS410L steel, and the cold rolling annealing temperature range is wider. It is possible to manufacture stainless steel for welding structure of 12Cr system which can greatly reduce defects.

Claims (2)

중량%로 C:0.02%이하, Si: 0.2∼0.4%, Mn: 0.7∼1.0%, P: 0.035%이하, S: 0.008%이하, Cr: 11.0∼11.6%, N: 0.020%이하, Cu: 0.2∼0.5%, Ni: 0.5∼1.0%, 잔량 Fe 및 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 용접구조용 페라이트계 스테인레스강.By weight% C: 0.02% or less, Si: 0.2-0.4%, Mn: 0.7-1.0%, P: 0.035% or less, S: 0.008% or less, Cr: 11.0-11.6%, N: 0.020% or less, Cu: A ferritic stainless steel for welded structure, which is composed of 0.2 to 0.5%, Ni: 0.5 to 1.0%, residual amount of Fe and other unavoidable impurities. 용접구조용 페라이트계 스테인레스강의 제조방법에 있어서, 중량%로 C: 0.02%이하, Si: 0.2∼0.4%, Mn: 0.7∼1.0%, P: 0.035%이하, S: 0.008%이하, Cr: 11.0∼11.6%, N: 0.020%이하, Cu: 0.2∼0.5%, Ni: 0.5∼1.0%, 잔량 Fe 및 기타 불가피한 불순물로 조성되는 강을 연속주조 및 열간압연을 한후 640∼680℃에서 열연소둔하는 단계와; 상기 열연소둔을 거친 열연강대를 냉간압연 한후 750∼820℃분위기 온도에서 냉연소둔하는 단계와; 산세 및 조질압연을 행하는 단계와; 로 이루어지는 것을 것을 특징으로하는 용접구조용 페라이트계 스테인레스강의 제조방법.In the manufacturing method of ferritic stainless steel for welded structures, in weight% C: 0.02% or less, Si: 0.2 to 0.4%, Mn: 0.7 to 1.0%, P: 0.035% or less, S: 0.008% or less, Cr: 11.0 to 11.6%, N: 0.020% or less, Cu: 0.2-0.5%, Ni: 0.5-1.0%, residual casting Fe and other unavoidable impurities after continuous casting and hot rolling, hot-annealed at 640-680 ° C Wow; Cold rolling the hot rolled steel sheet subjected to hot rolling annealing at an 750 to 820 ° C. ambient temperature; Pickling and temper rolling; Method for producing a ferritic stainless steel for welded structure, characterized in that consisting of.
KR1019970052426A 1997-10-14 1997-10-14 Ferritic stainless steel for welding structure and method thereof KR100325542B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970052426A KR100325542B1 (en) 1997-10-14 1997-10-14 Ferritic stainless steel for welding structure and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970052426A KR100325542B1 (en) 1997-10-14 1997-10-14 Ferritic stainless steel for welding structure and method thereof

Publications (2)

Publication Number Publication Date
KR19990031642A KR19990031642A (en) 1999-05-06
KR100325542B1 true KR100325542B1 (en) 2002-07-31

Family

ID=37478238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970052426A KR100325542B1 (en) 1997-10-14 1997-10-14 Ferritic stainless steel for welding structure and method thereof

Country Status (1)

Country Link
KR (1) KR100325542B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570895B1 (en) * 2001-12-18 2006-04-12 주식회사 포스코 method of prevention of intergranular corrosion of ferritic stainless steels

Also Published As

Publication number Publication date
KR19990031642A (en) 1999-05-06

Similar Documents

Publication Publication Date Title
KR900006605B1 (en) Process for making a hogh strength stainless steel having excellent workability and free form weld softening
EP3246426B1 (en) Method for manufacturing a thick high-toughness high-strength steel sheet
US5858130A (en) Composition and method for producing an alloy steel and a product therefrom for structural applications
JP3904683B2 (en) Ferritic stainless steel with excellent surface properties and method for producing the same
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP2017008396A (en) Low yield ratio high tensile strength thick steel plate excellent in bendability and production method therefor
AU2006251093B2 (en) Steel for submarine hulls with improved weldability
JPH1036911A (en) Production of ferritic stainless steel excellent in surface characteristic
KR100325542B1 (en) Ferritic stainless steel for welding structure and method thereof
JPS63213619A (en) Manufacture of high strength stainless steel material having superior workability and causing no softening due to welding
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JPS6369950A (en) Nonmagnetic austenitic stainless steel having high hardness
JP3243987B2 (en) Manufacturing method of high strength and high corrosion resistance martensitic stainless steel
JP3422277B2 (en) Method of manufacturing martensitic stainless steel cold-rolled steel strip for leaf spring and leaf spring
JPH05154672A (en) Manufacture of high-strength and high-toughness clad steel plate
JPH022925B2 (en)
JPH05255738A (en) Production of steel for machine structural use excellent in delayed fracture resistance
KR20040004137A (en) STRUCTURAL Fe-Cr STEEL SHEET, MANUFACTURING METHOD THEREOF, AND STRUCTURAL SHAPED STEEL
JPH0663026B2 (en) Manufacturing method of high strength and high toughness boron-added thick steel plate by direct quenching process.
JPS6059981B2 (en) High-strength stainless steel with excellent intergranular corrosion cracking properties and workability
JPH11181549A (en) Cold tool made of casting excellent in weldability and its production
JPS63210242A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
JP4013515B2 (en) Structural stainless steel with excellent intergranular corrosion resistance
JPH0211721A (en) Manufacture of steel for pressure vessel of low temperature use for liquid ammonia having excellent stress corrosion cracking resistance
JPS6155570B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130129

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140128

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150203

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160201

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee